Published on in Vol 5 (2024)

This is a member publication of University of Bristol (Jisc)

Preprints (earlier versions) of this paper are available at https://www.medrxiv.org/content/10.1101/2023.01.21.23284795v1, first published .
Performance Drift in Machine Learning Models for Cardiac Surgery Risk Prediction: Retrospective Analysis

Performance Drift in Machine Learning Models for Cardiac Surgery Risk Prediction: Retrospective Analysis

Performance Drift in Machine Learning Models for Cardiac Surgery Risk Prediction: Retrospective Analysis

Journals

  1. Dong T, Oronti I, Sinha S, Freitas A, Zhai B, Chan J, Fudulu D, Caputo M, Angelini G. Enhancing Cardiovascular Risk Prediction: Development of an Advanced Xgboost Model with Hospital-Level Random Effects. Bioengineering 2024;11(10):1039 View
  2. Sinha S, Dong T, Dimagli A, Judge A, Angelini G. A machine learning algorithm-based risk prediction score for in-hospital/30-day mortality after adult cardiac surgery. European Journal of Cardio-Thoracic Surgery 2024;66(4) View
  3. Kenig N, Monton Echeverria J, Muntaner Vives A. Artificial Intelligence in Surgery: A Systematic Review of Use and Validation. Journal of Clinical Medicine 2024;13(23):7108 View