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Abstract
Background: In health care providers’ performance assessment, standardized incidence ratios are essential tools used to
assess whether observed event rates deviate from expected values. Accurate estimation of variance in these ratios is crucial as
it affects decision-making regarding providers’ performance. There is little data on how the choice of these variance estimation
methods affects decision-making.
Objective: In this study, we compared 3 methods (the delta method, bootstrapping method, and Bayesian approach) to
estimate the variance of the logarithm of the standardized incidence ratio.
Methods: Using patient-level data from the Australia and New Zealand Dialysis and Transplant Registry for 2012‐2023, we
used a random effects model to predict treatment at home 1 year after starting treatment. We compared the 3 approaches (with
more than 5000 iterations for bootstrapping and Markov chain Monte Carlo sampling) using bias, variance, and mean squared
error (MSE) as performance measures. Using the 3 methods, funnel plots were used to compare the hospitals’ performance in
treating Indigenous and non-Indigenous patients close to home, as a service-level measure of equity.
Results: The bias values across all methods were similar, with the Bayesian method narrowly having the lowest bias
(0.01922), followed by the delta method (0.01927) and bootstrap method (0.02567). In addition, the Bayesian method
exhibited the lowest variance (0.00005), indicating more stable and less dispersed estimates. The delta method had a higher
variance (0.00016), while the bootstrap method had the highest variance (0.00027), meaning it introduced more uncertainty.
Finally, the Bayesian method had the lowest MSE (0.00042), indicating better overall accuracy, while the bootstrap method
had the highest MSE (0.00094), showing it was the least reliable method.
Conclusions: We demonstrated that these methods can be used to measure equity for patient-centered outcomes, both within
and between service providers simultaneously. The choice of variance estimation method is critical and heavily affects the
interpretation of the performance of health service providers. We favor the Bayesian Markov chain Monte Carlo method as it
was found to be a better approach.
Trial Registration: ANZCTR ACTRN12623001241628; https://www.anzctr.org.au/Trial/Registration/TrialRe-
view.aspx?id=379101&isReview=true
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Introduction
Public scrutiny of health care service performance has
been emphasized in the last two decades. For instance, the
Australian government has introduced the National Health
Reform in 2011 [1] and recently the 2020‐2025 National
Health Reform Agreement [2]. This, in turn, has led to
increased attention to institutional comparisons based on
quantitative outcome measures such as standardized mortality
ratios (SMRs) in which, with the aid of CIs, “outlying”
institutions are identified [3]. A league table of hospitals
based on mortality [4] and Shewhart’s control charts (using
1, 2, and 3 SD limits) [5] has been proposed and criticized to
compare institutional ranking. More recently, a “funnel plot,”
in which an estimate of an underlying quantity is plotted
against an interpretable measure of its precision, has become
a useful graphical aid for institutional comparisons [3,6,7].
Although funnel plots have been used in meta-analyses, in
particular to detect publication bias, they have recently been
strongly recommended as the most appropriate way to display
performance indicators such as comparisons of risk-adjusted
rates between health care units [8]. SMRs are the com-
monly used performance index for institutional comparisons
[9]. However, this concept has been readily extended to
encompass several other indices such as age-standardized
relative survival and excess hazard ratios [8] and standardized
incidence ratio (SIR) [10]. Estimating the variance of log
SIR (denoted by Log-SIR hereafter) is necessary for creating
false discovery rates (FDRs) in studies that use funnel
plots for assessing centers’/hospitals’ performance. Accurate
estimation of variance in these ratios is crucial as it affects
decision-making regarding hospital performance and quality
improvement strategies. Despite different variance estimation
methods being used widely in application, there are no data
on how the choice of these methods affects the assessment of
performance. In this study, we compared 3 methods, namely,
delta method, bootstrapping, and Bayesian approaches, to
estimate the variance of the Log-SIR and subsequent funnel
plot approaches to build FDRs for the Log-SIR.

The delta method is the analytical approach to estimate
the variance of the logarithm of SMR, denoted by Log-
SMR hereafter. It approximates the variance of a function
of random variables by using the Jacobian matrix and the
covariance matrix of the original variables [11].

Quaresma et al [12] used the delta method directly to
estimate risk-adjusted excess hazard ratios as a performance
measure in a study of population-based cancer survival. Also,
Powell [13] applied the delta method to approximate the
variance of demographic parameters in avian biology studies.
Vasilevskis et al [9] used CIs for comparing SMR using
a bootstrapping approach in a study involving prediction
of 30-day intensive care unit mortality. Though CIs can
be constructed for SMR directly, Hosmer and Lemeshow
[14] demonstrated CIs with good coverage for the logarithm

of the SMR. Also, Austin [15] investigated 4 bootstrap
procedures for estimating CIs for predicted-to-expected ratios
in a hospital profiling study. They indicated that existing
bootstrap procedures should not be used to compute CIs
for predicted-to-expected ratios when conducting provider
profiling.

Like bootstrapping, a Bayesian approach via Markov chain
Monte Carlo can be used to approximate this variance. For
instance, Ventrucci et al [16] applied Bayesian hierarchical
models to estimate small area level SMR and constructed
FDRs in a study of liver cancer morbidity cases recorded
between 1998 and 2003 in Emilia-Romagna municipalities.
In addition, Sukul et al [17] demonstrated the application
of a Bayesian hierarchical model in assessing hospital
and operator variation in cardiac rehabilitation referral and
participation after percutaneous coronary intervention using
a retrospective observational cohort of patients who under-
went percutaneous coronary intervention at 48 nonfederal
Michigan hospitals between January 1, 2012, and March 31,
2018.

Applying the delta method depends on fulfillment of
underlying distributional assumption, asymptotic normality.
Bootstrapping, on the contrary, has the advantage of not
relying on distributional assumptions and can be used to
directly estimate the distribution of Log-SIR or Log-SMR.
This can lead to more robust variance estimates, particularly
in settings with small sample sizes or unknown distribu-
tions. By resampling, bootstrapping accounts for sampling
variability and can help improve the precision of perform-
ance assessments [11]. Therefore, this study compares the 3
variance estimation methods using bias, variance, and mean
squared error (MSE) as measures of performance.

Methods
Motivating Idea
For more than 25 years, First Nations health organizations
and patients in rural and remote Australia have persistently
called for more responsive treatment, closer to home, for
First Nations people with end-stage kidney disease [18,19].
Community-led advocacy groups have continued this call
in more recent years. A national meeting of First Nations
patients with kidney failure in September 2017 renewed this
message [20]. Over the last 15 years, substantial progress has
been made in expanding and decentralizing hemodialysis care
across remote Australia [21]. Nevertheless, most treatment
is still provided as hemodialysis in nurse-facilitated centers
in major or regional towns, rather than at home in remote
communities [22].

The Return to Country Study, of which this methodologi-
cal work is a part, aims to characterize the socioeconomic,
environmental, health service, and biomedical factors driving
the health outcomes and patterns of health service utilization

JMIRx Med Woldeyohannes et al

https://med.jmirx.org/2025/1/e77415 JMIRx Med 2025 | vol. 6 | e77415 | p. 2
(page number not for citation purposes)

https://doi.org/10.2196/77415
https://med.jmirx.org/2025/1/e77415


experienced by First Nations Australians receiving kidney
replacement therapy and investigate whether health service
changes to address these identified barriers can achieve higher
rates of kidney replacement therapy closer to home [23].

Data Source and Management
The source of data for our motivating example is the Australia
and New Zealand Dialysis and Transplant Registry (ANZ-
DATA) [6,22]. ANZDATA receives, collates, and analyzes
data from centers providing care for patients receiving
long-term dialysis or kidney transplantation in Australia and
New Zealand. Data submission is voluntary but complete. For
this methodological study, we used the data extract provided
by ANZDATA for the Return To Country Study (ANZR-
REQ-471) [23].

We received n=55,856 patient data on the course of
treatments and patients’ history data from February 14, 1992,
till December 31, 2023. Since our initial study period was
defined from January 1, 2005, to December 31, 2023, we
excluded patient data before January 01, 2005. This resulted
in n=46,160 observations on the course of treatment and
comorbidities data. With the revised study period definition
(January 1, 2012–December 31, 2023), following consultation
with a team of chief investigators, a total of 11,586 observa-
tions were excluded (n=44,270 individual level observations
were retained out of 55,856). Due to 1743 missing observa-
tions for late referral, 808 on weight, and 188 on height
variables, n=41,531 patient data were retained. In addition,
for comparison purposes, centers were split into Indigenous
and non-Indigenous centers. Some centers had fewer than 20
Indigenous patients. This required considering an adequate
count of Indigenous patients per center for running the
hierarchical logistic regression. Accordingly, centers with
fewer than 20 Indigenous patients were excluded, which
resulted in n=16,243 (25,288 observations deleted) individ-
ual-level data. Moreover, we dropped patients with missing
postcode (2640 observations deleted), a total of n=13,603
remained. Finally, among the 13,603 observations, 3309
observations had censored status and hence were excluded.
In addition, we excluded 55 missing observations on lung
diseases, cardiovascular disease, and diabetes combined.
Therefore, a total of 10,195 observations were included in
our study.

In the following, we presented model specification, the
derivation of the variance for the LogSIR using the delta
method and a description of the bootstrap and Bayesian
approaches for estimating variance of Log-SIR.
Model Specification and Likelihood
Definition
Since we have a binary outcome of receiving treatment
close to home for end-stage kidney disease, denoted by
yci, from nc number of patients receiving treatment from
center c for N centers, we proposed a Bernoulli sampling
distribution for the probability of getting treatment close
to home for the ith patient from center c. That is, yci∼  Bernoulli(pci) and a random effects logistic regression
model can be specified as:

logit pci = ηci = β0 + β1X1ci +…+ βkXkci + uc (1)

where yci is the binary outcome for patient i in center c,
X1ci, ... Xkci are k covariates for patient i in center c, β0,
β1, ..., βk are fixed effects, uc is the random effect for center
c, assumed to be normally distributed: uc ∼ N 0, σc2 , and pci
=P(yci=1).

We included the following covariates in our model:
gender, age group, Indigenous status, lung disease, diabetes,
BMI, cardiovascular disease, referral status, remoteness, and
time period. And they were coded as follows: gender (male
vs female categories), agegp (age group with 7 categories:
≥16‐26, ≥26‐36, ≥36‐46, ≥46‐56, ≥56‐66, ≥66‐76, and ≥76),
Indigenous status (Indigenous vs non-Indigenous), lung (lung
disease status: yes vs no), diabetes (diabetes status: yes vs
no), late (late referral status: yes vs no), bmi30 (binary
BMI status: BMI <30 kg/m2 vs BMI ≥30 kg/m2), mmm
(Modified Monash Model remoteness scale with 7 categories:
metropolitan areas [MM1], regional centers [MM2], large
rural towns [MM3], medium rural towns [MM4], small rural
towns [MM5], remote communities [MM6], and very remote
communities [MM7]), and timegp (time periods: 2012‐2015,
2016‐2019, and 2020‐2023).

Accordingly, given yci binary “Return to Country”
outcome for individual i in center c, which is distributed as
yci ∼ Bernoulli(pci), then the logit of the probability pci is
modeled as follows:

logit(pci) = β0 + β1 · genderci + β2 · agegpci+ β3 · indigenousci + β4 · lungci + β5· diabetesci + β6 · cvdci + β7 · lateci + β8· bmi30ci + β9 · mmmci + β10 · timegpci+ centreidc
where β0 is the global intercept, β1, ..., β10 are fixed-effect
coefficients for the covariates, centreidc ∼ N(0,σu2) is the
group-level random intercept for center c, and pci=Pr (yci=1 |
covariates).

Since we have individual-level data, we fitted a binary
logistic regression model and computed the Log-SIR by
aggregating: (1) the observed binary “Return to Home” status
in center c and (2) the model-based predicted probabilities
(used to calculate the expected number of patients returning
home in center c).

Then, the Log-SIR is computed as:

Log‐SIRc = ∑i ∈ cyi∑i ∈ cpi
where yi ∈ {0,1} is the observed outcome for individual i,
and pi is the predicted probability of receiving treatment close
to home for individual patient i from center c.
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This approach is methodologically valid and commonly
used in Bayesian hierarchical modeling and disease map-
ping, especially when individual-level data are available, but
aggregate counts are not directly observed. Modeling binary
outcomes using Bernoulli likelihoods (ie, logistic regres-
sion) is appropriate for estimating probabilities of outcome
conditional on covariates. These estimated probabilities can
then be summed within groups to yield expected counts for
computing SIR or relative risks. This technique allows the
derivation of SIR from model-based expected counts, which
is consistent with the definition of indirect standardization
[14,24-27]. Further details of the model specification can be
found in Multimedia Appendix 1.

Application works using this approach include Kasza et al
[28] and Normand et al [29]. Application of random intercept
multilevel logistic regression models to indirectly standardize
performance measures is explored by Clark and Moore [30]
using National Trauma Data Bank data for the admission year
2008. Yang et al [31] explored hierarchical logistic regression
(LR) modeling under various conditions applying Bayesian
and frequentist methods.

Delta Method for the Variance of the
Log-SIR
The delta method is a technique used to approximate the
variance of a function of 1 or more random variables [32-
34]. The first-order Taylor series approximation for moments
of ratio estimators is used to derive the mean and variance
estimates; see Casella and Berger [32] (pages 244‐245).
In the context of estimating the variance of the Log-SIR,
we can apply the delta method to approximate the var-
iance of log OcEc . It approximates the variance of a func-
tion of random variables by using the Jacobian matrix and
the covariance matrix of the original variables; see Boos
and Stefanski [35] (page 14). Accordingly, the variance of
Log-SIRc is approximated by:Var Log‐SIRc ≈ ∇g ⋅ Cov Oc, Ec ⋅ ∇gT (2)

where the covariance matrix of Oc and Ec is specified as:

Cov(Oc, Ec) = Var(Oc) Cov(Oc, Ec)Cov(Oc, Ec) Var(Ec)
And the Jacobian matrix (gradient) ∇g of the func-
tion g(Oc,Ec) with respect to Oc and Ec is given by:∇g = 1Oc − 1Ec

Substituting ∇g and Cov(Oc,Ec) into the formula, we get
the final expression for the variance:

Var Log − SIRc ≈ Var OcOc2 + Var EcEc2 − 2 ⋅ Cov Oc, EcOcEc  (3)

Detailed derivation of the final formula for the variance
of log(SIR) using the delta method given the model specifi-
cation and the likelihood formulations above is presented in
Multimedia Appendix 2.

The next section summarizes the estimates for Var(Oc),
Var(Ec), and Cov(Oc,Ec).

Variance of Oc: Var(Oc)
Let Yi be the binary outcome for individual i in center c.

The observed incidence Oc is the sum of binary outcomes Yi
for individuals within the cth center. If patients share hospital-
level characteristics, the outcomes Yi are not independent but
are correlated due to the shared random effect. The observed
counts for center c are:

Oc = ∑i ∈ ncY i
The variance of Oc is given by:

Var Oc = Var ∑i ∈ ncY i
Using the property of variance for the sum of random
variables, this expands to:

Var Oc = ∑i ∈ ncVar Y i + 2∑i§amp;lt;j ∈ ncCov Y i, Yj
This expression is derived from the formula for the variance
of the sum of random variables. Here, Var(Yi) represents the
variance of the individual observations, and Cov(Yi,Yj) is the
covariance between pairs of observations. The factor of 2 in
front of the covariance term accounts for the fact that each
covariance term is counted only once when summing over
pairs i<j.

For a logistic regression model with random intercepts, the
variance and covariance terms are as follows:

Var(Yi)=pi(1 − pi) (4)Cov Y i, Yj = pi 1 − pi pj 1 − pj σu2 (5)
Thus, Var Oc = ∑i ∈ ncpi 1 − pi + 2∑i < j ∈ ncpi 1 − pi pj 1 − pj σu2 (6)

Derivation of Var(E)
The expected counts E are the sum of predicted probabilities
pi for individuals within a center. The variance of E arises
from the uncertainty in the predicted probabilities due to the
random effects.

The expected counts for center c are:

Ec = ∑i ∈ ncpi
The variance of Ec is:

Var Ec = ∑i ∈ ncVar pi + 2∑i§amp;lt;j ∈ ncCov pi, pj
For the random-effects logistic regression model:

Var pi ≈ pi 1 − pi 2Var ηi
where ηi = xiTβ + uc is the linear predictor. The covariance
between pi and pj (for i≠j) is as follows:
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Cov pi, pj ≈ pi 1 − pi pj 1 − pj Cov ηi, ηj
Since ηi and ηj share the same random effect uc:

Cov ηi, ηj = σu2
Thus:

Cov pi, pj ≈ pi 1 − pi pj 1 − pj σu2
Combining these results:

Var Ec = i ∈ nc pi 1 − pi 2Var ηi + 2i < j ∈ nc pi 1 − pi pj 1 − pj σu2

Derivation of Cov(Oc, Ec)
The covariance between Oc and Ec, where Oc is the observed
count and Ec is the expected count for center c, arises because
both depend on the same underlying probabilities pi, which
are influenced by the shared random effect.

To derive the covariance Cov(Oc, Ec), givenOc = ∑i ∈ ncY i  (Observed count) and Ec = ∑i ∈ ncpi
(Expected count), we have the covariance between Oc and
Ec defined as:

Cov Oc, Ec = Cov ∑i ∈ ncY i, ∑i ∈ ncpi
And using the property of covariance for sums, we get:

Cov Oc, Ec = i ∈ ncCov Y i, pi + 2i < j ∈ ncCov Y i, pj
Therefore, the final expression of Cov(Oc,Ec) becomes :Cov Oc, Ec = ∑i ∈ ncpi 1 − pi Var ηi+ 2∑i§amp;lt;j ∈ ncpi 1 − pi pj 1 − pj σu2  (8)

Bootstrapping Approach
Commonly, the bootstrap approach is used to approximate
variance of the log standardized incidence ratio. By sam-
pling with replacement from the observed sample, creating
a resampled dataset of size n and repeating this B times,
it creates a nonparametric bootstrapped distribution [32],
pages 479‐480. This distribution can be used to estimate
the variance of the Log-SIRc. Mathematically, this can be
summarized as:

σBoot2 = 1B − 1∑b = 1B θ∗ − θb∗ 2
with θb* the Log-SIRc value estimated in the bth bootstrap

sample and θ*−  the mean Log-SIRc estimated over the B
bootstrap samples; here B=5000.
Bayesian Approach
Given the model specification given in (1), the posterior
distribution for a random effects logistic regression model
can be expressed in a hierarchical form, integrating over

the random effects uc. It can be recalled that the form of a
posterior for hierarchical models is [35]:

π θ ∣ Y = y = f y ∣ θ ∫π θ ∣ α ℎ α dα∫∫f y ∣ θ π θ ∣ α ℎ α dαdθ .
Using the likelihood for random effects logistic regression
and priors for β and uc, the full posterior distribution can be
shown to be:

(9)π β, u ∣ y, X = c = 1
C

i = 1
nc 11 + e− xci⊤β + uc

yci 1 − 11 + e− xci⊤β + uc
1 − yci × 12π p Σβ exp − 12 β − μβ ⊤Σβ−1 β

− μβ × c = 1
C 12πσu2exp − uc22σu2

Details of the derivation of the full posterior distribution are
summarized in Multimedia Appendix 3.

Due to the need to integrate out the nuisance parame-
ters in (9) and lack of conjugate priors, and the hierarchy
involved, computing difficult integrals is required using
MCMC methods whereby a dependent sequence of random
variables is obtained with the property that in the limit these
random variables have the posterior distribution.

Accordingly, the following information is used to estimate
the variance of the Log-SIR using the Bayesian approach:

yci ∼ Bernoulli(pci)

logit pci = P yci = 1 = ηci = β0 + m = 1
k βmXmci + uc

where:
β0, β1,…, βk ∼ N 0, σc2 , uc ∼ N 0, σc2 , σc2 = 1τ , and τ ∼

Gamma(0.001,0.001).
The MCMC simulation is conducted using 25,500

iterations with 500 initial burn-ins, 3 chains, and a sin-
gle thinning interval. Analysis was performed using the
R Statistical Programming Language and the associated R
packages [36-42].

Performance Metrics: Bias, Variance, and
MSE
To compare the performance of the delta method, bootstrap,
and MCMC approaches for estimating the variance of the
Log-SIR, we evaluated several criteria such as bias (the
difference between the expected value of the estimator and
the true value), consistency (the estimator should converge to
the true value as the sample size increases), and MSE (for
overall accuracy).

Ethical Considerations
Ethical approval was obtained from the Human Research
Ethics Committee (HREC) of the Northern Territory
Department of Health and Menzies School of Health
Research (2019‐3530), Far North Queensland HREC
(2023/QCH/99606 (Nov ver 4)‐1732), the Central Ade-
laide Local Health Network HREC (2023/HRE00209), the
Aboriginal Health Council of South Australia (AHREC
Protocol number 04-23-1078), the Aboriginal Health and
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Medical Research Council of New South Wales (AH&MRC
HREC reference: 2230/24), and the Far North Queensland
Human Research Ethics Committee (FNQ HREC reference:
HREC/2023/QCH/99606 (Nov ver 4)‐1732). For information
on informed consent details, please refer to our protocol paper
on the “Return to Country” project, which can be accessed
here [23].

Results
Variance of Log-SIR Using the 3
Estimation Methods
A summary of bias, along with variance and MSE, is shown
in Table 1.

Table 1. Comparison of bias, variance, and mean squared error for different estimation methods.
Method Bias Variance Mean squared error
Delta 0.01927454 1.696437e-04 0.0005411516
Bootstrap 0.02566281 2.771867e-04 0.0009357665
Bayesian 0.01922758 5.142122e-05 0.0004211210

The analysis result indicated that the bias values across
all methods were similar, with MCMC slightly showing
the lowest bias (0.01922), followed by the delta method
(0.01927) and the bootstrap method (0.02567), respectively.
This suggests that the Bayesian MCMC method provides a
slightly less biased variance estimate of Log-SIR than the
other methods. In addition, the Bayesian MCMC method
exhibits the lowest variance (0.00005), indicating more
stable and less dispersed estimates of the Log-SIR. Higher
variance was observed in the delta method (0.00016), while
the bootstrapping approach resulted in the highest variance
(0.00027), introducing more uncertainty in the Log-SIR
estimates. Looking at the overall accuracy of the methods,
the Bayesian MCMC method had the lowest MSE (0.00042),
indicating better overall accuracy. The delta method follows
with an MSE of 0.00054, and the bootstrap method had the
highest MSE (0.00094), showing it to be the least reliable
method among the methods compared.

The result, in general, indicated lower values on bias,
variance, and MSE values. Lower bias values indicated that
the estimators are more accurate on average, lower variance
indicated that the estimators are more consistent, and lower
MSE indicated that the estimators are both accurate and
consistent. However, the parameter estimates were the lowest
for the MCMC method, indicating the Bayesian approach
to be a more preferred approach for the estimation of the
variance of the Log-SIR (var[Log-SIR]). MCMC is the
best-performing method as it has the lowest bias, variance,
and MSE. The delta method performs reasonably well but
has slightly higher variance and MSE than MCMC. Bootstrap

captures variability well but introduces more uncertainty, as
seen in its high variance and MSE.

In addition, a comparison of the 3 methods in terms
of consistency is shown in Figure 1. Accordingly, Figure
1 highlights the trade-offs among the variance estimation
methods. While bootstrapping tends to be more variable,
MCMC provides more stable estimates, and the delta method
offers computational efficiency but can be less precise.
Bootstrapping (green) shows higher variance. The green
points, representing bootstrap-based variance estimates, are
often higher compared to the other 2 methods. This suggests
that bootstrapping introduces additional variability, which
is expected since it resamples the data and can exaggerate
variance in small samples.

However, the Bayesian MCMC estimates (the blue points)
are more stable. They are generally lower than bootstrapping
but slightly higher than the delta method for most of the
cases. The Bayesian methods incorporate prior information,
and this leads to more stabilized variance estimates.

The delta method (red) is the most conservative and hence
it often yields the lowest variance estimates. This method uses
first-order approximations and may underestimate variance,
especially for complex or skewed data distributions.

A summary table for each center is shown in Table 2. As is
evident from Table 2, the standard errors were highly variable
across centers using the bootstrap method followed by the
delta method.
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Figure 1. Delta method, bootstrapping, and Bayesian approaches.

Table 2. Comparison of delta, bootstrap method, and Bayesian estimates along with 95% coverage by center.a
Center Mean SE LCIb UCIc Mean SE LCI UCI Mean SE LCrId UCrIe

AI 0.100 0.030 0.041 0.159 0.016 0.031 −0.050 0.071 0.031 0.030 −0.019 0.098
AN 0.010 0.016 −0.021 0.041 0.028 0.023 −0.019 0.069 −0.017 0.014 −0.038 0.016
BI −0.382 0.021 −0.423 −0.341 −0.453 0.036 −0.525 −0.386 −0.441 0.030 −0.491 −0.374
BN −0.100 0.018 −0.135 −0.065 −0.092 0.035 −0.164 −0.027 −0.131 0.017 −0.156 −0.093
CI −0.148 0.018 −0.183 −0.113 −0.220 0.029 −0.277 −0.165 −0.209 0.030 −0.258 −0.142
CN −0.008 0.011 −0.030 0.014 0.009 0.017 −0.026 0.041 −0.034 0.015 −0.057 0.000
DI −0.090 0.020 −0.129 −0.051 −0.130 0.034 −0.200 −0.068 −0.139 0.023 −0.177 −0.086
DN −0.017 0.004 −0.025 −0.009 0.026 0.006 0.014 0.037 −0.025 0.012 −0.043 0.003
EI −0.057 0.019 −0.094 −0.020 −0.135 0.030 −0.197 −0.080 −0.122 0.030 −0.172 −0.054
EN −0.008 0.011 −0.030 0.014 0.000 0.017 −0.034 0.032 −0.038 0.017 −0.063 0.001
FI −0.004 0.034 -0.071 0.063 -0.012 0.050 -0.125 0.073 -0.040 0.018 -0.069 0.002
FN -0.021 0.003 -0.027 -0.015 0.025 0.005 0.015 0.036 -0.027 0.012 -0.044 0.001
GI 0.143 0.033 0.078 0.208 0.066 0.021 0.018 0.102 0.075 0.029 0.027 0.142
GN −0.029 0.012 −0.053 −0.005 −0.014 0.021 −0.057 0.024 −0.057 0.015 −0.080 −0.022
HI −0.038 0.036 −0.109 0.033 −0.044 0.060 −0.174 0.059 −0.075 0.017 −0.103 −0.035
HN 0.020 0.010 0.000 0.040 0.054 0.013 0.027 0.077 0.000 0.011 −0.017 0.027
II 0.103 0.029 0.046 0.160 0.067 0.021 0.021 0.101 0.053 0.023 0.017 0.104
IN −0.008 0.004 −0.016 0.000 0.032 0.007 0.018 0.044 −0.019 0.012 −0.038 0.009
JI −0.033 0.025 −0.082 0.016 −0.075 0.039 −0.157 −0.005 −0.084 0.023 −0.122 −0.033
JN −0.002 0.005 −0.012 0.008 0.038 0.007 0.024 0.051 −0.015 0.012 −0.032 0.013
KI 0.015 0.014 −0.012 0.042 −0.085 0.019 −0.125 −0.048 −0.055 0.035 −0.113 0.021
KN −0.015 0.006 −0.027 −0.003 0.020 0.009 0.002 0.038 −0.030 0.012 −0.049 −0.002
LI 0.019 0.027 −0.034 0.072 0.008 0.035 −0.068 0.069 −0.019 0.019 −0.049 0.023
LN −0.032 0.004 −0.040 −0.024 0.008 0.008 −0.008 0.022 −0.043 0.012 −0.061 −0.013
MI 0.068 0.054 −0.038 0.174 0.028 0.061 −0.113 0.116 0.017 0.023 −0.021 0.070
MN 0.000 0.014 −0.027 0.027 0.015 0.020 −0.027 0.052 −0.028 0.015 −0.050 0.006
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Center Mean SE LCIb UCIc Mean SE LCI UCI Mean SE LCrId UCrIe

NI −0.111 0.014 −0.138 −0.084 −0.195 0.023 −0.241 −0.153 −0.176 0.033 −0.230 −0.102
NN 0.011 0.043 −0.073 0.095 0.003 0.061 −0.139 0.099 −0.027 0.019 −0.057 0.018
OI 0.046 0.034 −0.021 0.113 0.032 0.039 −0.052 0.097 0.007 0.019 −0.024 0.051
ON 0.017 0.010 −0.003 0.037 0.048 0.013 0.020 0.072 −0.004 0.012 −0.022 0.025
PI 0.077 0.028 0.022 0.132 0.065 0.022 0.016 0.102 0.039 0.019 0.008 0.082
PN 0.010 0.005 0.000 0.020 0.047 0.007 0.033 0.060 −0.004 0.012 −0.022 0.023
QI 0.062 0.021 0.021 0.103 0.012 0.024 −0.040 0.055 0.008 0.025 −0.033 0.065
QN −0.006 0.007 −0.020 0.008 0.037 0.011 0.015 0.056 −0.020 0.010 −0.035 0.003
RI 0.021 0.044 −0.065 0.107 −0.014 0.059 −0.151 0.085 −0.026 0.024 −0.064 0.027
RN 0.014 0.009 −0.004 0.032 0.035 0.012 0.010 0.057 −0.009 0.015 −0.031 0.025

aAll units are on the natural log scale.
bLCI: 95% lower confidence limit.
cUCL: 95% upper confidence limit.
dLCrI: 95% lower credible interval.
eUCrI: 95% upper credible interval.

In summary, there are notable variations in variance
estimates across centers. Some centers exhibit more spread
between methods, suggesting that the choice of method
affects variance estimates significantly.

Similarly, a summary table of false discovery rates (FDRs)
for each center is shown in Table 3. It is evident that there

are notable variations in FDR estimates across centers. Some
centers exhibit more spread between methods, suggesting that
the choice of method affects variance and hence the resulting
coverage significantly.

Table 3. Comparison of delta, bootstrap, and Bayesian estimates along with 95% false discovery rates by center.
Center Mean SE LFDRa UFDRb Mean SE LFDR UFDR Mean SE LFDR UFDR
AI 0.100 0.030 −0.059 0.059 0.016 0.031 −0.061 0.061 0.031 0.030 −0.059 0.059
AN 0.010 0.016 −0.032 0.032 0.028 0.023 −0.045 0.045 −0.017 0.014 −0.027 0.027
BI −0.382 0.021 −0.040 0.040 −0.453 0.036 −0.070 0.070 −0.441 0.030 −0.059 0.059
BN −0.100 0.018 −0.035 0.035 −0.092 0.035 −0.068 0.068 −0.131 0.017 −0.032 0.032
CI −0.148 0.018 −0.035 0.035 −0.220 0.029 −0.057 0.057 −0.209 0.030 −0.058 0.058
CN −0.008 0.011 −0.022 0.022 0.009 0.017 −0.034 0.034 −0.034 0.015 −0.029 0.029
DI −0.090 0.020 −0.040 0.040 −0.130 0.034 −0.067 0.067 −0.139 0.023 −0.046 0.046
DN −0.017 0.004 −0.007 0.007 0.026 0.006 −0.012 0.012 −0.025 0.012 −0.023 0.023
EI −0.057 0.019 −0.038 0.038 −0.135 0.030 −0.058 0.058 −0.122 0.030 −0.059 0.059
EN −0.008 0.011 −0.022 0.022 0.000 0.017 −0.033 0.033 −0.038 0.017 −0.033 0.033
FI −0.004 0.034 −0.066 0.066 −0.012 0.050 −0.099 0.099 −0.040 0.018 −0.036 0.036
FN −0.021 0.003 −0.006 0.006 0.025 0.005 −0.011 0.011 −0.027 0.012 −0.023 0.023
GI 0.143 0.033 −0.065 0.065 0.066 0.021 −0.042 0.042 0.075 0.029 −0.058 0.058
GN -0.029 0.012 −0.024 0.024 −0.014 0.021 −0.041 0.041 −0.057 0.015 −0.029 0.029
HI −0.038 0.036 −0.070 0.070 −0.044 0.060 −0.117 0.117 −0.075 0.017 −0.034 0.034
HN 0.020 0.010 −0.020 0.020 0.054 0.013 −0.025 0.025 0.000 0.011 −0.022 0.022
II 0.103 0.029 −0.058 0.058 0.067 0.021 −0.040 0.040 0.053 0.023 −0.044 0.044
IN −0.008 0.004 −0.008 0.008 0.032 0.007 −0.013 0.013 −0.019 0.012 −0.024 0.024
JI −0.033 0.025 −0.048 0.048 −0.075 0.039 −0.076 0.076 −0.084 0.023 −0.045 0.045
JN −0.002 0.005 −0.009 0.009 0.038 0.007 −0.014 0.014 −0.015 0.012 −0.023 0.023
KI 0.015 0.014 −0.027 0.027 −0.085 0.019 −0.038 0.038 −0.055 0.035 −0.068 0.068
KN −0.015 0.006 −0.011 0.011 0.020 0.009 −0.018 0.018 −0.030 0.012 −0.024 0.024
LI 0.019 0.027 −0.053 0.053 0.008 0.035 −0.069 0.069 −0.019 0.019 −0.037 0.037
LN −0.032 0.004 −0.008 0.008 0.008 0.008 −0.015 0.015 −0.043 0.012 −0.024 0.024
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Center Mean SE LFDRa UFDRb Mean SE LFDR UFDR Mean SE LFDR UFDR
MI 0.068 0.054 −0.106 0.106 0.028 0.061 −0.120 0.120 0.017 0.023 −0.045 0.045
MN 0.000 0.014 −0.027 0.027 0.015 0.020 −0.039 0.039 −0.028 0.015 −0.029 0.029
NI −0.111 0.014 −0.028 0.028 −0.195 0.023 −0.045 0.045 −0.176 0.033 −0.065 0.065
NN 0.011 0.043 −0.084 0.084 0.003 0.061 −0.120 0.120 −0.027 0.019 −0.038 0.038
OI 0.046 0.034 −0.067 0.067 0.032 0.039 −0.076 0.076 0.007 0.019 −0.038 0.038
ON 0.017 0.010 −0.020 0.020 0.048 0.013 −0.026 0.026 −0.004 0.012 −0.024 0.024
PI 0.077 0.028 −0.056 0.056 0.065 0.022 −0.043 0.043 0.039 0.019 −0.037 0.037
PN 0.010 0.005 −0.010 0.010 0.047 0.007 −0.014 0.014 −0.004 0.012 −0.023 0.023
QI 0.062 0.021 −0.041 0.041 0.012 0.024 −0.047 0.047 0.008 0.025 −0.049 0.049
QN −0.006 0.007 −0.013 0.013 0.037 0.011 −0.021 0.021 −0.020 0.010 −0.019 0.019
RI 0.021 0.044 −0.087 0.087 −0.014 0.059 −0.116 0.116 −0.026 0.024 −0.046 0.046
RN 0.014 0.009 −0.018 0.018 0.035 0.012 −0.023 0.023 −0.009 0.015 −0.029 0.029

aLFDR: 95% lower false discovery rate.
bUFDR: 95% upper false discovery rate.

In the next section, we presented funnel plots constructed
using the 3 methods for assessing centers’ performance in
providing services close to home for patients with end-stage
kidney disease. The focus is to highlight how the variance
estimation methods provide somewhat variable plots and
how they affect interpretation and decision-making on the
performance of centers in service provision.
Centers’ Performance Using Funnel Plots
A summary funnel plot using the 3 methods is displayed in
Figures 2-4. Each funnel plot has different variance estimates
for the same underlying data. The funnel plots evaluate
center-level performance in treating patients with end-stage
kidney disease close to home by comparing the Log-SIR

across different centers stratified by Indigenous status. The
x-axis represents effective sample size (defined as a measure
of the variability of the Log-SIRs for each center relative
to the total variability of all Log-SMRs [28,28]), while the
y-axis measures Log-SIR, indicating whether observed rates
of receiving treatment close to home are higher or lower than
expected. Centers within the upper and lower FDRs indicate
expected performance in treating patients close to home (are
in the region of average performance). The dashed lines
forming funnels around the horizontal solid line (Log-SIR=0)
indicate expected variation, with centers falling outside these
limits exhibiting statistically significant differences from the
norm.

Figure 2. Funnel plot using the delta method. Log-SIR: logarithm of the standardized incidence ratio.
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Figure 3. Funnel plot using the bootstrapping method. Log-SIR: logarithm of the standardized incidence ratio.

Figure 4. Funnel plot using the Bayesian Markov chain Monte Carlo method. Log-SIR: logarithm of the standardized incidence ratio.

Figure 2 presents a funnel plot that compares the perform-
ance of centers using the delta method for estimating the
variance of the Log-SIR. Centers within the upper and lower
FDRs indicate expected performance in treating patients close
to home (are in the region of average performance). The
dashed lines forming funnels around the horizontal solid
line (Log-SIR=0) indicate expected variation, with centers
falling outside these limits exhibiting statistically significant
differences from the norm.

Using this approach, 6 centers, BI, BN, CI, DI, EI, and
NI, were low performing, while 3 centers, GI, II, and QI,
were higher-than-average performers. The remaining centers

lie within the FDRs, being average performers in treating
patients close to home. Center BI shows the lowest Log-
SIR, suggesting exceptionally lower performance in treating
patients close to home. Overall, larger centers exhibit more
stable Log-SIR values, while smaller centers experience
greater variation, reinforcing the importance of center size
in the assessment of centers’ performance in treating patients
close to home. Using this method, the variance of Log-SIR
appears relatively low, with most values concentrated around
zero. Some extreme values (outliers) are present on the
left-hand side, indicating a few centers with more deviation.
The spread of points suggests that this method results in a
tighter distribution of Log-SIR.
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Figure 3 compares centers using the bootstrapping
approach. Using this method, 7 centers, BI, BN, CI, DI, EI,
NI, and KI, were lower-than-average performers. However,
12 centers, GI, II, PI, DN, FN, HN, IN, JN, ON, PN, QN,
and RN, were found to be higher-than-average performing.
The remaining centers lie within the FDRs, being average
performers in treating patients close to home. Notably,
BI remains an outlier with the lowest Log-SIR, reflecting
exceptionally low performance in treating patients close
to home. Using bootstrap, the variance is slightly larger
compared with the first plot. The spread of Log-SIR values
is more noticeable, with a wider range of deviations from
zero. More centers have larger deviations, particularly on the
left side, compared with the delta method.

Figure 4 presents a funnel plot that compares the perform-
ance of centers using the Bayesian approach for estimating
the variance of the Log-SIR. Accordingly, 11 centers, BI, BN,
CI, DI, EI, GN, HI, JI, KI, NI, and LN, were found low-
than-expected performers, and no center was found to be top
performing in treating patients close to home. Larger centers
exhibit more stable Log-SIR values, reinforcing the reliabil-
ity of their performance assessments. Using the Bayesian
approach, the variance of Log-SIR is still larger than the
first plot but somewhat comparable with the second. The
spread is not as extreme as in the second plot, but it still
shows noticeable deviations. There are clear differences in the
spread of values across regions.

The delta method results in the least variance in Log-SIR,
while the bootstrapping method has the highest variance, with
a wider spread of values. Clearly, the Bayesian approach has
an intermediate variance, showing more spread than the first
method but less than the second.

Discussion
Overview
Our study results highlight center-level differences in treating
patients close to home, and this is coupled with variability
in variance estimation by the 3 methods. The stability of
the Log-SIR using the Bayesian approach may be due to
the method borrowing strength from prior beliefs, which
are summarized using probability distributions that smooth
variability in estimation.

In health care providers’ performance assessment,
standardized incidence ratios (SIRs) and standardized
mortality ratios (SMRs) are essential tools used to assess
whether observed rates of disease or death deviate from what
is expected. Accurate estimation of variance in these ratios
is crucial as it affects decision-making regarding providers’
performance, resource allocation, and quality improvement
strategies. In this study, we compared 3 methods, namely,
the delta method, bootstrapping, and Bayesian approach, to
estimate the variance of the Log-SIR given by equation
3 and considered funnel plot approaches to build FDRs
around the Log-SIR using these 3 variance estimators. The
variance estimation methods have been widely discussed

in statistical literature. Gelman et al [43] emphasize that
Bayesian methods, particularly MCMC, provide more stable
estimates due to their ability to incorporate prior informa-
tion and reduce uncertainty. Similarly, Efron and Tibshir-
ani [11] discuss bootstrapping as a flexible but sometimes
overly variable approach, which aligns with our findings of
increased variance in bootstrapped estimates.

The delta method is frequently used in epidemiology
for variance estimation [44]. It provides an efficient and
straightforward way of estimating the variance of Log-SIR or
Log-SMR, especially when the distribution of the underlying
data was correctly specified. This method can be compu-
tationally efficient, but its accuracy may suffer in cases
where the underlying distribution deviates significantly from
the assumed form [45]. When applied in health care deci-
sion-making, such as assessing the performance of hospi-
tals based on SMRs, the delta method may underestimate
variance if assumptions are violated. This could lead to
incorrect conclusions regarding the performance of health
care providers.

Variance estimation using the delta method for metrics
other than SMR has been used intensively. For instance,
Normand and Shahian [46] applied the delta method to
approximate the variance of demographic parameters in avian
biology studies. Although not directly related to health care,
this study illustrates the broader applicability of the delta
method in estimating variances of complex ratios. Also,
Lee et al [47] compared the Green, delta, and Monte Carlo
methods for calculating the 95% CI for population-attrib-
utable fraction. In addition, Sauer et al [48] applied the
delta method for variance estimation for effective coverage
measures. There is limited study that directly applied the delta
method in the estimation of Log-SIR used in the assessing
performance of health care providers in the provision of
health services for a given outcome.

Bootstrapping, on the contrary, has the advantage of not
relying on distributional assumptions and can be used to
directly estimate the distribution of Log-SIR or Log-SMR.
This can lead to more robust variance estimates, particularly
in settings with small sample sizes or unknown distribu-
tions. By resampling, bootstrapping accounts for sampling
variability and can help improve the precision of perform-
ance assessments [11]. For instance, Kasza et al [28] used
bootstrapping for evaluating the performance of Australian
and New Zealand intensive care units in 2009 and 2010
quantified by the standardized mortality ratio. Moreover,
Walters and Campbell [49] used bootstrap methods for
analyzing health-related quality-of-life outcomes used in
clinical trials as primary outcome measures. They found that
certain bootstrap methods provided more accurate variance
estimates, especially when the distribution of the outcome is
unknown or ordinal scale.

By contrast, Bayesian methods provide a full posterior
distribution for variance estimates, allowing for the incorpora-
tion of prior knowledge, such as expert opinion or histor-
ical data on hospital performance. This can lead to more
flexible and informative variance estimation, especially when
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data are sparse or prior knowledge is available. Bayesian
methods can also be used to model hierarchical structures (eg,
hospitals within regions), providing more precise estimates of
performance at various levels [32].

A study by George et al [50] applied Bayesian hierarchi-
cal models to estimate hospital performance in the Hospital
Compare model for acute myocardial infarction mortality.
They found that indirect standardization fails to adequately
control for differences in patient risk factors and system-
atically underestimates mortality rates at the low-volume
hospitals.

Below, we have summarized the variability in variance
estimates and their implications on funnel plots and epidemio-
logical studies.
Variability in Log SIR Variance Estimates
The 3 methods yield different variance estimates for the
same underlying data. Bootstrapping tends to produce higher
variance estimates due to the nature of resampling, which
can exaggerate variability, particularly in small samples [51].
By contrast, Bayesian (MCMC) estimates tend to be more
stable, benefiting from prior distributions that help regula-
rize estimates, a characteristic also observed in Bayesian
hierarchical models for disease mapping [52]. The delta
method, being a first-order approximation, is the most
conservative, often producing the lowest variance estimates,
which may lead to underestimation in complex data structures
[32]. These differences highlight the importance of choosing
an estimation method suited to the underlying data character-
istics and sample size.

In our study, the variance estimates differ across methods,
with bootstrapping tending to show more extreme values
(both high and low) compared to the other 2 methods. MCMC
appears to provide more stable and generally lower variance
estimates compared to bootstrapping. The delta method is
relatively consistent but tends to lie between the MCMC
and bootstrap estimates. Some centers have noticeably higher
variance estimates for all 3 methods (eg, locations where
green dots are well above the others). This suggests that
uncertainty in Log-SIR estimation varies by center, possi-
bly due to differences in sample size, population character-
istics, or underlying risk factors. Bootstrapping shows more
variability, which is expected since it resamples data and
may amplify variability in small samples. MCMC provides
more stable estimates, benefiting from Bayesian shrinkage
and prior information incorporation. The delta method is
computationally efficient but may underestimate variance
in some cases (eg, when normality assumptions are viola-
ted) [53]. Centers with higher variance estimates (especially
under bootstrapping) suggest that Log-SIR estimates are more
uncertain there, which should be considered when making
public health decisions. If variance estimates are too high, it
may indicate the need for larger sample sizes or improved
data collection in those centers.

Impact on Funnel Plots
The funnel plots illustrate how these methods influence the
distribution of Log-SIR estimates. The Bayesian approach
exhibits a more stabilized pattern, particularly at smaller
sample sizes, where shrinkage effects help reduce extreme
values. This aligns with findings from Spiegelhalter et al
[54], who demonstrated that Bayesian hierarchical modeling
effectively mitigates overdispersion in epidemiological data.
Conversely, the bootstrapping approach results in greater
spread at smaller sample sizes, reflecting its sensitivity
to sample fluctuations. Similar findings have been repor-
ted in comparative studies on variance estimation methods,
where bootstrapping is noted to introduce greater variabil-
ity but remains valuable for robust uncertainty estimation
[11]. Although both methods show convergence of Log-SIR
estimates toward zero as sample sizes increase, bootstrapping
maintains slightly higher variance, reinforcing the need for
careful interpretation in small-sample studies.
Implications for Epidemiological Studies
The choice of variance estimation method has significant
implications for epidemiological research. Bayesian methods
offer improved stability and are particularly useful when
incorporating prior knowledge is beneficial. Studies have
shown that Bayesian approaches reduce estimation bias
and enhance interpretability in spatial epidemiology [55].
Bootstrapping, despite its higher variability, remains a
valuable tool for robust uncertainty estimation, especially
when parametric assumptions may not hold [56]. Mean-
while, the delta method, though computationally simple, may
underestimate variance, making it less reliable for complex
data scenarios, as previously noted in statistical inference
literature [32]. These findings align with broader discussions
on variance estimation in epidemiology, emphasizing the
trade-offs between robustness, computational efficiency, and
precision [57].
Principal Findings
These findings highlight the importance of selecting an
appropriate variance estimation method depending on the
study context. Bayesian methods may be preferable when
stability and regularization are critical, while bootstrapping is
useful for assessing variability in more flexible settings. The
delta method should be used cautiously, particularly when
dealing with skewed or complex distributions. Future research
should explore hybrid approaches that combine the strengths
of these methods for more robust inference [11,32].

Our results showed that Bayesian approaches provided
more conservative estimates with tighter credible intervals,
particularly in hospitals with small case volumes. We
demonstrated that Bayesian MCMC outperforms the other
methods in terms of lower variance and MSE, making it
the preferred choice for estimating Log-SIR variance when
computational resources permit.
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Limitations
Our study has several limitations. First, while understand-
ing the differences between variance estimation methods
is crucial for assessing the reliability of SIR estimates
across different centers, we did not consider how model
choice influences variance estimates and hence the resulting
statistical inference. That is, we only used hierarchical logistic
regression model for modeling the binary individual-level
outcome. Therefore, we did not explore the implication of
using the Poisson model for aggregated data on the resulting
variance estimates using the 3 methods. Second, we consid-
ered only nonparametric bootstrapping, and the implications
of parametric bootstrapping were not assessed. Third, we did
not consider other transformations than logarithmic transfor-
mations and their effects on the interpretation of providers’
performance. For instance, Quaresma et al [12] investiga-
ted the implications of identity(log), complementary log-log,
logit, and logarithmic transformation in their study of cancer
survival. Finally, within the random effects logistic regres-
sion, we considered only logit link, and other links such as
probit and complementary log-log link were not considered
here.
Conclusions
In conclusion, the choice of variance estimation method plays
a significant role in how health care providers’ performance is

assessed. While each method has its strengths and weak-
nesses, bootstrapping and Bayesian approaches generally
provide more reliable estimates of uncertainty compared to
the delta method. However, the choice of method should
consider computational resources, data structure, and the
available prior knowledge for Bayesian methods. Decision-
makers should be aware of the implications of variance
estimation on conclusions regarding provider performance,
which can influence policy, resource allocation, and quality
improvement initiatives in health care settings. In terms of
decision-making, the choice of variance estimation method
can affect the conclusions drawn about the performance of
health care providers. Using the delta method may lead to
an underestimation of uncertainty, especially when the data
do not meet distributional assumptions. Bootstrapping, while
more robust, may be computationally intensive, especially
with large datasets. Bayesian methods, with their flexibility
and ability to incorporate prior knowledge, can be powerful
tools but require careful specification of priors and may be
computationally demanding.
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