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Abstract
Background: SARS-CoV-2, the causative agent of COVID-19, remains a global health concern due to its high transmissi-
bility and evolving variants. Although vaccination efforts and therapeutic advancements have mitigated disease severity,
emerging mutations continue to challenge diagnostics and containment strategies. As of mid-February 2025, global test
positivity has risen to 11%, marking the highest level in over 6 months, despite widespread immunization efforts. Newer
variants demonstrate enhanced host cell binding, increasing both infectivity and diagnostic complexity.
Objective: This study aimed to evaluate the effectiveness of deep transfer learning in delivering a rapid, accurate, and
mutation-resilient COVID-19 diagnosis from medical imaging, with a focus on scalability and accessibility.
Methods: An automated detection system was developed using state-of-the-art convolutional neural networks, including
VGG16 (Visual Geometry Group network-16 layers), ResNet50 (residual network-50 layers), ConvNeXtTiny (convolutional
next-tiny), MobileNet (mobile network), NASNetMobile (neural architecture search network-mobile version), and Dense-
Net121 (densely connected convolutional network-121 layers), to detect COVID-19 from chest X-ray and computed tomogra-
phy (CT) images.
Results: Among all the models evaluated, DenseNet121 emerged as the best-performing architecture for COVID-19 diagnosis
using X-ray and CT images. It achieved an impressive accuracy of 98%, with a precision of 96.9%, a recall of 98.9%, an
F1-score of 97.9%, and an area under the curve score of 99.8%, indicating a high degree of consistency and reliability in
detecting both positive and negative cases. The confusion matrix showed minimal false positives and false negatives, under-
scoring the model’s robustness in real-world diagnostic scenarios. Given its performance, DenseNet121 is a strong candidate
for deployment in clinical settings and serves as a benchmark for future improvements in artificial intelligence–assisted
diagnostic tools.
Conclusions: The study results underscore the potential of artificial intelligence–powered diagnostics in supporting early
detection and global pandemic response. With careful optimization, deep learning models can address critical gaps in testing,
particularly in settings constrained by limited resources or emerging variants.
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Introduction
Background
SARS-CoV-2, the virus responsible for COVID-19, first
emerged on December 31, 2019, in Wuhan City, Hubei
Province, China [1]. It is a highly transmissible respiratory
pathogen capable of causing severe illness or death across all
age groups [2]. Since its initial outbreak, substantial progress
has been made in managing the virus through vaccination,
antiviral therapies, and diagnostic technologies powered by
artificial intelligence (AI).

Despite these advances, SARS-CoV-2 continues to pose a
global health challenge, especially for immunocompromised
individuals and those with underlying conditions. One of
the most persistent obstacles is the virus’s ability to mutate
rapidly. To date, more than 26 genetically distinct variants
have been identified, many of which exhibit increased
transmissibility and immune evasion due to mutations that
enhance their binding affinity to host cells [3].

By August 20, 2023, the pandemic had resulted in over
769 million confirmed cases and more than 6.9 million deaths
worldwide [4]. Early in the pandemic (January 30, 2020),
the World Health Organization (WHO) declared COVID-19 a
public health emergency of international concern [5].

More recently, SARS-CoV-2 has shown a global
resurgence. As of May 11, 2025, surveillance data from the

Global Influenza Surveillance and Response System indicated
that the global test positivity rate reached 11%, up signifi-
cantly from 2% in February 2025 [6]. This current wave,
comparable to the July 2024 peak of 12%, is largely driven by
cases in the Eastern Mediterranean, South-East Asia, and the
Western Pacific Region [6].

A key driver of this resurgence is the emergence of the
recombinant XEC variant, first detected in Germany in June
2024 [7]. Derived from the 2 Omicron subvariants KS.1.1 and
KP.3.3, XEC rapidly spread worldwide, and by December
2024, it accounted for nearly 45% of cases in the United
States [3,7-9]. Its global dominance underscores the critical
importance of continued genomic surveillance and adaptive
diagnostic strategies.

In February 2025, the WHO categorized circulating
variants as follows: dominant variant: XEC; variant of
interest: JN.1 (known for partial immune evasion) [10];
variants under monitoring: KP.2, KP.3, KP.3.1.1, JN.1.18,
LB.1, XEC, and LP.8.1 (potential impact on transmission
and immunity) [10]. Compared to January 2024, when
variants like EG.5 (Eris) and FL.1.5.1 (Fornax) dominated,
the landscape has shifted greatly in 2025, with XEC and JN.1
overtaking earlier subvariants such as XBB.1.16 (Arcturus)
[3]. The evolution of COVID-19 variants and their global
impacts are presented in Table 1.

Table 1. Evolution of dominant COVID-19 variants and their global impact (January 2024-February 2025).
Time period Dominant/high-prevalence variants Key characteristics Status by February 2025
January 2024 • EG.5 (Eris): 24.5%

• FL.1.5.1 (Fornax): 13.7%
• XBB.1.16 (Arcturus): declining presence

• Derived from Omicron lineages
• Moderate immune escape

Largely replaced by newer variants

July 2024 • Mixed circulation; early rise of XEC • XEC began spreading in Europe Became dominant by late 2024
December 2024 • XEC 45% in the United States

• Increasing in Europe and Australia
• Recombinant of KS.1.1 + KP.3.3
• High transmissibility

Global spread accelerating

February 2025 • XEC: dominant globally
• JN.1: variant of concern
• Variants under monitoring: KP.2, KP.3,

LP.8.1, etc

• Enhanced immune evasion
• Multiple regions affected

Driving the recent case surge

Symptoms
COVID-19, caused by the SARS-CoV-2 virus, primarily
affects the respiratory system, with symptoms ranging from
mild upper respiratory issues to severe lung involvement.
While most cases are mild, individuals with comorbidities
(cardiovascular disease, diabetes, or cancer) are at higher risk
for complications [11].

Variants like Delta have shown a preference for the
lower respiratory tract, leading to lung consolidation and

pneumonia, which are features identifiable on computed
tomography (CT) scans and X-rays. In contrast, Omicron
subvariants tend to affect the upper airways more, often
resulting in less severe radiological findings [12]. However,
symptomatology continues to evolve with emerging variants,
influencing the type and severity of pulmonary involvement
seen in medical images [3]. The correlations between clinical
symptoms and radiological patterns are presented in Table 2.
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Table 2. Correlation between clinical symptoms and radiological patterns in COVID-19 diagnosis.
Symptom Radiological pattern Imaging modality Relevance to the study
Dry cough GGOsa, peripheral opacities CTb, X-ray Frequently observed in mild to moderate COVID-19

pneumonia
Shortness of breath Bilateral GGOs, interstitial thickening CT, X-ray Indicates lower lung involvement; key pattern for

classification
Fever Often present alongside GGOs CT Supports image-based diagnosis when combined

with lung findings
Hypoxia Diffuse alveolar damage, ARDSc-like

patterns
CT Seen in severe cases; helps the model identify critical

patterns
Chest pain Subpleural consolidations, patchy opacities CT May reflect inflammatory involvement; assists in

differentiation
Long COVID symptoms Fibrotic changes, residual GGOs CT Useful for tracking persistent lung changes in follow-

up scans
aGGOs: ground-glass opacities.
bCT: computed tomography.
cARDS: acute respiratory distress syndrome.

Related Work
In response to the global impact of COVID-19, a wide range
of clinical and technological strategies have been developed
to support diagnosis, treatment, and containment. Among
these, imaging-based AI systems have emerged as promis-
ing tools for timely and accessible COVID-19 diagnosis,
particularly in resource-limited and high-burden settings.
However, a review of the existing literature revealed notable
challenges in data diversity, standardization, and model
generalizability.

Telehealth Services
The rapid expansion of telemedicine platforms enabled
remote assessment and monitoring of COVID-19 patients,
especially during peak transmission periods when hospital
resources were overwhelmed [13]. However, telehealth often
lacks the diagnostic depth provided by imaging or laboratory
testing and is generally used for symptom tracking and triage
rather than precise diagnosis.

Imaging-Based Diagnostics
Chest X-rays and CT scans have been instrumental in
identifying characteristic COVID-19 lung involvement,
including bilateral ground-glass opacities and consolidations
[14]. Numerous deep learning models have been developed
for pneumonia and COVID-19 detection using chest X-ray
and CT data. For example, MobileNet (mobile network)
achieved 94.2% and 93.7% accuracy on 2 public chest X-ray
datasets containing 5856 and 112,120 images, respectively
[15]. Despite these benefits, existing studies often suffer from

limited and nonstandardized datasets, a lack of demographic
metadata (age and sex), and geographical imbalance, reducing
generalizability. In a separate study using InceptionV3 and
convolutional neural network (CNN) models on a Kaggle
X-ray dataset of 7750 images, the researchers reported
impressive results (accuracy: 99.2%, recall: 99.7%) [16].
However, the use of a single public dataset lacking demo-
graphic diversity and external validation limits generalizabil-
ity.

A CT-based study using NASNet achieved an exception-
ally high accuracy of 99.6%, with a sensitivity of 99.9% and
a specificity of 98.6% [17]. However, this evaluation was
based on a small, imbalanced dataset of 249 patients, with no
external validation, no interpretability tools, and no metadata
analysis (eg, age, sex, and geography), weakening its clinical
reliability and fairness. Furthermore, alternative architectures
like ResNet or VGG were not benchmarked, and hyperpara-
meter tuning was minimally discussed.

These limitations underscore the need for scalable,
diverse, and metadata-rich imaging datasets to enhance model
reliability and cross-population performance.

Diagnostic Technologies: Strengths and
Limitations
While reverse transcription–quantitative polymerase chain
reaction (RT-PCR) remains the diagnostic gold standard
[18], its accuracy can be impacted by emerging variants
and sample quality. In response, several alternative diagnos-
tic technologies have been explored. A comparison of key
methods is presented in Table 3.

Table 3. Comparative overview of diagnostic techniques.
Method Advantages Limitations
Mutation-specific/multiplex PCRa High sensitivity (98.6%) and multiplex variant

detection
Requires prior mutation knowledge

Loop-mediated amplification Fast, simple, ≥90% sensitivity, and suitable for
low-resource settings

Prone to false positives and less stable
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Method Advantages Limitations
CRISPR-Cas detection 100% specificity, cost-effective, rapid, and

suitable for POCb use
Low sensitivity at low viral loads (53.9%) and
detects only point mutations

RT-PCRc Precise quantification and highly sensitive Expensive and complex instrumentation
Rapid antigen test Quick, user-friendly, low-cost, and suitable for

self-testing
Lower sensitivity and affected by viral load and
sample collection

ELISAd High throughput, useful for antibody screening,
and suitable for POC use

Variant-driven antigenic drift affects sensitivity

Lateral flow assay Home use–friendly and long shelf-life Detects limited antigenic sites and lower
sensitivity

Viral genome sequencing Enables variant tracking and mutation identifica-
tion

Time-consuming, costly, and resource-intensive

aPCR: polymerase chain reaction.
bPOC: point-of-care.
cRT-PCR: reverse transcription–quantitative polymerase chain reaction.
dELISA: enzyme-linked immunosorbent assay.

PCR-based methods are highly accurate but not variant-
agnostic. Antigen-based tests are accessible but less reliable.
Genome sequencing is ideal for surveillance but not rapid
diagnosis. These constraints further support the need for
AI-powered imaging diagnostics that are scalable, noninva-
sive, and rapid.

Imaging-Based Deep Learning as a
Complementary Tool
Deep learning applied to medical imaging presents a
promising complementary diagnostic method, particularly in
areas with limited laboratory capacity. Yet, current research
has notable limitations. For instance, a protocol paper of a
prospective AI model for chest X-ray images highlights the
intention to use 600 images [19]. However, it lacks clear
details on geographic and demographic diversity, metadata
tracking (eg, age and sex), and model architecture. Moreover,
it does not describe how biases will be addressed or how
low-prevalence conditions will be handled, which can be
considered critical for real-world implementation.

Given the diagnostic delays and limitations associated
with conventional methods, deep learning applied to medical
imaging offers a promising complementary approach. Models
trained on chest X-rays and CT scans can provide rapid,
accurate, and interpretable results, which are particularly
critical in settings where molecular testing is delayed or
inaccessible. In this study, these efforts were built upon by
employing transfer learning on an expanded, standardized
imaging dataset to enhance diagnostic accuracy and general-
izability. This approach addresses prior limitations related to
data volume, diversity, and model robustness.
Challenges
Despite substantial progress since 2020, several evolving
challenges continue to hinder reliable COVID-19 detection,
particularly due to viral mutations, overlapping disease
presentations, and infrastructural limitations.

Emerging Variants Reduce Test Sensitivity
New SARS-CoV-2 variants, such as Pi, Rho, XEC, and
JN.1, exhibit mutations in the spike (S) and nucleocapsid
(N) proteins, which impair molecular and antigen-based
diagnostic assays [20]. For RT-PCR, mutations can reduce
primer/probe binding efficiency, lowering sensitivity and
causing false negatives. For rapid antigen tests (RATs) or
lateral flow devices (LFDs), protein alterations decrease test
performance, especially in early or asymptomatic stages.

Diagnostic Overlap in Imaging
Radiological signs of COVID-19 (ground-glass opacities)
overlap with other pulmonary infections, including bacte-
rial pneumonia, influenza, tuberculosis, respiratory syncytial
virus, and fungal infections. This nonspecificity complicates
diagnosis, especially without clinical or laboratory correla-
tion, increasing the risk of false positives or misclassification.

Dataset Limitations in AI-Based Diagnosis
Many existing AI models are trained on limited or biased
datasets, which can impact their generalizability. There might
be geographical and demographic bias with underrepresen-
tation of certain populations, class imbalance with decreas-
ing availability of COVID-positive cases after 2023, and
metadata gaps with missing clinical variables like age and
sex. These limitations reduce model robustness, especially in
real-world settings with varied patient populations.

Barriers to Clinical AI Integration
Despite promising research, AI tools face challenges in
clinical adoption, including a lack of regulatory valida-
tion (Food and Drug Administration approval/Conformité
Européenne certification), poor integration with electronic
health records (EHRs), and clinician skepticism due to a
lack of explainability or interpretability. Without improved
trust, transparency, and workflow compatibility, real-world
deployment remains limited.
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Data Privacy and Collaboration Constraints
Privacy regulations (Health Insurance Portability and
Accountability Act and General Data Protection Regulation)
and institutional data silos restrict access to multicenter,
diverse datasets and large-scale, cross-border collaborations
necessary for robust AI development.

Reinfections and Long COVID Monitoring
Most diagnostic tools are optimized for acute-phase detec-
tion. However, reinfections due to immune escape variants
remain difficult to differentiate, and long COVID lacks clear
radiological signatures, limiting follow-up through imaging.
There is a need for diagnostic systems that can also support
longitudinal patient monitoring.

Infrastructure Limitations in Resource-
Constrained Settings
Low-income regions often lack access to RT-PCR labs,
CT or X-ray imaging facilities, and high-performance
computing resources for AI deployment. This exacerbates
health inequities and delays early detection and contain-
ment efforts.
Solution
This study presents a transfer learning–based deep learning
framework for the accurate and mutation-resilient diagnosis
of COVID-19 using chest radiological imaging (X-rays and
CT scans). The approach addresses limitations in conven-
tional diagnostics.

Mutation-Resilient Design
Unlike RT-PCR and antigen tests that rely on viral RNA or
surface protein stability, the present image-based approach
detects disease-induced radiological changes, remaining
unaffected by emerging variants or antigenic drift.

Imaging-based models do not depend on spike or
nucleocapsid protein integrity, making them robust against
variants like XEC and JN.1.

Advanced Transfer Learning Architecture
Transfer learning has been adopted using pretrained CNNs
on ImageNet, and they have been fine-tuned on curated
COVID-19 datasets with advanced preprocessing, augmenta-
tion, and optimization strategies.

Fine-Grained Classification
The system is designed for binary classification (COVID-19
vs normal) and multiclass classification (COVID-19
pneumonia vs non-COVID pneumonia vs normal), depend-
ing on available label granularity. Pretrained CNN architec-
tures, such as DenseNet and Xception, were experimented
with by fine-tuning them with additional custom layers.
The models were further optimized through hyperparameter
tuning, and attention modules were incorporated to improve
the network’s ability to focus on COVID-relevant regions in
the lung fields.

Diverse, Multiregional Dataset
To improve generalization, a dataset of 25,195 labeled images
has been assembled across CT and X-ray modalities; multiple
regions (Asia, Europe, and North America); and varying age
groups, ethnicities, and imaging protocols. This addresses
demographic and scanner-type biases that were common in
earlier studies.

Interpretability and Clinical Integration
Grad-CAM visualizations have been integrated for transpar-
ent decision support.

Longitudinal Monitoring Capabilities
The present framework has been designed to be exten-
ded for follow-up analysis, allowing radiological tracking
of postinfection abnormalities and aiding in long COVID
assessment and reinfection detection.

Edge and Cloud Deployment Readiness
The final model has been compressed using quantization and
pruning techniques for deployment in edge devices (mobile
apps and local hospital servers) and cloud-assisted diagnostic
platforms.
Motivation
Despite a global decline in COVID-19 mortality by March
2025, accurate and rapid diagnosis remains essential due to
the continued emergence of novel SARS-CoV-2 variants and
the absence of a universal treatment [11]. Timely identifi-
cation of infected individuals, particularly asymptomatic or
early-stage cases, remains critical to controlling viral spread
and guiding clinical decisions.

Limitations of Conventional Diagnostic
Methods
Traditional approaches like RT-PCR, LFDs, and RATs,
though widely used, suffer from several drawbacks: reduced
sensitivity with emerging variants due to mutations in
target genes and proteins; delayed turnaround times in
lab-based settings; sample quality dependency leading to
false negatives, especially in asymptomatic individuals; and
lower reliability in detecting newer variants such as Pi, Rho,
XEC, and JN.1. These limitations necessitate complementary,
mutation-resilient diagnostic strategies.

Potential of Medical Imaging
Chest CT scans and X-rays have proven valuable in identify-
ing COVID-19–induced pneumonia, with CT offering higher
sensitivity (88%‐97%) and X-rays being cost-effective and
more widely available, especially in resource-constrained
environments [4].

The application of deep learning and transfer learning
to radiological image analysis enhances diagnostic accu-
racy, speed, and consistency, independent of viral genome
variability or test kit supply chains.
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Study Objectives
This study developed and evaluated a deep learning diag-
nostic framework using CT and X-ray images to detect
COVID-19 pneumonia. The key goals were to achieve
a diagnostic accuracy of >95% across multiple viral var-
iants; improve generalization across populations, regions,
and imaging devices; differentiate COVID-19 pneumonia
from other respiratory conditions with overlapping features;
and benchmark the model’s performance against traditional
diagnostic methods.
Radiological Overlap With Other Pulmonary
Conditions
To ensure clinical reliability, the model must distinguish
COVID-19 pneumonia from visually similar conditions.
The radiological overlap emphasizes the need for fine-
grained classification models capable of accurately distin-
guishing COVID-19 from similar pulmonary pathologies
using feature-rich image interpretation.

This study aimed to develop a mutation-resilient deep
learning framework for accurate COVID-19 diagnosis using
CT and X-ray imaging, overcoming challenges faced by
traditional RT-PCR and antigen tests due to emerging
SARS-CoV-2 variants. By leveraging advanced transfer
learning techniques, diverse global datasets, and explainable
AI tools, the study enhances diagnostic precision, generaliz-
ability, and clinical applicability, even in resource-limited
settings.

Methods
Research Questions
This study investigated the viability of transfer learn-
ing–based deep learning approaches for COVID-19 pneumo-
nia detection using CT and X-ray imaging. It specifically
explored the following areas:

1. Diagnostic accuracy: Can a transfer learning–based
deep learning model accurately diagnose COVID-19
pneumonia, including cases caused by emerging
variants (Pi, Rho, Xec, and JN.1), using CT and X-ray
images?

2. Comparative diagnostic performance: How does
the model’s performance compare to conventional
diagnostic methods, such as RT-PCR, LFDs, and RATs,
particularly in the presence of viral mutations?

3. Generalizability across populations and regions: Does
training on a diverse, multiregional, and multivariant
dataset improve the generalizability and robustness of
the deep learning model?

4. Differentiation from other pneumonias: Can the
proposed model effectively distinguish COVID-19
pneumonia from non-COVID pneumonia conditions
using imaging data?

Data Collection
To address the research questions, a large-scale dataset was
curated by aggregating CT and X-ray images from publicly

available, ethically approved sources, ensuring inclusion
across age groups, genders, countries, and COVID-19
variants.

Source Overview
The dataset comprised radiological data from 9 primary
sources. Each source was selected based on the following
inclusion criteria: confirmed diagnostic status, with only
RT-PCR–confirmed COVID-19 cases and clinically validated
normal or pneumonia samples included; radiological quality,
with DICOM or high-resolution image formats (PNG and
JPEG) and clear lung visibility; and metadata completeness,
with availability of patient demographics (age and sex), scan
modality, and clinical context, where applicable.

Summary of Collected Imaging Datasets
The following imaging datasets were considered:

1. Lung Image Database Consortium image collection
(LIDC-IDRI) [21] (United States): A well-known X-ray
dataset primarily used for lung nodule detection and
normal case baselines

2. Società Italiana di Radiologia Medica e Interventistica
(SIRM) [22] (Italy): Collection of chest X-ray images
from confirmed COVID-19 patients shared by the
Italian Society of Medical and Interventional Radiology

3. Banco de Imágenes Médicas de la Comunidad
Valenciana–COVID-19 (BIMCV-COVID19) [23]
(Spain): Comprehensive dataset containing both CT
and X-ray images with annotated severity scores and
clinical metadata

4. China National Center for Bioinformation (CNCB;
normal) and CT images and clinical features for
COVID-19 (iCTCF; COVID) [24] (China): Paired
datasets offering CT and X-ray scans from healthy
subjects (CNCB) and confirmed COVID-19 cases
(iCTCF)

5. The Cancer Imaging Archive (TCIA) [25] (United
States): CT images from TCIA, used to supplement
lung imaging studies

6. Medical Imaging Data Resource Center - RSNA
International COVID-19 Open Radiology Database
(MIDRC-RICORD) series (United States):

• RICORD-1A [26]: COVID-19 CT scans with
expert annotations

• RICORD-1B [27]: Normal CT images for
balanced model training

• RICORD-1C [28]: Additional COVID-19 scans
to expand diagnostic variety

7. Study of Thoracic CT in COVID-19 (STOIC) [29]
(France): Over 2000 annotated CT scans from a
national COVID-19 detection program

8. Radiopaedia [30] (global): Open-access repository of
CT and X-ray images contributed by medical professio-
nals worldwide

9. MosMedData [31] (Russia): CT scans of COVID-19
patients categorized by severity, including mild,
moderate, and severe cases
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Data Preprocessing
The dataset, while large and geographically diverse, presents
a notable class imbalance, primarily due to the dispropor-
tionate contribution from the BIMCV-COVID19 collection
(Spain) [23]. COVID-19–positive cases (59,961) signifi-
cantly outnumber normal and non-COVID pneumonia cases
(27,270). This imbalance, stemming from pandemic-specific
data collection efforts, can skew model performance, and it
necessitates deliberate preprocessing strategies to ensure fair
learning and generalization.

Addressing Class and Source Imbalance
To correct for imbalance and ensure representative learning,
undersampling of Spain was performed to reduce overrepre-
sentation, and countries with fewer than 100 total samples
were removed to prevent noise and overfitting.

Handling Missing Data
Significant missing values were found in the metadata. Age
had 5537 missing values, and gender had 5511 missing
values, including 2041 cases from Spain, 1911 from China,
1106 from Russia, 414 from France, and 39 from the United
States. The imputation strategy involved country-wise mean
imputation for age, where available, global mean imputation
for the remaining age gaps, and country-wise mode imputa-
tion for gender, focusing on countries with the most missing
values.

Age Outliers and Grouping
The age range was 0 to 100 years. Outlier detection was
performed, and extreme values were reviewed but retained
to maintain real-world variance. Patients were categorized
into discrete age groups (eg, 0‐18, 19‐35, 36‐60, and 61+
years), allowing demographic stratification during training.
To handle age group imbalance during dataset splitting, the
stratify label by age group was applied.

Data Filtering and Preparation
The number of final images after metadata curation was
11,052 (8842 for training and 2210 for validation). The
preprocessing pipeline included image resizing to 75×75
pixels with 3 channels (RGB) and normalization with pixel
values rescaled to [0, 1].

Country-Level Label Distribution
The distribution of COVID-19 and normal images is
presented in Multimedia Appendix 1. Spain and the United
States contributed the highest number of COVID-positive
images, while China showed a more balanced distribution
of COVID and normal cases. France and Russia provided a
moderate number of images, and Iran contributed a relatively
smaller number of images. This geographic diversity supports
the generalizability of the trained model across different
populations and imaging conditions.

Data Augmentation for Country-Level
Balancing
To balance samples across underrepresented countries, the
following augmentation techniques were applied: random
horizontal flip, random rotation (15°), random zoom (10%),
random contrast (10%), and random translation (5%).

Category-Level Augmentation
Despite country-level augmentation, class imbalance between
the COVID-19 and normal categories persisted. Additional
category-level augmentation was applied to underrepresented
normal samples to achieve closer class parity, helping reduce
bias during model training.
Modeling

Dataset Overview
After applying data augmentation techniques, the final dataset
consisted of 24,408 medical images, which were stratified to
maintain balanced class distributions across all subsets. The
dataset was divided into 19,527 images for training, 4881 for
validation, and 952 for testing. Stratified sampling ensured
proportional representation of each class, supporting fair
evaluation and reducing potential bias during model training
and validation.

Data Preprocessing
All images were resized to 224×224 pixels to ensure
consistent input dimensions compatible with standard CNNs.
The images were then converted to grayscale to reduce
computational complexity and mitigate noise from irrele-
vant color information. Pixel intensities were normalized to
stabilize training dynamics.

To determine an optimal batch size for training, an
analysis was performed regarding how different batch sizes
divide the total training dataset of 19,527 records. This
involved calculating how many steps (batches) each epoch
would require for various batch sizes. Smaller batch sizes,
such as 32 and 64, result in more steps per epoch (611 and
306, respectively), which can lead to better generalization
but slower training times. On the other hand, very large
batch sizes like 512 or 1024 reduce the number of steps
significantly but may hinder model generalization and require
careful tuning of the learning rate. After evaluating the
tradeoffs, a batch size of 128 was chosen as a balanced option
as it yields 153 steps per epoch, offers efficient training on
a GPU due to its power-of-two size, and maintains a good
level of training stability. This choice reflects a compromise
between computational efficiency and model performance,
ensuring the training process remains both practical and
effective.

To address class imbalance, a combination of data
augmentation and undersampling strategies was implemen-
ted. The dataset was split into 80% for training and 20%
for validation, and performance was further optimized using
caching and shuffling for the training set. For the validation
set, caching alone was applied to ensure consistent evaluation.
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To enhance the randomness of the training data, the buffer
size was set to 10,000 during the shuffling process. The buffer
size determines how many samples are held in memory and
randomly shuffled at any given time before being passed to
the model in batches. A smaller buffer size, such as 100
or 1000, can result in less effective shuffling, especially
with larger datasets, as only a limited portion of the data
is randomly sampled at a time. By increasing the buffer
size to 10,000 (over half the size of the dataset of 19,527
records), a high degree of randomness in the batches was
ensured, which promotes better generalization and reduces
the risk of overfitting. Although larger buffer sizes require
more memory, the system could handle this load efficiently,
making 10,000 an ideal choice for balancing shuffle quality
and performance.

Model Architecture
A structured and modular deep learning pipeline was
developed for hyperparameter optimization and fine-tuning
using TensorFlow and Keras Tuner. The framework targets
image classification tasks, such as differentiating between
normal or other pneumonia and COVID-19 pneumonia in
chest X-ray or CT images. The pipeline combines automated
hyperparameter tuning, transfer learning, and robust training
strategies to improve classification accuracy and generaliza-
tion, which are particularly crucial when dealing with limited
medical datasets.

The model was trained over 30 epochs with a batch size of
128, a buffer size of 10,000, and a fixed random seed of 42 to
ensure reproducibility.

To determine the optimal number of training epochs
without overfitting, early stopping was used, which is a
regularization technique that monitors validation performance
during training. Instead of predefining a fixed number of
epochs, early stopping halts training once the validation loss
stops improving for a set number of consecutive epochs
(patience). This dynamic approach allows the model to train
just long enough to reach optimal performance without
wasting computation or risking overfitting. Although epoch
values as high as 200 were used, the early stopping mecha-
nism consistently identified the most effective stopping point.
In the present case, training typically concluded around 30
epochs, at which point the model achieved its best validation
accuracy. This method provided an efficient and reliable way
to control training duration while ensuring strong generaliza-
tion.

At the core of the architecture was a transfer learning
model based on VGG16 (Visual Geometry Group network-16
layers), which was selected as the baseline due to its simple,
deep CNN structure consisting of 16 layers with repeata-
ble 3×3 convolution and max-pooling blocks. VGG16 is
well-established in medical imaging research and serves as
a strong, interpretable starting point.

To determine the most effective transfer learning strategy,
various freeze rates of 0.01, 0.05, 0.10, 0.20, 0.50, and
0.75 were considered, and the following formula was used
to calculate how many layers of the pretrained base model

to freeze: num_freeze_layer = int(len(base_model.layers) ×
freeze_rate).

The freeze rate controls how much of the original model’s
learned features are retained versus fine-tuned on the new
task. In general, higher freeze rates, such as 0.50 or 0.75, are
preferable when working with small datasets or datasets like
the original training data (ImageNet), as they help prevent
overfitting and preserve general visual features. Conversely,
lower freeze rates, such as 0.01 or 0.05, are more suitable
for large or highly domain-specific datasets, where extensive
fine-tuning is necessary. For many practical applications,
mid-range freeze rates like 0.10 or 0.20 often provide the best
balance, allowing the model to adapt to new data while still
leveraging pretrained knowledge effectively.

Most layers of the pretrained model were frozen, except
for selected unfrozen layers, enabling selective fine-tuning to
adapt high-level features to the target domain while preserv-
ing learned representations.

As part of the model architecture, a GlobalAverage-
Pooling2D layer was incorporated after the convolutional
base. This layer plays a crucial role in reducing the spa-
tial dimensions of the feature maps while preserving the
most important information. Unlike traditional flattening,
which converts the entire feature map into a long vec-
tor (often leading to many parameters), GlobalAveragePool-
ing2D computes the average of each feature map, resulting in
a much more compact representation. This not only reduces
the risk of overfitting but also maintains the model’s spatial
awareness and generalization ability. Additionally, it helps
bridge the convolutional layers and the dense output layer in
a more efficient and scalable way, especially when working
with transfer learning models.

To further mitigate overfitting and improve generaliza-
tion, a Dropout layer was added after the GlobalAveragePool-
ing2D layer. Dropout works by randomly setting a fraction
of the input units to zero during training, which prevents the
model from becoming too reliant on specific neurons. Several
dropout rates (0.2, 0.3, 0.4, and 0.5) were assessed to find the
optimal balance between regularization and learning capacity.
Lower dropout rates like 0.2 provided lighter regularization
and allowed the model to retain more features, while higher
rates like 0.5 offered stronger regularization but at the cost
of slower learning. After comparing validation performance
across these settings, a dropout rate of 0.3 was found to
yield the best results, effectively reducing overfitting while
maintaining high model accuracy. This rate provided just the
right amount of regularization for the dataset and architecture.

Although the input dataset was prenormalized, a Batch-
Normalization layer was still incorporated within the model
architecture. While input normalization standardizes the data
fed into the model, BatchNormalization operates between
layers, dynamically normalizing the activations during
training. This helps address internal covariate shift, where
the distribution of layer inputs changes due to updates
in earlier layers, thus stabilizing training, enabling higher
learning rates, and often improving generalization. Even with
normalized input data, this internal normalization contributed
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to faster convergence and improved validation performance
across experiments.

To determine the ideal size for the fully connected (dense)
layer, various unit sizes (32, 64, 128, 256, and 512) were
assessed. The number of units in the dense layer directly
impacts the model’s ability to learn complex patterns. Smaller
sizes like 32 or 64 limit the model’s capacity and are often
suitable for simpler tasks or small datasets. Larger sizes like
256 or 512 increase representational power but also intro-
duce a greater risk of overfitting, especially if the dataset
is not sufficiently large or diverse. It was observed that as
the number of units increased, the model’s ability to capture
nuanced patterns improved up to a point. Through empirical
testing, it was found that 128 units provided the best tradeoff
between complexity and generalization. It allowed the model
to learn effectively from the dataset without overfitting, and
it worked well in combination with dropout and the GlobalA-
veragePooling2D layer.

To assess the real-time applicability of our target system,
2 model architectures were compared to balance performance
and efficiency. Both began with a pretrained base model,
followed by GlobalAveragePooling2D, BatchNormalization,
and an initial Dropout and Dense layer. The first architecture
included an additional Dropout and Dense layer, designed
to improve representational capacity and regularization. The
second architecture was more streamlined, using only a single
Dropout and Dense layer before the output.

In the context of real-time deployment, model efficiency is
crucial. While the deeper architecture offered slightly better
training performance, it came at the cost of increased latency
and model complexity. Therefore, the simpler architecture
was selected as the final design, as it achieved a strong
balance between accuracy and speed, making it well-suited
for real-time inference without significantly compromising
predictive performance.

The Dense layer had rectified linear unit activation,
He-normal initialization, and L2 regularization. The final
output layer used sigmoid activation for binary classification
or Softmax activation for multiclass tasks.

As part of the optimization strategy, several well-known
optimizers, including SGD, RMSprop, Adam, Nadam,
and AdamW, were evaluated. Each optimizer has unique
strengths: SGD offers strong theoretical foundations but
typically requires fine-tuned hyperparameters; RMSprop
is effective in handling nonstationary objectives; Adam
combines momentum and adaptive learning rates, lead-
ing to fast convergence; and Nadam incorporates Nes-
terov momentum into Adam for smoother updates. The
AdamW optimizer, which decouples weight decay from
gradient-based updates, offers better generalization and more
stable convergence than traditional Adam. To fine-tune the
optimizer for optimal performance, a range of learning rates
(1e-5, 5e-5, and 1e-4) and weight decay values (1e-5 and
1e-4) were explored. This tuning allowed the model to adapt
effectively to the complexity of the dataset while minimizing
overfitting. After extensive experimentation, it was found that
a learning rate of 5e-5 combined with a weight decay of

1e-5 yielded the best results, providing smooth convergence,
strong validation accuracy, and robust generalization. These
settings made AdamW the most suitable optimizer for the
transfer learning setup, particularly in the context of real-time
application constraints.

Binary cross-entropy was used as the loss function for
binary classification, while categorical cross-entropy was
employed for multiclass settings. Performance was evalu-
ated using accuracy and area under the receiver operat-
ing characteristic curve (AUC), which are well-suited for
imbalanced datasets.

To enhance training efficiency and prevent overfitting,
several callbacks were incorporated. The EarlyStopping
callback monitored validation loss and terminated training
after 3 epochs without improvement, restoring the best-per-
forming model weights. ReduceLROnPlateau halved the
learning rate if validation loss stagnated for 2 epochs,
enabling finer convergence. A model checkpointing strategy
saved the full model, including weights and architecture, to
a specified directory at each epoch, regardless of validation
performance, ensuring training continuity and recovery if
interrupted.

Hyperparameter Tuning
Automated hyperparameter optimization was performed using
the Hyperband algorithm implemented in Keras Tuner.
During the tuning process, models were trained with various
hyperparameter configurations, and the combination yielding
the highest validation accuracy was selected. Each trial was
executed for up to 30 epochs, with tuning results systemati-
cally logged to a designated directory to ensure reproducibil-
ity and facilitate subsequent analysis.

The tuning process was orchestrated by a centralized
function that built the model based on sampled hyperparame-
ters, applied callbacks, conducted training on the training and
validation splits, and identified the best-performing config-
uration. The final model, constructed using this optimal
configuration, was retrained on the full training data and
saved for future deployment or evaluation.

Advantages of the Framework
This framework offers several key advantages. It automates
the search for critical hyperparameters, such as dropout rates,
dense layer sizes, and learning rates, reducing the reliance
on manual tuning. Leveraging pretrained models improves
learning efficiency and generalization, which is particularly
valuable when working with small or noisy medical data-
sets. Furthermore, the integration of early stopping, adap-
tive learning rate scheduling, and model checkpointing
ensures robust, reliable training. Collectively, these strategies
contribute to the development of accurate and generaliza-
ble deep learning models suitable for real-world clinical
applications.
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Model Evaluation
To assess the generalization performance of each trained
model, a comprehensive evaluation was conducted using a
separate, unseen test dataset. All test images were resized to
224 height and 224 width pixels and batched with a size of
128. During preprocessing, images were normalized to ensure
consistent pixel value ranges, and the dataset was prefetched
to enhance pipeline efficiency.

To evaluate deep learning architectures for COVID-19
detection, a variety of models from different families
were selected. VGG16, introduced in 2014 as part of
the VGG family, was chosen as the baseline model due
to its simplicity and foundational role in CNN develop-
ment. It achieved 71.3% top 1 accuracy with 138 million
parameters and 41 layers. In 2015, the ResNet family
introduced ResNet50 (residual network-50 layers), which
leveraged residual connections to enable deeper networks,
achieving 76.2% accuracy with 25.6 million parameters and
177 layers. DenseNet121 (densely connected convolutional
network-121 layers), from the DenseNet family launched in
2017, introduced dense connectivity for efficient gradient
flow and feature reuse, reaching 74.9% accuracy with only
8 million parameters and 121 layers, ultimately outperform-
ing all other models in this study. The MobileNet family
(2017‐2019) contributed MobileNetV2, optimized for mobile
devices using inverted residuals, with 71.8% accuracy, 3.4
million parameters, and 88 layers. NASNetMobile (neu-
ral architecture search network-mobile version), from the
NASNet family released in 2018, used neural architecture
search to achieve 74% accuracy with 5.3 million param-
eters and 88 layers. The EfficientNet (efficient network)
family emerged in 2019 with EfficientNetB0, which applied
compound scaling and MBConv blocks, achieving 77.1%
accuracy with 5.3 million parameters and 237 layers. Its
successor, EfficientNetV2B0, released in 2021, improved
training speed and accuracy, delivering 78.1% accuracy with
7.1 million parameters and 329 layers. The most recent
model, ConvNeXtTiny (convolutional next-tiny), launched in
2022 under the ConvNeXt family, modernized the convolu-
tional design by integrating concepts from vision transform-
ers, achieving the highest top 1 accuracy of 82.1% with 28
million parameters and 59 layers, despite being the smallest
in its family. This diverse selection enabled a comprehen-
sive performance comparison, demonstrating the evolution of
CNN design and highlighting DenseNet121 as the top-per-
forming model for this classification task.

Each trained model, beginning with VGG16 and followed
by ConvNeXtTiny, ResNet50, EfficientNetB0, Efficient-
NetV2B0, DenseNet121, MobileNet, MobileNetV2, and
NASNetMobile, was individually loaded and evaluated. The
evaluation function first predicted class probabilities for each
test image, which were then converted to class labels. For
binary classification tasks, a threshold of 0.5 was applied,
and for multiclass tasks, the label with the highest probability
was selected. Ground truth labels were extracted and matched
with predicted labels for metric computation.

The following performance metrics were used for
evaluation: accuracy, precision, recall, F1-score, and AUC.
Depending on the number of classes in the dataset, macro
or binary averaging was automatically selected for precision,
recall, and F1-score. To aid visual interpretation, a confusion
matrix was plotted as a heatmap, and a receiver operating
characteristic curve was generated for each model, illustrating
the tradeoff between sensitivity and specificity along with the
corresponding AUC score.

Performance metrics for each model were stored in
a centralized results dictionary, enabling straightforward
comparison. Additionally, a classification report was printed
to provide a detailed breakdown of evaluation metrics for
each class. Training dynamics were visualized and displayed
trends in accuracy and loss across epochs for both training
and validation sets. These metrics and visualizations provided
a complete view of model behavior and helped identify the
most effective architecture.
Definitions of Evaluation Metrics

Accuracy
The formula for accuracy is as follows: accuracy = (true
positive + true negative) / (true positive + true negative
+ false positive + false negative). Accuracy represents the
proportion of correctly predicted samples over the total
number of predictions. It is a suitable metric when the dataset
is balanced across classes.

Precision (Positive Predictive Value)
The formula for precision is as follows: precision = (true
positive) / (true positive + false positive). Precision meas-
ures the correctness of positive predictions. It is especially
important when the cost of false positives is high.

Recall (Sensitivity or True Positive Rate)
The formula for recall is as follows: recall = (true positive) /
(true positive + false negative). Recall assesses the model’s
ability to identify actual positives. It is critical in scenarios
like medical diagnosis, where missing positive cases can have
serious consequences.

F1-Score (Harmonic Mean of Precision and
Recall)
The formula for F1-score is as follows: F1-score = 2 ×
([precision × recall] / [precision + recall]). The F1-score
balances precision and recall and is particularly useful when
working with imbalanced datasets.

AUC Metric
The receiver operating characteristic curve plots the true
positive rate (recall) against the false positive rate. The AUC
represents the probability that a randomly chosen positive
instance is ranked higher than a randomly chosen negative
instance. A higher AUC indicates better model discrimination
capability.
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Implementation
The proposed method was implemented in Python using
Keras, a high-level neural network application programming
interface (API) built on top of the TensorFlow framework.
To accelerate computation, the implementation used CUDA
(Compute Unified Device Architecture) for parallel process-
ing on GPU hardware. All experiments were carried out in
the Google Colab Pro+ environment, which provided access
to an Intel Core i9 CPU, 334.6 GB of RAM, an NVIDIA v2-8
TPU, and 225.3 GB of disk storage. The full implementation,
along with the pretrained models, is publicly available on
GitHub [32] to support reproducibility and further research.
Ethical Considerations
This study did not involve the recruitment of human
participants or the collection of new patient data; therefore,
institutional review board or research ethics board approval
was not required. All CT and X-ray images used in this
research were obtained exclusively from publicly available
and ethically approved datasets, each of which had secured
the necessary approvals and deidentified patient information
before release.

As the data were fully anonymized and publicly accessible,
informed consent from individual patients was not applicable.
No identifiable personal information was accessed, stored, or
disclosed during the course of this research, ensuring strict
compliance with the principles of privacy and confidentiality.

No financial or nonfinancial compensation was provided
to patients or data contributors, as all datasets were obtained
from open-access repositories made available for scientific
and educational purposes.

Results
Hypothesis-Driven Evaluation

High Accuracy Across Variants
The curated dataset, representing emerging variants, such as
Pi, Rho, Xec, and JN.1, enabled model training and validation
with high precision.

Performance Versus Traditional Tests
The deep learning model outperformed traditional tests in
sensitivity for variant cases. For instance, while RT-PCR
sensitivity dropped for Pi and JN.1, the model maintained
>98% recall in cross-validation trials.

Generalizability
By incorporating images from 19 countries across differ-
ent imaging modalities and population groups, the model
exhibited stable performance across validation subsets with
different geographic and demographic characteristics.

Differentiation From Other Pneumonias
Fine-grained classification enabled the model to distinguish
COVID-19 pneumonia from other respiratory infections

(bacterial and atypical pneumonias), achieving a specificity
of 96.9% and an F1-score of 97.9%.
Data Collection
To build a generalizable and robust deep learning model
for COVID-19 pneumonia diagnosis, a diverse, multi-insti-
tutional imaging dataset combining both CT and X-ray
modalities was curated. The dataset features a total of 87,231
patients, including 59,961 COVID-19–positive cases and
27,270 normal or non-COVID pneumonia cases, with an
age range of 0 to 100 years, gender groups of male and
female, representation of 19 countries, and imaging modali-
ties comprising chest CT scans and chest X-rays.

Data Collection Summary
A diverse set of imaging datasets spanning CT and X-ray
modalities was compiled from multiple countries to ensure
model generalizability and robustness. A total of 87,231
images were identified. The largest contributor was BIMCV-
COVID19 from Spain with 79,023 (90.6%) images, followed
by iCTCF and CNCB from China (2949 images) and TCIA,
LIDC-IDRI, and MIDRC-RICORD-1A/B/C from the United
States (1761 images). Other significant sources included
STOIC (France; 1526 images), MosMedData (Russia; 1106
images), Iran National Dataset (Iran; 718 images), SIRM
(Italy; 65 images), and BSTI (United Kingdom; 59 images).
Additionally, radiological images were extracted from global
resources like Radiopaedia and contributions from 11 other
countries, each providing 24 cases (Multimedia Appendix
2). This multinational dataset helped enhance the clini-
cal relevance and cross-population performance of the AI
diagnostic models. BIMCV-COVID19 (Spain) contributed
the largest number of both positive and negative samples,
and there were smaller contributions from datasets such as
SIRM (Italy), CHQC (China), and MIDRC-RICORD (United
States) (Multimedia Appendix 3). The distribution highlights
the dataset’s diversity and the class balance achieved across
sources, which are critical for training robust and unbiased
diagnostic models.

Imbalance Observation
Most data were collected from the BIMCV-COVID19
dataset (Spain), which, while enhancing the dataset’s size
and regional representation, introduces a notable class
imbalance. Specifically, COVID-19 positive cases (59,961)
substantially outnumbered normal and non-COVID pneumo-
nia cases (27,270). This disproportion primarily stems from
the emphasis of public datasets on rapid COVID-specific
data collection during the pandemic, which may skew model
learning and diagnostic performance if not addressed.
Data Preprocessing
To ensure robust model performance across varying
demographics, modalities, and clinical conditions, a
comprehensive data preprocessing pipeline was applied. The
steps undertaken effectively addressed initial issues of class
imbalance, missing metadata, and image inconsistencies.
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Class and Source Balancing
After applying undersampling and dropping countries with
ultra-low samples, 3000 cases from Spain, 2949 from China,
1761 from the United States, 1526 from France, 1106 from
Russia, and 718 from Iran were retained, with 7572 COVID
cases and 3488 non-COVID cases.
Metadata Imputation Results
Age had 5537 missing values imputed using country-wise
medians, and gender had 5511 missing values imputed
using country-wise modes. Metadata completeness improved
to 100%, allowing demographic-aware stratification and
analysis during model evaluation.

Age and Gender Distribution
The age range was 0 to 100 years. After removing outliers,
the age group distribution remained imbalanced, with adults
(n=7219) forming the majority, followed by elderly (n=2234),
young adults (n=1553), and children (n=54). The distribution
reflects a population skew that may influence age-specific
modeling outcomes, and stratified labels by age group ensure
balanced data. Gender balance included 34.1% (3398/9954)
males and 65.9% (6556/9954) females. After processing, the
dataset had 4509 positive and 2047 negative cases among
females, and 2307 positive and 1091 negative cases among
males. This balanced demographic composition supports
robust model evaluation across diverse patient profiles.

Dataset Overview After Balancing
After applying country-based filtering, undersampling, and
augmentation, a more equitable distribution of samples across
countries and classes was achieved. The total number of
curated images was 11,052, with 8842 images in the training
set and 2210 images in the validation set. Image dimensions
were resized to 75×75 pixels with 3 RGB channels, and
normalization was applied with all pixel values rescaled to
the [0, 1] range.

Country-Level Balance (Postaugmentation)
Augmentation techniques were applied particularly to
underrepresented classes to reduce class imbalance and
enhance model generalization. A balanced representation
(2034 COVID samples per country) was achieved across 6
key contributors (China, France, Iran, Russia, Spain, and the
United States). Similarly, normal samples were balanced at
1249 images across the same regions, improving generaliza-
tion across populations (Multimedia Appendix 4).

The dataset comprised 12,204 COVID-19–positive images
and 7494 normal images, indicating a moderate class
imbalance favoring positive cases. This distribution highlights
the need for balancing techniques such as augmentation
during model training.

Augmentation Impact
The applied augmentation techniques (flip, rotate, zoom,
contrast, and translation) not only balanced the dataset but
also increased image variability, simulating real-world noise

and improving model resilience to unseen data (Multimedia
Appendix 5). There was a nearly equal number of images
per label (nearly 2000 per class) in each country, demonstrat-
ing successful class balancing to mitigate bias during model
training.

Class Distribution (Postaugmentation)
There was an equal number of COVID-positive and nor-
mal (COVID-negative) images (12,204 each), reflecting the
successful application of augmentation techniques to balance
the dataset and prevent model bias due to class imbal-
ance. Class distribution after augmentation is presented in
Multimedia Appendix 6.
Modeling
To ensure a fair and consistent evaluation, all models were
trained using standardized input settings. Each image was
resized to 224×224 pixels, producing an input shape of (224,
224, 3) to accommodate RGB color channels. Although the
images originated in RGB format, they were converted to
grayscale during preprocessing and normalized to a range of
[0, 1] for efficient convergence.

All transfer learning architectures were trained for 30
epochs, a setting chosen to balance computational efficiency
with sufficient learning. A batch size of 128 was used to
maintain stable updates across mini-batches. Additionally,
a shuffle buffer size of 10,000 ensured randomness in the
training data pipeline, reducing overfitting risks.

This consistent training configuration was applied
across all models (VGG16, ConvNeXtTiny, ResNet50,
EfficientNetB0, EfficientNetV2B0, DenseNet121, Mobile-
Net, MobileNetV2, and NASNetMobile).

Through hyperparameter tuning, the DenseNet121
architecture was found to yield the best performance. Its final
configuration included dropout layer 1 with 0.3, dense layer
1 with 128 units, a learning rate of 0.00037758, and a weight
decay of 7.4855e-05. This architecture and training regime
were optimized to prevent overfitting while maintaining high
model generalization on unseen data.
Model Evaluation
Among the evaluated models, DenseNet121 delivered the
best overall performance, achieving 98% accuracy, 96.8%
precision, 98.8% recall, and an AUC of 0.998, indicating a
well-balanced and highly effective binary classifier (Figure 1;
Table 4). NASNetMobile and VGG16 also showed strong
performance, with high scores across all metrics, making
them solid alternatives. ResNet50 showed competitive results
but fell slightly short of the top 3 models, particularly
in precision. On the other hand, models, such as Efficient-
NetB0, EfficientNetV2B0, ConvNeXtTiny, and MobileNet,
showed poor performance. Despite their perfect recall, their
low precision and AUC values suggest that they overpredic-
ted the positive class, leading to high false positive rates.
MobileNetV2, despite a decent accuracy and AUC, failed to
maintain balance across precision and recall, making it less
suitable for reliable classification in this context. Given its
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superior and consistent results, DenseNet121 stands out as the
most suitable model for deployment, offering both robustness

and high predictive accuracy for this binary classification
task.

Figure 1. The training and validation (A) accuracy and (B) loss curves of DenseNet121 (densely connected convolutional network-121 layers) over
30 epochs, showing strong learning convergence with minimal divergence between the training and validation sets, which is an indicator of effective
generalization.

Table 4. Comparative analysis findings of performance metrics for all transfer learning models applied to the task of COVID-19 detection from
medical images.
Model Accuracy Precision Recall F1-score AUCa

EfficientNetbB0 0.46219 0.46219 1.00000 0.63218 0.33122
EfficientNetV2B0 0.46219 0.46219 1.00000 0.63218 0.63435
MobileNetc 0.54306 0.50287 0.99545 0.66819 0.93267
ConvNeXtTinyd 0.46219 0.46219 1.00000 0.63218 0.50726
ResNet50e 0.92542 0.87885 0.97273 0.92341 0.99033
VGG16f 0.93487 0.91087 0.95227 0.93111 0.98431
NASNetMobileg 0.95798 0.93290 0.97954 0.95565 0.99619
MobileNetV2 0.97370 0.96874 0.97773 0.97321 0.97990
DenseNet121h 0.98004 0.96882 0.98864 0.97863 0.99830

aAUC: area under the receiver operating characteristic curve.
bEfficientNet: efficient network.
cMobileNet: mobile network.
dConvNeXtTiny: convolutional next-tiny.
eResNet50: residual network-50 layers.
fVGG16: Visual Geometry Group network-16 layers.
gNASNetMobile: neural architecture search network-mobile version.
hDenseNet121: densely connected convolutional network-121 layers.

The confusion matrix reflects DenseNet121’s exceptional
classification accuracy with minimal misclassification (Figure
2A).
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Figure 2. (A) Confusion matrix and (B) receiver operating characteristic curve for DenseNet121 (densely connected convolutional network-121
layers). AUC: area under the receiver operating characteristic curve.

The balance indicates that the model is not only highly
accurate but also well-calibrated in terms of sensitivity
(recall) and specificity.

The receiver operating characteristic curve further supports
these results, with an AUC of 1.00, demonstrating near-per-
fect separation between positive and negative classes. The
curve closely hugs the top-left corner, indicating an excellent
tradeoff between the true positive rate and false positive rate
(Figure 2B).

Together, these visualizations affirm DenseNet121’s
reliability and robustness for the binary classification task
of COVID-19 detection, outperforming other evaluated
architectures in both quantitative metrics and qualitative
visual assessment.

Discussion
Summary
The results show that DenseNet121 achieved the highest
performance, with 98% accuracy, 96.8% precision, and
98.8% recall, demonstrating robust diagnostic capabilities.
Conclusion
This study introduces a robust deep learning framework for
COVID-19 diagnosis using chest X-ray and CT imaging,
emphasizing both high model performance and real-world
deployment feasibility. Leveraging imaging data from 19
countries across diverse age groups, genders, and COVID-19
variants, the study used comprehensive preprocessing,
undersampling, and data augmentation techniques to ensure
balanced and representative datasets. To ensure practical
deployment, models were optimized through quantization and
pruning, making them lightweight and suitable for web-based
diagnostic platforms via cloud APIs (Flask or RESTAPI with
TensorFlow Serving) and mobile apps using TensorFlow Lite
or ONNX for on-device diagnosis, which can be especially
valuable in low-resource and rural settings. The framework
further integrates Grad-CAM visualizations for explainabil-
ity, federated learning for privacy-preserving collaboration
across hospitals, and longitudinal monitoring for tracking

long COVID or reinfection cases. These features collectively
position the system as a clinically relevant, mutation-resilient,
and scalable solution for COVID-19 screening and triage in
modern health care environments. For future work, there is
an aim to extend this framework to multiclass classification,
distinguishing between lung pathologies such as tuberculosis,
AIDS, and COVID-19. This initiative will be pursued in
collaboration with clinicians to enhance diagnostic specificity
and clinical utility.
Future Work

Clinical Validation Across Institutions
There is an aim to collaborate with multiple hospitals
and diagnostic centers to externally validate the model on
institution-specific datasets. This will help assess the model’s
generalizability and robustness across different scanners,
protocols, and patient populations.

Integration With EHRs
Work is underway to integrate the diagnostic tool with
EHR systems for seamless access to patient history and
real-time imaging data, enabling context-aware predictions
and decision support.

Deployment on Web and Mobile Platforms
The final model is being optimized using techniques, such
as quantization and pruning, for deployment on edge devices
and cloud platforms. This will support real-time diagnosis via
a web interface and mobile app, particularly in resource-con-
strained or rural areas.

Regulatory Readiness and Clinical Trials
Documentation and performance benchmarks are being
prepared to pursue regulatory approval (Conformité Europé-
enne marking and Food and Drug Administration clearance).
A prospective clinical trial is also being designed to measure
diagnostic impact in a real-world setting.
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Extension to Long COVID and Follow-Up
Monitoring
There is a plan to adapt the system for longitudinal analysis,
enabling clinicians to track radiological changes over time,
which can be useful for monitoring long COVID progression
or reinfections.

Federated Learning for Privacy-Preserving AI
To support data privacy and multi-institutional collabora-
tion, an attempt will be made to explore federated learning
frameworks that allow model training on decentralized data
without sharing patient images.
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