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Abstract
Background: The Society of Thoracic Surgeons and European System for Cardiac Operative Risk Evaluation (EuroSCORE)
II risk scores are the most commonly used risk prediction models for in-hospital mortality after adult cardiac surgery.
However, they are prone to miscalibration over time and poor generalization across data sets; thus, their use remains controver-
sial. Despite increased interest, a gap in understanding the effect of data set drift on the performance of machine learning
(ML) over time remains a barrier to its wider use in clinical practice. Data set drift occurs when an ML system underperforms
because of a mismatch between the data it was developed from and the data on which it is deployed.
Objective: In this study, we analyzed the extent of performance drift using models built on a large UK cardiac surgery
database. The objectives were to (1) rank and assess the extent of performance drift in cardiac surgery risk ML models over
time and (2) investigate any potential influence of data set drift and variable importance drift on performance drift.
Methods: We conducted a retrospective analysis of prospectively, routinely gathered data on adult patients undergoing
cardiac surgery in the United Kingdom between 2012 and 2019. We temporally split the data 70:30 into a training and
validation set and a holdout set. Five novel ML mortality prediction models were developed and assessed, along with
EuroSCORE II, for relationships between and within variable importance drift, performance drift, and actual data set drift.
Performance was assessed using a consensus metric.
Results: A total of 227,087 adults underwent cardiac surgery during the study period, with a mortality rate of 2.76%
(n=6258). There was strong evidence of a decrease in overall performance across all models (P<.0001). Extreme gradi-
ent boosting (clinical effectiveness metric [CEM] 0.728, 95% CI 0.728-0.729) and random forest (CEM 0.727, 95% CI
0.727-0.728) were the overall best-performing models, both temporally and nontemporally. EuroSCORE II performed the
worst across all comparisons. Sharp changes in variable importance and data set drift from October to December 2017, from
June to July 2018, and from December 2018 to February 2019 mirrored the effects of performance decrease across models.
Conclusions: All models show a decrease in at least 3 of the 5 individual metrics. CEM and variable importance drift
detection demonstrate the limitation of logistic regression methods used for cardiac surgery risk prediction and the effects of
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data set drift. Future work will be required to determine the interplay between ML models and whether ensemble models could
improve on their respective performance advantages.

JMIRx Med 2024;5:e45973; doi: 10.2196/45973
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Introduction
Background
Recently, the importance of machine learning (ML), a branch
of artificial intelligence, has been highlighted as a potential
alternative to traditional mortality risk stratification models
such as the Society of Thoracic Surgeons (STS) [1] and
European System for Cardiac Operative Risk Evaluation
(EuroSCORE) II risk scores [2], which are prone to misca-
libration over time and poor generalization across data sets
[1,3]. These traditional scoring methods are generally based
on logistic regression (LR), with risk factors determined
through consensus across experts within leading cardiac
surgery organizations in the United States (STS) or Europe
(EuroSCORE II). In particular, EuroSCORE II, which is
based on LR using 18 items of information about the
patient, has been shown by numerous studies to display poor
discrimination and calibration across data sets with differing
characteristics, including but not limited to age [4], ethnicity
[5], and procedures groups [6-10].

Risk scoring models’ performance is challenged by
numerous factors, such as differences in variable definitions,
the management of incomplete data fields, surgical procedure
selection criteria, and temporal changes in the prevalence of
patients’ risk factors [11]. ML approaches are increasingly
used for prediction in health care research as they have
the potential to overcome the limitations of linear models.
By including pairwise and higher-order interactions and
modeling nonlinear effects, ML may overcome heterogeneity
in procedures and missing data [1,12]. Although ML has been
shown to be beneficial over conventional scoring systems,
the magnitude and clinical influence of such improvements
remain uncertain [2]. The ability to counter “performance
drift” due to temporal changes in the prevalence of risk
factors has also yet to be fully elucidated.

In ML, performance drift refers to the gradual loss in
model performance caused by changes that call into question
the model’s training assumptions. Key causes of performance
drift include data set drift, which refers to changes in the
distribution of data between training and evaluation sets;
variable importance drift, which involves changes in the
significance of model variables; and calibration drift, which is
characterized by decreased reliability in estimated probabili-
ties. These factors can interact, as seen in a study of noncar-
diac surgery [13]. Understanding the complex relationship
between variable importance drift, performance drift, and
data set drift is important. This relationship explains how
changes in the importance of specific variables, combined
with changes in the actual data distribution, collectively

influence the model’s overall accuracy and reliability as
it performs over time. The wider implications are also
significant, influencing decision-making, insight accuracy,
generalization [14], ethical considerations, and regulatory
compliance across industries.

The aim of this study was to investigate performance
drift in existing ML models that have been used in prior
cardiac surgery risk prediction research. The objectives were
to (1) rank and assess the extent of performance drift in
such cardiac surgery risk ML models over time and (2)
investigate any potential influence of data set drift and
variable importance drift on performance drift. Therefore, we
trained and evaluated 5 supervised ML models in addition to
EuroSCORE II to (1) determine the best ML model in terms
of overall accuracy, discrimination, calibration, and clinical
effectiveness; (2) use variable importance drift as a measure
for detecting data set drift; and (3) verify suspected data set
drift informed through variable importance drift by assessing
actual data set drift [15].
Related Work
In our previous study, we found that combining the met-
rics covering all 4 aspects of discrimination, calibration,
clinical usefulness, and overall accuracy into a single
clinical effectiveness metric (CEM) improved the efficiency
of cognitive decision-making (according to the Miller law
[16]) for selecting the optimal ensemble models (ie, using
several models to derive a consensus prediction) [14,17].
This approach is useful for providing a consensus metric
that enables models to be ranked in scenarios where, for
example, 1 model could outperform another using 1 metric
but underperform under a different metric. Furthermore, we
demonstrated that such a consensus metric could be combined
with drill-down analysis to further interpret the models using
individual metrics [14]. Although area under the curve (AUC)
evaluates the diagnostic or predictive performance of the
model, it does not directly reflect patient benefit. This is why
we included a suit of other metrics, including the decision
curve analysis (DCA) net benefit index, that were found to be
clinically pertinent from our prior study [18].

In our previous work [19], we studied the calibration
changes across 2 different time intervals using the calibra-
tion belt (overall external calibration) and calibration drift
(Hosmer-Lemeshow goodness-of-fit χ2 statistics) approaches
within a single UK hospital. A recent study extended our
work to a Chinese national registry, Sino (Chinese) System
for Coronary Artery Bypass Grafting (CABG) Operative
Risk Evaluation II (SinoSCORE II), using a set of ML
models such as LightGBM; CatBoost; and a combination of
variable selection approaches including Optuna for stepwise
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regression, BorutaSHAP, and feature importance ranking
[20]. Another study in the United States also investigated the
calibration performance difference between extreme gradient
boosting (XGBoost) and LR models built for a cohort of
patients who underwent CABG, using preoperative, intraoper-
ative, and combined variable sets from the STS Adult Cardiac
Surgery Database [21].

Methods
Data Set and Patient Population
The study was performed using the National Adult Cardiac
Surgery Audit (NACSA) data set, which comprises data
prospectively collected by the National Institute for Car-
diovascular Outcomes Research on all cardiac procedures
performed in all National Health Service hospitals and some
private hospitals across the United Kingdom [19].

A total of 227,087 adult patients who underwent car-
diac surgery between January 1, 2012, and March 31,
2019, were included. Congenital, transplant, and mechanical
support device insertion cases were excluded. The CON-
SORT (Consolidated Standards of Reporting Trials) patient
flow diagram is shown in Figure S1 in Multimedia Appen-
dix 1 [19,22-25]. Missing and erroneously inputted data in
the data set were cleaned according to the NACSA registry
data preprocessing recommendations [26]. Generally, for any
variable data that were missing, it was assumed that the
variable was at baseline level, that is, no risk factor was
present. Missing patient age at the time of surgery was
imputed as the median patient age for the corresponding
year. Data standardization was performed by subtracting the
variable mean and dividing by the SD values [22].

The data set was split into 2 cohorts: training and
validation set (n=157,196, 69.2%; 2012-2016; Table S1 in
Multimedia Appendix 1) and holdout set (n=69,891, 30.8%;
2017-2019; Table S2 in Multimedia Appendix 1). The
primary outcome of this study was in-hospital mortality.
Baseline Statistical Analysis
Continuous variables were compared using nonparametric
Wilcoxon rank sum tests, whereas categorical variables were
compared using Pearson χ2 tests or Fisher exact tests as
appropriate.

The Scikit-learn (version 0.23.1) and Keras (version
2.4.0) Python libraries (Python Software Foundation) were
used to develop the models and to evaluate their discrim-
ination, calibration, and clinical effectiveness capabilities.
Statistical analyses were conducted using Stata/MP (version
17; StataCorp) and R (version 4.0.2; StataCorp). ANOVA
assumptions were checked using the rstatix R package.
Model Development
In our study, we trained 5 supervised ML risk models based
on the EuroSCORE II preoperative variable set (Table S3
in Multimedia Appendix 1). Those 5 models included LR,
neural network (NN) [22], random forest (RF) [27], weighted

support vector machine (SVM) [28], and extreme gradient
boosting (XGBoost) [19,29]. The EuroSCORE II score was
calculated for baseline comparison. Internal validation was
performed using 5-fold cross-validation on the training and
validation set (2012-2016) to select model parameters. Final
models were determined by retraining the models on the
combined training and validation set using the selected model
parameters. Temporal external validation was performed
using the final models on the holdout set (2017-2019) [15].
Each model calculated the probability of surgical mortality
for each patient. Overall, 1000 bootstrap samples were taken
for all metrics. Further details on model development can
be found in the Model Specification section in Multimedia
Appendix 1.
Assessment of Model Performance
The models’ performance was measured across four broad
parameters:

1. Discrimination: AUC and F1-score
2. Clinical utility: DCA net benefit index
3. Calibration: 1 – expected calibration error (ECE)
4. Combination of calibration and discrimination: adjusted

Brier score
The AUC performances of all variant models were
evaluated, and the receiver operating characteristic (ROC)
curves were plotted [30]. As a sensitivity analysis, we
calculated the F1-score, which combines precision and
recall without explicitly considering the true negative rate
in the performance evaluation [31]. This metric adjusts
for the biased effect due to the high proportion of alive
outcome samples. The DCA net benefit index was used to
test clinical benefit [32]. 1 – ECE was used to determine
calibration performance, with higher values being better
[33]. A special case of the Brier score (1 – Brier score)
without the normalization term was used (adjusted Brier
score) [34], with higher values indicating better discrimina-
tion and calibration performance.

To determine the best model in terms of both discrimina-
tion and calibration, we took the geometric average of AUC,
F1-score [31], DCA net benefit index (treated + untreated),
1 – ECE, and 1 – Brier score. The consensus metric using
the combined geometric average of the 5 metrics is named
CEM for ease of reference. The consensus approach for
combining different metrics has previously been applied in
a study on COVID-19 prediction [35]. In addition, this
approach is similar to the simple additive weighting multicri-
teria evaluation approach for making a decision through the
ranking of a set of competing criteria [36]. Geometric average
has previously been found to be effective for summarizing
metrics for temporal-based model calibration and is robust for
bootstrap-sampled Gaussian distributions [37]. This metric
is robust to outliers [38] and is preferable for aggregation
compared to the weighted arithmetic mean [39]. As an
exception, the arithmetic average was used for the DCA net
benefit index over all thresholds as a measure of overall net
benefit, before geometric averaging, since the values can be
negative. An overview of the model and evaluation design is
shown in Figure 1.
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Figure 1. Design overview of the study. Nontemporal performance and drift (temporal) analyses were performed. Drifts in discrimination,
calibration, clinical utility, data set, and variable importance were assessed. Time point assessments were performed for the clinical effectiveness
metric (CEM). Drifts in component metrics of CEM were evaluated. AUC: area under the curve; ECE: expected calibration error; EuroSCORE:
European System for Cardiac Operative Risk Evaluation; F1: F1-score; neuronetwork: neural network; SVM: support vector machine; Xgboost:
extreme gradient boosting.

Baseline Nontemporal Performance
Nontemporal comparison of models was conducted as a
baseline, using all data across the holdout period. Differences
across models were tested using repeated-measures 1-way
ANOVA and Bonferroni-corrected, multiple pairwise, paired
t tests (1-tailed); this was followed by Dunnett correction
for multiple comparisons, with the overall best-performing
model as the control. ANOVA assumptions for outliers
were checked. Normality assumptions were checked using
the Shapiro-Wilk test [40]. The Delong test was applied

to determine whether there was a statistically significant
difference across the AUCs of the ROC curves for the top 2
best-performing models. A comparison of individual metrics
was conducted.
Drift Analysis

Overview
The statistical methods used for analyzing drift is shown in
Table 1. More detailed explanations are provided below.

Table 1. Summary of statistical methods used for assessing drift.
Objective and statistical tests General statistical situations Rationale for choosing test Assumptions checked
Nontemporal comparison of models

Repeated-measures 1-way
ANOVA

Comparison of multiple groups
for differences

Used for comparing means across multiple
models

Outliers (ANOVA
assumptions) and
normality (Shapiro-Wilk
test)

Paired t tests (Bonferroni
corrected)

Comparison of paired
observations between models

To compare specific model pairs
simultaneously

—a

Dunnett correction Control for multiple
comparisons

Controls type I error rate in comparing
multiple treatments to a control group in
1-way ANOVA

—

Delong test Comparison of the AUCsb of 2
correlated ROCc curves

To compare the AUCs of 2 models or tests
during sensitivity testing

—

Analysis within specific time frames
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Objective and statistical tests General statistical situations Rationale for choosing test Assumptions checked

Kruskal-Wallis Test Comparison of multiple groups
for differences (nonparametric)

Nonparametric alternative for ANOVA in
specific time frames

Outliers (ANOVA
assumptions) and
normality (Shapiro-Wilk
test)

Bonferroni-corrected, paired-
samples Wilcoxon test (Wilcoxon
signed rank test)

Comparison of paired
observations within time
frames

Nonparametric comparison of paired samples
within time frames, with control for type I
error rate in comparing multiple treatments

—

Dunn test Multiple pairwise comparisons
within nonparametric groups

Post hoc test for pairwise comparisons
after Kruskal-Wallis test; determines the
magnitude of difference effects within time
frames

—

Analysis between the first 3 months of 2017 and 2019
Kruskal-Wallis test Comparison of multiple groups

for differences (nonparametric)
Nonparametric comparison between time
frames

Outliers (ANOVA
assumptions) and
normality (Kolmogorov-
Smirnov Test)

Paired-samples Wilcoxon test
(Wilcoxon signed rank test)

Comparison of paired
observations between time
frames

Nonparametric comparison of paired samples
between time frames

—

Bonferroni-adjusted Dunn test Multiple pairwise comparisons
between time frames

Post hoc test for pairwise comparisons after
significant Kruskal-Wallis results; determines
the magnitude of difference effects between
time frames, with control for type I error rate
in comparing multiple treatments

Normality (Kolmogorov-
Smirnov Test)

Analysis of discrimination, calibration, clinical utility, and overall accuracy drift
Linear regression (with residual
analysis)

Assessing relationships and
regression parameters

To analyze linear relationships and model
residuals

Normality through
histograms and QQ plots

Seasonal Kendall test (nonparamet-
ric alternative if assumptions not
met)

Assessing association or trends
when assumptions are not met

Nonparametric test for assessing associations
without assumptions

Homoscedasticity
through scale-location
plots

aNot applicable.
bAUC: area under the curve.
cROC: receiver operating characteristic.

CEM Regression Trends
The geometric CEM mean (and 95% CI) value of 1000
bootstraps for each model against time (the month of the year)
was calculated, and the results were plotted to compare trends
across models. The models were compared by fitting multiple
linear regression lines across time for CEM.

To check for normality assumptions, we plotted the
histogram and a QQ plot of residuals before applying
linear regressions [41]. We also checked for homogeneity of
residual variance (homoscedasticity) by plotting a scale-loca-
tion plot, that is, the square root of standardized residual
points against the values of the fitted outcome variable [42].
For model metrics that do not satisfy these assumptions, the
seasonal Kendall test (nonparametric) was used instead.

Analysis Within the First 3 Months of 2017 and
2019
Differences in CEM values across models at 2 time
points were independently tested using the Kruskal-Wallis
test and Bonferroni-corrected, paired-samples Wilcoxon test
(Wilcoxon signed rank test). The 2 time points were the first
3 months of 2017 and 2019. This was followed by the Dunn
test for nonparametric multiple comparisons of the models

at each of the 2 time points, with the overall best-perform-
ing model as a baseline. ANOVA assumptions for outliers
were checked. Normality assumptions were checked using the
Shapiro-Wilk test [40].

Analysis Between the First 3 Months of 2017
and 2019
Differences in CEM values across the first 3 months of
2017 and 2019 were tested using the Kruskal-Wallis test and
paired-samples Wilcoxon test (Wilcoxon signed rank test).
The Bonferroni-adjusted Dunn test was used to determine
the magnitude and evidence of change across the 2 time
points for each model. ANOVA assumptions for outliers
were checked. Normality assumptions were checked using the
Kolmogorov-Smirnov Test.

Analysis of Discrimination, Calibration, Clinical
Utility, and Overall Accuracy Drift
As a sensitivity analysis, we analyzed performance drift
in terms of component metrics within CEM. Discrimina-
tion (AUC), positive outcome discrimination (F1-score),
calibration (1 – ECE), clinical utility (net benefit), and overall
accuracy of prediction probability (adjusted Brier score) were
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assessed by fitting multiple (model) linear regression lines
across time for each metric.

To check for normality assumptions, the same methods as
those used for CEM regression trends were used.
Analysis of Variable Importance Drift
Variable importance drift was assessed for the best-perform-
ing model. For each month of the holdout set, 5-fold nested
cross-validation was performed to derive the importance of
each EuroSCORE II variable in the model’s decision-mak-
ing. The geometric mean of 5-fold importance at each time
point was plotted along with the importance of each of the
5 folds. The Shapley additive explanations (SHAP) mean
absolute magnitude of importance was used [43,44]. Locally
estimated scatterplot smoothing was used to simplify the
visual representation. Line plots of the top 6 most important
variables were used as a sensitivity analysis.
Data Set Drift
Data set drift across time was visualized using a stacked bar
plot for the top 3 variables as identified by SHAP variable
importance. Continuous variables were binned into intervals
to enable ease of analysis.
Net Benefit Projection
To further understand the clinical significance of the
performance drift over time, the fitted linear regression model

intercepts and slopes were used to extrapolate the net benefit
up to January 2030 for the XGBoost and NN models.
Ethical Considerations
The study was part of a research project approved by the
Health Research Authority and Health and Care Research
Wales on July 23, 2019 (Integrated Research Application
System project ID: 257758). As the study included retro-
spective interrogation of the National Institute for Cardiovas-
cular Outcomes Research database, the need for individual
patient consent was waived in accordance with the research
guidance. The study was performed in accordance with the
ethical standards as laid down in the 1964 Declaration of
Helsinki and its later amendments.

Results
Baseline Patient Characteristics
A total of 227,087 procedures of adults from 42 hospitals
were included in this analysis. This followed the removal
of 3930 congenital cases, 1586 transplant and mechanical
support device insertion cases, and 3395 procedures with
missing information on mortality (Table 2). There were 6258
deaths during the study period (mortality rate of 2.76%).

Table 2. Patient demographics and summary of cleaned EuroSCOREa II variables. Variables are from the time period from 2012 to 2019. Records
with missing mortality status were excluded.
Variable Mortality status P valueb

No (n=220,829) Yes (n=6258)
Age (years), mean (SD) 67.53 (11.23) 70.77 (11.42) <.001
NYHAc classification, n (%) <.001

0 (I) 48,625 (22) 1055 (17)
1 (II) 96,888 (44) 1609 (26)
2 (III) 64,049 (29) 2228 (36)
3 (IV) 11,267 (5.1) 1366 (22)

Renal impairment, n (%) <.001
0 (normal) 103,196 (47) 1704 (27)
1 (moderate) 92,411 (42) 2451 (39)
2 (on dialysis) 2187 (1) 330 (5.3)
3 (severe) 23,035 (10) 1773 (28)

Chronic lung disease, n (%) 26,644 (12) 1211 (19) <.001
Poor mobility, n (%) 8305 (3.8) 514 (8.2) <.001
Previous cardiac surgery, n (%) 12,012 (5.4) 1141 (18) <.001
Left ventricle function, n (%) <.001

0 (good; >50%) 184,721 (84) 4706 (75)
1 (moderate; 31%-50%) 30,608 (14) 1089 (17)
2 (poor; 21%-30%) 4241 (1.9) 318 (5.1)
3 (very poor; ≤20%) 1259 (0.6) 145 (2.3)

Pulmonary hypertension, n (%) <.001
0 (PAd systolic <31 mm Hg) 201,643 (91) 5000 (80)
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Variable Mortality status P valueb

No (n=220,829) Yes (n=6258)
1 (PA systolic 31-55 mm Hg) 13,126 (5.9) 705 (11)
2 (PA systolic >55 mm Hg) 6060 (2.7) 553 (8.8)

CCSe class 4 angina, n (%) 18,370 (8.3) 956 (15) <.001
Urgency, n (%) <.001

0 (elective) 141,617 (64) 2442 (39)
1 (urgent) 72,090 (33) 2134 (34)
2 (emergency) 6533 (3) 1230 (20)
3 (salvage) 589 (0.3) 452 (7.2)

Weight of the intervention, n (%) <.001
0 (isolated CABGf) 111,243 (50) 1546 (25)
1 (single non-CABG) 62,568 (28) 2153 (34)
2 (two procedures) 42,649 (19) 2108 (34)
3 (three procedures) 4369 (2) 451 (7.2)

Diabetes on insulin, n (%) 12,818 (5.8) 453 (7.2) <.001
Female gender, n (%) 59,467 (27) 2328 (37) <.001
Recent myocardial infarction, n (%) 43,316 (20) 1594 (25) <.001
Critical preoperative state, n (%) 7255 (3.3) 1382 (22) <.001
Extracardiac arteriopathy, n (%) 22,327 (10) 1215 (19) <.001
Active endocarditis, n (%) 5816 (2.6) 493 (7.9) <.001
Surgery on thoracic aorta, n (%) 9070 (4.1) 896 (14) <.001
EuroSCORE II, mean (SD) 0.03 (0.04) 0.12 (0.14) <.001

aEuroSCORE: European System for Cardiac Operative Risk Evaluation.
bWilcoxon rank sum test or Pearson χ2 test
cNYHA: New York Heart Association.
dPA: pulmonary artery.
eCCS: Canadian Cardiovascular Society.
fCABG: coronary artery bypass grafting.

Baseline Nontemporal Performance
No extreme outliers were found when testing for ANOVA
assumptions. The CEM values from 1000 bootstraps were
normally distributed for LR, NN, and RF but not XGBoost,
as assessed by the Shapiro-Wilk test (P>.05). A histogram
plot of the XGBoost CEM values did not show substantial
deviation from the normal distribution. There was strong
evidence of a difference across all models (P<.0001; Table
S4 and Figure S2 in Multimedia Appendix 1). Table 3 shows
that XGBoost (CEM 0.728, 95% CI 0.728-0.729) and RF
(CEM 0.727, 95% CI 0.727-0.728) were the overall best-per-
forming models, with moderate to strong evidence (nonover-
lapping CIs) of the former outperforming the latter. This was
followed by LR, NN, SVM, and EuroSCORE II. The Dunnett
test showed that there was moderate to strong evidence that

XGBoost was superior to all other models (P<.001; Table 4).
The performance of XGBoost was the least different from RF
but the most different from EuroSCORE II (CEM difference
to XGBoost: 0.0009 vs 0.1876).

The sensitivity analysis of CEM component metrics
showed that the adjusted Brier score was unable to distinguish
between XGBoost, RF, NN, and LR (Table 3; all 0.976).
AUC performance was the best for XGBoost (0.834) and
RF (0.835), with the Delong test showing no statistically
significant difference (P>.05). F1-score showed that XGBoost
performed the best, followed by RF (0.279 vs 0.277). LR
and NN (adjusted ECE: both 0.997) showed better calibra-
tion performance than RF and XGBoost (adjusted ECE: both
0.996). Net benefit was the best for XGBoost and RF (both
0.904).

Table 3. Geometric mean of individual metrics for each model in the holdout set. In all, 1000 bootstrap samples were used to derive the geometric
mean of each metric. Adjusted ECEa and Brier score values are shown. Net benefit is the average absolute overall benefit across all thresholds.

Model category 1 – ECE AUCb
1 – Brier
score F1-score Net benefit CEMc

Mean (SD) 95% CI Value, n
EuroSCOREd II 0.641 0.800 0.814 0.240 0.461 0.541 (0.004) 0.540-0.541 1000
LRe 0.997 0.819 0.976 0.264 0.902 0.717 (0.005) 0.717-0.717 1000
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Model category 1 – ECE AUCb
1 – Brier
score F1-score Net benefit CEMc

Mean (SD) 95% CI Value, n
NNf 0.997 0.813 0.976 0.259 0.901 0.713 (0.006) 0.713-0.714 1000
RFg 0.996 0.835 0.976 0.277 0.904 0.727 (0.005) 0.727-0.728 1000
Weighted SVMh 0.775 0.819 0.916 0.257 0.685 0.634 (0.005) 0.634-0.634 1000
XGBoosti 0.996 0.834 0.976 0.279 0.904 0.728 (0.005) 0.728-0.729 1000

aECE: expected calibration error.
bAUC: area under the curve.
cCEM: clinical effectiveness metric.
dEuroSCORE: European System for Cardiac Operative Risk Evaluation.
eLR: logistic regression.
fNN: neural network.
gRF: random forest.
hSVM: support vector machine.
iXGBoost: extreme gradient boosting.

Table 4. The Dunnett test with XGBoosta as a control and the rest of the models as comparisons.
Group 1 Group 2 (control) CEMb difference (group 1 – group 2; 95% family-wise CI) P value
EuroSCOREc II XGBoost −0.1876 (−0.1881 to −0.1870) <2×10–16d

LRe XGBoost −0.0110 (−0.0116 to −0.0105) <2×10–16d

NNf XGBoost −0.0148 (−0.0154 to −0.0142) <2×10–16d

RFg XGBoost −0.0009 (−0.0015 to −0.0003) .00039d

Weighted SVMh XGBoost −0.0941 (−0.0947 to −0.0935) <2×10–16d
aXGBoost: extreme gradient boosting.
bCEM: clinical effectiveness metric.
cEuroSCORE: European System for Cardiac Operative Risk Evaluation.
dP<.001.
eLR: logistic regression.
fNN: neural network.
gRF: random forest.
hSVM: support vector machine.

Drift Analysis

Overall CEM
Figure 2A shows that XGBoost and RF were candidates
for the best overall CEM performance across time. There
was minor evidence of LR outperforming NN across
time. Seasonal fluctuations were observed. EuroSCORE II
performed the worst across time, followed by SVM.

There was strong evidence of a decrease in overall
performance across all models (P<.0001). Linear regression
plots showed that XGBoost had the best starting CEM
(intercept: 0.755 vs 0.753 [RF], 0.742 [LR], and 0.741 [NN]),

but the rate of performance decrease (slope −0.000720) was
less than NN (−0.00083) and greater than RF (−0.000685)
and LR (−0.000696; Figure 3A-C and Figure S3 in Multime-
dia Appendix 1). By March 2019, the overall CEM perform-
ance ranking was not changed, with XGBoost performing
the best, followed by RF, LR, and NN. EuroSCORE II
(intercept 0.484; slope −0.000847) performed the worst in
terms of starting CEM and rate of performance decrease,
followed by SVM (intercept 0.658; slope −0.000625; Figure
3D and Figure S4 in Multimedia Appendix 1). Normality and
homogeneity assumptions were satisfied for all models’ CEM
values, as checked by a QQ plot of residuals and scale-loca-
tion plot (Figure S5 in Multimedia Appendix 1).
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Figure 2. (A) Plot of CEM values by model and time. Geometric mean (95% CI) of 1000 bootstraps at each time point is shown. The horizontal
line represents the CEM geometric mean of all models. (B) Box plot of difference in models’ CEM values across the first 3 months of 2017 and
2019. Kruskal-Wallis results for CEM across the time points are shown. (C) Paired-samples Wilcoxon test (Wilcoxon signed rank test) for the first
3 months of 2019 bootstrap CEM values. P values are adjusted using the Bonferroni method. ****P<.0001. CEM: clinical effectiveness metric;
EuroSCORE: European System for Cardiac Operative Risk Evaluation; ns: not significant; neuronetwork: neural network; SVM: support vector
machine; Xgboost: extreme gradient boosting.
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Figure 3. Plots of CEM values by model and time: (A) XGBoost, (B) random forest, (C) logistic regression, and (D) EuroSCORE II. The geometric
mean of 1000 bootstraps at each time point is shown. The red dotted line shows linear regression, and the blue line shows generalized additive
model fit. Parameters and P values for the linear regressions are shown. (E) Discrimination (AUC) performance drift by time. Linear regression
lines are plotted for each model, with slope, intercept, and P values displayed in the legend. (F) Calibration (adjusted ECE) performance drift by
time. Linear regression lines are plotted for each model, with slope, intercept and P values displayed in the legend. SVM and EuroSCORE II are
removed to enable a clearer separation of models with similar performance. AUC: area under the curve; CEM: clinical effectiveness metric; ECE:
expected calibration error; EuroSCORE: European System for Cardiac Operative Risk Evaluation; neuronetwork: neural network; SVM: support
vector machine; Xgboost: extreme gradient boosting.
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Analysis Within the First 3 Months of 2017
No extreme outliers were found for the models’ CEM values
in the first 3 months of 2017. The CEM values were
nonnormally distributed for all models (P<.05; Table S5 in
Multimedia Appendix 1). There was strong evidence of a
difference across all models (P<.0001; Table 3 and Figure
S6 in Multimedia Appendix 1). The Dunn test showed strong
evidence of XGBoost having the best overall performance
(Table S6 in Multimedia Appendix 1; P<.0001), followed
by RF, NN, and LR (CEM difference to XGBoost: −0.0076,
−0.0124, and −0.0138, respectively; P<.0001). EuroSCORE
II performed the worst, followed by weighted SVM (CEM
difference to XGBoost: −0.2739 and −0.0961, respectively;
P<.0001).

Analysis Within the First 3 Months of 2019
No extreme outliers were found for the models’ CEM values
in the first 3 months of 2019. The CEM values were
nonnormally distributed for 50% (3/6) of models (P<.05).
There was strong evidence of a difference across all models
(P<.0001; Table S7 in Multimedia Appendix 1 and Figure
2B). The Dunn test showed strong evidence of XGBoost
having the best overall performance (Table S8 in Multimedia
Appendix 1; P<.05), followed by RF, LR, and NN (CEM
difference to XGBoost: −0.0032, −0.0055, and −0.0108,
respectively; P<.05). EuroSCORE II performed the worst,
followed by weighted SVM (CEM difference to XGBoost:
−0.2594 and −0.0856, respectively; P<.0001).

Analysis Between the First 3 Months of 2017
and 2019
No extreme outliers were found for the models’ CEM values
in the first 3 months of 2017 and 2019. The CEM val-
ues were nonnormally distributed for the first 3 months
of 2017 and 2019, as assessed by the Kolmogorov-Smir-
nov test (P<.05). There was strong evidence of an over-
all difference across the 2 time points (P<.0001; Table
S9 and Figure S7 in Multimedia Appendix 1). There was
strong evidence of a difference across the 2 time points for
each individual model (P<.05; Figure 2C and Table S10 in
Multimedia Appendix 1). XGBoost retained the best overall
performance across the time points examined. This model
showed the largest decrease in CEM performance (median
difference 0.0288; P<.0001), followed by NN, RF, and LR
(median difference: 0.0272, 0.0244, and 0.0205, respectively;
P<.0001). Following a performance decrease from 2017 to
2019, XGBoost still had the best overall performance, with
RF being the second best (median CEM: 0.716 and 0.713,
respectively). Although NN had a better starting performance
than LR, the larger performance drift resulted in NN having
a lower overall performance than LR in 2019 (median CEM:
0.705 vs 0.710). Although the performance drift was smaller,
LR’s CEM performance never exceeded RF’s (median CEM:
0.710 vs 0.713). EuroSCORE II showed the least perform-
ance drift, followed by weighted SVM (median difference:
0.0142 and 0.0183, respectively; P<.05), but both performed
the worst in terms of absolute CEM value.

Analysis of Discrimination, Calibration, and
Clinical Effectiveness Drift
Discrimination
AUC
Linear regression plots showed that XGBoost had the best
starting AUC (intercept: 0.843 vs 0.839 [RF] and 0.831
[LR, NN, and SVM]), but the rate of performance decrease
was greater than RF and EuroSCORE II (slope: −0.000678
vs −0.000381 [RF] and −0.000604 [EuroSCORE II]; Figure
3E). By March 2019, XGBoost’s AUC had decreased below
RF’s, resulting in RF being the best-performing model,
followed by XGBoost, SVM, LR, and NN. NN showed the
largest rate of AUC decrease, followed by LR and SVM
(slope: −0.0014, −0.00093, and −0.000873, respectively).
EuroSCORE II performed the worst in terms of AUC across
all time points (intercept 0.766). There was strong evidence of
a decrease in AUC performance across all models (P<.0001).
Normality and homogeneity assumptions were satisfied for all
models’ AUC values, as checked by a QQ plot of residuals
and scale-location plot (Figure S8 in Multimedia Appendix
1).

F1-score
The best-performing model across all holdout time periods
was XGBoost, followed by RF, LR, NN, SVM, and Euro-
SCORE II. There was strong evidence of a decrease in
F1-score performance across all models (P<.0001). More
details can be found in the Positive Outcome Discrimination
section and Figures S9-10 in Multimedia Appendix 1.

Calibration
Linear regression plots showed that NN has the best starting
adjusted ECE (intercept: 0.9907 vs 0.9903 [RF], 0.9902
[XGBoost], and 0.9898 [LR]), but the rate of performance
decrease was greater than LR and RF (slope: −5.29×10–5

vs −2.93×10–6 [LR] and −4.58×10–5 [RF]; Figure 3F). By
March 2019, NN’s adjusted ECE had decreased below LR’s,
resulting in LR being the best-performing model, followed by
NN, RF, and XGBoost. Although SVM and EuroSCORE II
had lower rates of adjusted ECE decrease (slope: −0.000251
and −0.000479, respectively), the calibration performance
was much lower at all time points compared to the other
models (Figure S11 in Multimedia Appendix 1). There was
strong evidence of a decrease in adjusted ECE performance
across all models (P<.0001), except LR (P>.05). Normality
and homogeneity assumptions were satisfied for all models’
adjusted ECE values, as checked by a QQ plot of residuals
and scale-location plot (Figure S12 in Multimedia Appendix
1).

Clinical Effectiveness
Linear regression plots showed that XGBoost had the best
starting net benefit (intercept: 0.9051 vs 0.9043 [RF] and
0.9035 [NN and LR]), but the rate of performance decrease
was greater than RF (slope: −5.68×10–5 vs −2.5×10–6; Figure
4A), slower than LR (−9.38×10–5), and even slower than
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NN (−0.000145). By March 2019, XGBoost’s net benefit
had decreased below RF’s, resulting in RF being the best-
performing model, followed by XGBoost, LR, and NN.
EuroSCORE II showed the largest rate of net benefit decrease
and performed the worst across all time points, followed
by SVM (intercept: 0.314 and 0.690; slope: −0.000846 and
−0.000364, respectively; Figure S13 in Multimedia Appendix

1). There was strong evidence of a decrease in net benefit
performance across all models (P<.0001), except RF (P>.05).
Normality and homogeneity assumptions were satisfied for
all models’ net benefit values, as checked by a QQ plot of
residuals and scale-location plot (Figure S14 in Multimedia
Appendix 1).

Figure 4. (A) Clinical effectiveness (net benefit) performance drift by time. Linear regression lines are plotted for each model, with slope, intercept,
and P values displayed in the legend. SVM and EuroSCORE II are removed to enable a clearer separation of models with similar performance. (B)
SHAP variable importance drift for the holdout set over 27 months (EuroSCORE II and XGBoost). Solid dots show geometric mean values of 5-fold
cross-validation. Smoothed locally estimated scatterplot lines are plotted, with green bands showing 95% CIs. (C) SHAP variable importance drift
for the holdout set over 27 months for the top 6 most important variables (EuroSCORE II and XGBoost). The trends are unsmoothed. (D) Operative
urgency data set drift across time for the holdout set. The percentages of each category are shown for each time point. CCS: Canadian Cardiovascular
Society; CPS: critical preoperative state; EuroSCORE: European System for Cardiac Operative Risk Evaluation; ES: EuroSCORE; LV: left ventricle;
MI: myocardial infarction; neuronetwork: neural network; NYHA: New York Heart Association; PA: pulmonary artery; PVD: peripheral vascular
disease; SHAP: Shapley additive explanations; SVM: support vector machine; Xgboost: extreme gradient boosting.
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Accuracy of Prediction Probability
By March 2019, XGBoost was the best model, followed by
RF, LR, and NN. EuroSCORE II performed the worst in
terms of adjusted Brier score and rate of decrease, followed
by SVM. There was strong evidence of a decrease in adjusted
Brier score performance across all models (P<.0001), except
XGBoost and RF. More details can be found in the Accuracy
of Prediction Probability section and Figures S15-S17 in
Multimedia Appendix 1.

Analysis of Variable Importance Drift
SHAP mean absolute magnitude of importance was used
to measure variable importance drift for the best temporal
and nontemporal model (XGBoost). Smoothed trend lines
showed substantial drift in numerous variables, including the
most important variables: age, operative urgency, the weight
of intervention, New York Heart Association classification,
renal impairment, and previous cardiac surgery (Figure 4B).
The sensitivity analysis showed a substantial drift in variable
importance across the holdout set for all 6 variables (Figure
4C). When compared with the CEM performance drop from
October to December 2017 and from June to July 2018
(Figure 3 generalized additive model line), it could be seen
that the CEM decrease was mirrored by decreases in the
importance of the top variables, age and operative urgency, at
these time periods (Figure 4C). A decrease in CEM perform-
ance in the 3 months of 2019 was likely to be at least partly
contributed by the sudden rise in the importance of the weight
of intervention (Figure 3 and Figure 4B and C).

Data Set Drift Across Time
Data set drift was observed throughout the holdout time
periods for operative urgency, with sharp drifts observed
across all categories from November to December 2017 and
from June to July 2018 (Figure 4D). Data set drift was
observed across the holdout time periods for the <60 and
>60 years patient age groups (Figure S18 in Multimedia
Appendix 1), with marked data drifts observed from October
to November 2017 and from July to August 2018. Data set
drift was observed across the holdout time periods for the
weight of intervention (Figure S19 in Multimedia Appendix
1). Sharp data set drifts were observed for the single non-
CABG and 3 procedures categories from December 2018 to
February 2019.
Net Benefit Projection
To further understand the clinical significance of performance
drift over time, Figure 5 illustrates the expected net benefit
decrease for the NN and XGBoost models. The blue line
depicts the actual net benefit drop for the NN model (as
represented by the slope), transitioning to the projected red
line after March 2019. The green line represents the actual
net benefit drop for the XGBoost model up to March 2019,
changing to the projected purple line after March 2019. A
clinically significant decrease (from 0.9035 to 0.8808) is
shown for NN but not for XGBoost (from 0.9051 to 0.8962).

Figure 5. The actual and projected net benefit drift for the NN and Xgboost models over time. NN: neural network; XGBoost: extreme gradient
boosting.
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Discussion
Principal Findings
The main finding of the study was that the XGBoost model
performed the best, followed by RF, LR, and NN, when
all metrics were simultaneously considered, both temporally
and nontemporally. Furthermore, EuroSCORE II substantially
underperformed against all ML models across all compari-
sons; this presents an urgent need to understand the drift
effects of this score and is not limited to calibration drift. By
first combining all metrics and then analyzing the temporal
drift of each metric individually, we were able to determine
the contribution of individual metrics to the overall perform-
ance drift of each model. We found strong evidence that all
models showed a decrease in at least 3 of the 5 individual
metrics within the CEM. This demonstrated the importance
for clinicians and ML governance teams to actively moni-
tor the effects of data set drift (as explained later) on “big
data” models that are prepared for or being clinically used to
minimize the risk of harm to patients.

“Big data” refers to large and detailed data sets that
are suited to ML analyses rather than traditional statistical
analyses [45,46], and they are increasingly used in health
care. These analyses can inform, personalize, and potentially
improve care [45,47,48]. Despite growing interest [49] in ML
and health care data linkage initiatives such as the Cardiac
Quality Assurance Programme in the United Kingdom [50],
there have been limited reports of use within cardiac surgery
[51-53], with one of the main reasons being a lack of
understanding by clinicians of the underlining processes [54].

As more countries follow in the steps of the United
States to deploy ML to the medical settings [55], it becomes
increasingly critical that clinicians and ML governance teams
are adequately prepared for situations in which ML systems
fail to perform their intended functions [56]. A major factor
in ML malfunction is “data set drift,” where ML performance
declines due to a mismatch between the data on which the
model was trained and the new unseen data to which the
model is applied [57]. Several factors have been reported
to influence data set drift, including changes in technology,
demographics, and patient or clinician behavior [56].

In our previous systematic review, we found that despite
ML models achieving better discriminatory ability than
traditional LR approaches, few cardiac surgery studies
assessed calibration, clinical utility, discrimination, and data
set drift collectively; these aspects should be assessed to
determine the clinical implications of ML [2]. Our previ-
ous study [19], although not involving the assessment of
XGBoost, had also shown that the calibration drift of LR
was less than that of RF, whereas EuroSCORE I, naïve
Bayes, and NN performed poorly in terms of calibration.
A recent study extending on our work had shown tempo-
ral and spatial calibration drift (comparison across regions
and hospitals) to be severe across a range of ML models
using a national Chinese registry [20]. In accordance with
our view, the study highlighted that “future efforts may
need to shift more towards enhancing model calibration

robustness or recalibration for greater practical value” and
that the inclusion of intraoperative variables may be important
to enhancing model performance. The STS Adult Cardiac
Surgery Database study [21] had shown that the inclusion
of intraoperative variables improved both the discrimination
and calibration performance of XGBoost and LR models
in patients who underwent CABG from the United States.
Although calibration drift over time is well documented
among EuroSCORE and LR models for hospital mortality,
the susceptibility of competing ML modeling methods to data
set drift has not been well studied in cardiac surgery [13].

This study heeds the call for additional metrics to address
the lack of sensitivity of the most commonly used C-statis-
tic and calibration slope in capturing the advantage of ML
models [58]; we demonstrated the use of a consensus score
[22,35,59-61] named CEM to take into account numerous
metrics that have been found to be beneficial, covering
overall accuracy [58], discrimination, calibration, and clinical
utility. We wanted to analyze model performance across
multiple metrics across time in this study.

This study showed invariance in model ranking for the
CEM in both temporal and nontemporal analyses, indicating
that there is value for this consensus scoring approach in
performance drift evaluation.

This study also addresses the gap in understanding the
effect of data set drift on the performance of ML and
traditional models over time, which presents a barrier to
their clinical application. The shift between XGBoost and
RF having the best performance for AUC and net benefit
and between NN and LR having the best performance for
“adjusted ECE” demonstrates that the comparison of models
at a single time point was insufficient to understand the
clinical limitations of ML models and that at least 2 time
points should be considered.

Our study has also found that although RF showed
comparable discrimination (AUC) and clinical utility (net
benefit) performance across time, the reason for XGBoost’s
superior overall temporal performance was in its better
overall accuracy (adjusted Brier score) and positive outcome
discrimination (F1-score). F1-score is often overlooked but is
especially important in cardiac surgery data sets, whereby the
incidence for the outcome of interest is typically very low and
introduces bias in the performance evaluation when AUC is
used. We found that RF performed the second best overall.
Unlike XGBoost, RF performed better in terms of resistance
to drift for AUC and net benefit, suggesting that further work
is required to determine whether the synergistic (ensemble)
effects across models are beneficial for improving cardiac
surgery risk prediction.

Although XGBoost is currently the best temporal and
nontemporal model for the NACSA data set, periodic
monitoring of performance drift for each yearly revision of
this data set should be mandated to determine whether or
not performance has been overtaken by RF, and if so, at
what point in time this happens [56]. As all models showed
strong evidence of a decrease in overall performance from
January 2017 to March 2019, further work will be required
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to develop either better-performing models or models that
are less susceptible to performance drift. However, through
projecting the net benefit into the year 2030 based on the
fitted linear regression, the decreases in the net benefit for
XGBoost over time were shown to be clinically insignificant.
On the contrary, the NN model showed a clinically significant
drop in net benefit.

Although the reported decreases in measures such as
CEM and AUC may appear small, such changes are likely
to impact the potential use of ML models within clinical
scenarios. If such models are to be used clinically for making
decisions about the patient, even small changes in these
metrics (which have been previously discussed [18] to be
important in cardiac surgery ML performance) can have an
influence on risk assessment and patient outcomes, necessitat-
ing constant model drift monitoring. Prior research has shown
that improving model calibration robustness or recalibration
is necessary for practical value and that the “the significant
decline in performance of previously established models in
this study calls for continuing model updates” [20]. It is
envisaged that collaboration between physicians and ML
scientists is critical. Before mandating model updates, it is
critical to establish metric-specific thresholds for acceptable
reductions. A consensus approach, extensive experience in
this area, or a meta-analysis of current literature may be
required for this collaborative decision-making process.

We have demonstrated that by associating relationships
between smoothed [62] and unsmoothed trend lines for CEM
performance and EuroSCORE II variable importance, it was
possible to detect subtle data set drifts that could result in
model performance drifts. Our findings of variable impor-
tance and data set drift from October to December 2017, from
June to July 2018, and from December 2018 to February
2019 are likely to reflect seasonality changes and mirrored
effects of sharp drifts in CEM performance across models.
The detection of data set drift was verified by checking for
actual drifts in the data set variables. A noncardiac surgery
study used actual data set drift to check for variable impor-
tance–detected data set drift [13]. However, drift in the actual
data set was only analyzed across 2 data points [13], without
consideration for smoothed and unsmoothed relationships
across performance, variable importance, and actual variable
incidence. This study provides the foundations for which
further work analyzing ML performance drift are recommen-
ded, to analyze relationships between drifts in a consensus
score such as CEM and in variable importance, followed by
the confirmation of any detected drifts using actual data set
trends (data set drift).

Limitations and Future Studies
Although statistical rigor has been applied to determine
whether performance drift is a barrier to clinical risk
modeling and decision-making, further work could be done
to apply more statistically sensitive approaches for compar-
ing the interactions of trends in data set drift, performance
drift, and variable importance drift. As NACSA patient
identifiers and the Hospital Episode Statistics data set were
not available for linkage, it was not possible to determine
whether there were any same patient individuals in both
the training and validation set and holdout set, where they
had multiple surgeries. Clinical judgment suggests that the
proportion of multiple surgeries would be very low. None-
theless, future work should consider the collection of such
information to minimize any potential bias. Our previous
work using CEM and constituent metrics to study random
effects ML had also shown that hospital-related systematic
variations may be better adjusted for by including hospital
location variables as part of the input covariates rather than
specifically using mixed effects ML models [17]. Future work
may consider the incorporation of such systematic variation
adjustments when studying drift effects to further investigate
the optimal approach for modeling drift across individual
hospitals. Although CEM is a consensus score that enhan-
ces the clinical evaluation of complex relationships across
different aspects of model performance, compressing the net
benefit measure into a single value would mean that further
DCA may be required if individual-specific, threshold-based
decisions were to be fully considered. Future studies should
also delve deeper into the relationships of the studied drift
types with concept drift in cardiac surgery risk prediction.
Conclusion
This study found that performance drift of ML and Euro-
SCORE II over time could be explained through data set
drift patterns in cardiac surgery risk prediction. It was also
found that variable importance drift could help to explain
performance drift and support the detection of data set drift
in the assessed models. The strong evidence of all models
showing a decrease in at least 3 of the 5 individual metrics
within CEM demonstrates the potential need to update the
models over time, but future work are required to determine
suitable thresholds for mandating an update. Future work
will be required to determine the interplay between XGBoost
and RF, which have demonstrated less drift over time, and
whether combining these models through additional ensemble
modeling could take advantage of their respective perform-
ance advantages.
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