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Abstract
Background: Remote patient monitoring systems face critical challenges in real-time vital sign analysis and secure data
transmission.
Objective: This study aimed to develop a novel architecture integrating deep learning with 5G networks for real-time vital
sign monitoring and prediction.
Methods: A hybrid convolutional neural network–long short-term memory model with attention mechanisms was optimized
for edge deployment using 5G ultrareliable low-latency communication. The system incorporated end-to-end encryption and
HIPAA (Health Insurance Portability and Accountability Act) compliance. Performance was evaluated over 3 months using
data from 1000 patients.
Results: The system demonstrated superior prediction accuracy and significantly reduced latency compared to existing
solutions. Performance remained stable under adverse network conditions and across diverse patient populations, supporting
thousands of concurrent monitoring sessions.
Conclusions: This framework addresses security, scalability, and robustness requirements for clinical implementation,
potentially improving patient outcomes through early detection of deteriorating conditions.
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Introduction
Background and Context
Remote patient monitoring (RPM) has emerged as a
transformative technology in health care delivery, enabling
continuous observation of patients outside traditional clinical
settings [1,2]. The global RPM market, valued at US $23.5
billion in 2020, is projected to reach US $117.1 billion by

2025, reflecting the growing demand for remote health care
solutions [2,3]. Current RPM systems typically collect vital
signs, chronic condition data, and lifestyle metrics through
wearable devices and sensors, transmitting this information
to health care providers via existing communication networks
[4,5].

However, traditional RPM systems face significant
challenges in data transmission, real-time processing, and
reliability. Existing networks often struggle with bandwidth
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limitations; high latency; and instability, particularly poor
connectivity [6,7]. These limitations can delay data trans-
mission, potentially compromising patient care in critical
situations in which immediate intervention is necessary [8,9].

The emergence of 5G technology presents a promising
solution to these challenges. With their enhanced capabilities,
including ultrareliable low-latency communication (URLLC),
massive machine-type communications, and enhanced mobile
broadband, 5G networks can potentially revolutionize RPM
[10,11]. 5G offers peak data rates of 20 Gbps, latency as low
as 1 ms, and the ability to connect up to 1 million devices per
square kilometer [12,13].

Despite technological advancements in RPM, current
systems face critical challenges in real-time vital sign
analysis and prediction. These limitations significantly impact
the quality and timeliness of patient care delivery. First,
existing vital sign monitoring systems struggle with real-time
data processing and analysis. Current networks experience
average latencies of 100 to 200 ms in data transmission,
making real-time vital sign analysis challenging [14,15].
This delay becomes critical when monitoring patients with
acute conditions for which immediate detection of vital sign
changes is essential. Studies indicate that a delay of even a
few seconds in vital sign updates can significantly impact
emergency clinical decision-making [16,17].

Second, current systems lack sophisticated predictive
capabilities for vital sign trends. Traditional monitoring
approaches focus on threshold-based alerting, often result-
ing in delayed responses to deteriorating patient conditions.
Research shows that up to 80% of critical events show subtle
vital sign changes up to 68 hours before the event, yet current

systems cannot effectively predict these trends in real time
[18,19].

Furthermore, the integration of vital sign monitoring
systems faces several technical challenges: (1) limited
bandwidth for continuous high-frequency vital sign data
transmission, (2) processing delays in analyzing multiple vital
signs simultaneously, (3) inconsistent data quality due to
network instability, and (4) resource constraints in real-time
data processing and analysis [20,21].

Additional concerns include security and privacy
protection of sensitive health data during transmission
and storage, particularly when implementing cloud-based
processing solutions. Health care data require stringent
security measures to comply with regulations such as HIPAA
(Health Insurance Portability and Accountability Act) and the
General Data Protection Regulation while maintaining system
performance and real-time processing capabilities.

The absence of efficient real-time vital sign analysis
and prediction capabilities and network limitations creates
a significant gap in RPM [22]. While 5G technology offers
promising solutions with its URLLC features, a crucial need
remains for specialized deep learning architectures that can
effectively leverage these capabilities for real-time vital sign
monitoring. An integrated approach to modern health care is
shown in Figure 1.

This research addresses these challenges by developing
an integrated solution that combines advanced deep learn-
ing models with 5G network capabilities, aiming to achieve
real-time vital sign analysis and prediction with minimal
latency and maximum reliability.

Figure 1. An integrated approach to the modern health care system.
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Literature Review

Deep Learning–Based Vital Sign Analysis
Systems
Several researchers have explored deep learning approaches
for vital sign analysis in remote monitoring. Asaad et al
[23] proposed a convolutional neural network (CNN)–long
short-term memory (LSTM) hybrid architecture for real-time
heart rate monitoring, achieving 94% prediction accuracy
with a 5-second forecasting window. Their system pro-
cessed real-time electrocardiogram signals but was limited by
network latency issues. Kumar et al [3] developed a mul-
tiparameter vital sign prediction system using an attention-
based LSTM network. Their model analyzed heart rate, blood
pressure, and respiratory rate simultaneously, achieving mean
absolute errors (MAEs) of 2.3%, 3.1%, and 2.8%, respec-
tively. However, their system required significant computa-
tional resources, making real-time processing challenging. Li
et al [24] implemented a lightweight CNN architecture for
continuous blood pressure monitoring, focusing on reducing
computational complexity while maintaining accuracy. Their
model achieved 91% accuracy with a processing delay of 200
ms, demonstrating the trade-off between model complexity
and real-time performance.

5G-Enabled Health Care Monitoring
Recent studies have explored the integration of 5G technol-
ogy into health care monitoring. Antevski et al [25] dem-
onstrated a 5G-enabled vital sign monitoring system using
network slicing to guarantee data transmission quality. Their
system achieved end-to-end latency of less than 1 ms for vital
sign data transmission. Jain et al [26] developed a 5G-based
framework for remote health monitoring, leveraging URLLC
features to enable real-time data transmission. Their system
showed a 98% reduction in transmission latency compared
to 4G networks, although they did not implement advanced
analytics.

Hybrid Systems Combining Deep Learning and
5G
Pham et al [9] proposed a hybrid system combining
deep learning analysis with 5G transmission for vital sign
monitoring. Their architecture used edge computing to
process vital signs before transmission, achieving real-time
performance with 95% accuracy in heart rate predic-
tion. Saleem et al [19] developed an integrated platform
using 5G networks and a lightweight neural network for
continuous vital sign monitoring. Their system demonstra-
ted end-to-end latency of 10 ms while maintaining 92%
prediction accuracy.

Methods
Ethical Considerations
Ethics approval was not required for this study as it involved
only analysis of existing deidentified clinical data from the
Medical Information Mart for Intensive Care–III (MIMIC-III)
database, which is publicly available for research purpo-
ses under a data use agreement. This approach aligns
with Western University’s research ethics policies, which
follow the Tri-Council Policy Statement: Ethical Conduct for
Research Involving Humans (2022), specifically Article 2.4
[27], which states that research ethics board review is not
required for research that relies exclusively on secondary use
of anonymous information so long as the process of data
linkage or recording or dissemination of results does not
generate identifiable information.
Proposed System Architecture

System Overview
The proposed system architecture presents an integrated
framework that combines deep learning–based vital sign
analysis with 5G network capabilities to enable real-time
monitoring and prediction, as shown in Figure 2. At its core,
the architecture uses a multilayered approach, seamlessly
connecting data collection, network transmission, process-
ing, analysis, and storage components through high-speed,
low-latency communication channels.

The data collection layer forms the system foundation,
incorporating advanced vital sign sensors to monitor patient
parameters continuously. These sensors operate at a high
sampling rate of 100 Hz to ensure precise data capture. The
data acquisition modules within this layer perform initial
signal validation and implement local buffering mechanisms
to prevent data loss during transmission. Connected to
the data collection layer is the 5G network infrastructure,
which serves as the critical communication backbone of the
system. This layer leverages URLLC capabilities, implement-
ing network slicing techniques to create dedicated channels
for health care data transmission. The network layer ensures
consistent quality of service (QoS) through prioritized data
handling and maintains the submillisecond latency essential
for real-time monitoring. The edge processing unit operates
as an intermediate layer, performing real-time data prepro-
cessing and feature extraction tasks. This component reduces
the computational burden on the central processing system
by handling initial data validation and transformation at
the network edge. The proximity to data collection points
minimizes latency and enables rapid preliminary analysis of
incoming vital sign data.
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Figure 2. System integration and deployment architecture. MEC: multiaccess edge computing.

Deep Learning Framework
The deep learning framework represents the analytical core of
the system, implementing a sophisticated hybrid architecture
that combines CNNs and LSTM networks. This framework
is designed to handle the temporal nature of vital sign data
while maintaining real-time processing capabilities. For a
given input sequence of vital signs, we define equation 1:

(1)X = x1, x2,…, xt
where each xt ∈ Rd represents multivariate vital signs at timet and d is the number of vital sign parameters.

The model architecture uses a hierarchical structure,
beginning with convolutional layers that extract relevant
features from the multivariate vital sign inputs. The CNN
feature extraction process is formulated as follows in equation
2:

(2)Z = CNN X = Conv2 ReLU Conv1 X
where Z ∈ Rd × t represents the extracted features andConv1, Conv2 represents successive convolutional operations.

These layers process the data through multiple filtering
and feature enhancement stages, using batch normalization to
maintain stable training dynamics. The batch normalization is
applied as follows in equation 3:

(3)x = γ x − μ βσ β2 + ϵ + β
where μ β  and σ β2  are the batch mean and variance and γ, β
are learnable parameters.

The temporal aspects of the vital sign data are addressed
by LSTM layers, which capture long-term dependencies and
patterns in the signal sequences. Equations 4 to 9 define
LSTM processing:

(4)ft = σ Wf ⋅ ℎt − 1, xt + bf
(5)it = σ Wi ⋅ ℎt − 1, xt + bi
(6)c t = tanℎ Wc ⋅ ℎt − 1, xt + bc
(7)ct = ft ∗ ct − 1 + it ∗ c t
(8)ot = σ Wo ⋅ ℎt − 1, xt + bo
(9)ℎt = ot ∗ tanℎ ct

where f, i, o represents the forget, input, and output gates,
respectively.

An attention mechanism is integrated into the architecture
to focus on the most relevant temporal patterns within the

JMIRx Med Batool

https://med.jmirx.org/2025/1/e70906 JMIRx Med 2025 | vol. 6 | e70906 | p. 4
(page number not for citation purposes)

https://med.jmirx.org/2025/1/e70906


vital sign data. The attention weights are computed using
equations 10 and 11:

(10)αt = softmax W⊤tanℎ Vℎt
(11)ct = ∑αiℎi

where αt represents attention weights and ct is the context
vector.

The final prediction layers synthesize the processed
information to generate accurate vital sign forecasts and trend
analyses, computed using equation 12:

(12)yt + 1 = Wout ct + b
where yt + 1 represents the predicted vital signs for the next
time step.

The model is trained using a custom loss function that
combines prediction accuracy with temporal consistency, as
shown in equation 13:

(13)L = MSE y, y + λ t yt − yt − 1 2
where λ is a weighting factor for temporal consistency.

5G Network Integration
Integrating 5G networking capabilities is crucial to the
system’s real-time performance. The network infrastructure is
configured using dedicated slicing mechanisms that guar-
antee resource allocation for vital sign data transmission.
This configuration ensures a consistent QoS with maximum
latency bounded at 1 ms and reliability exceeding 99.999%.
Figure 2 shows the system integration and deployment
architecture.

Network Slicing Configuration
The network slice for health care monitoring is defined
according to equation 14:

(14)S = R, C, L, B
which incorporates several critical parameters: reliability
requirements that ensure dependable service delivery,
computing resources that provide the necessary computational
capacity, latency bounds that specify maximum accepta-
ble delays, and bandwidth allocation that determines the
communication capacity reserved for health care applications.
The QoS requirements for the health care slice are subse-
quently formulated as detailed in equation 15:

(15)QoS S =
Reliability ≥ 99.999%,Latency ≤ 1ms,Bandwidth = 10Mbps,Jitter ≤ 0.1ms

Resource Allocation
The resource allocation for the health care slice is optimized
using the following equation:

(16)min∑i∑jPijxij
subject to

(17)∑jxij = 1, ∀i ∈ N
(18)∑ixijBi ≤ Cj, ∀j ∈ M

where Pij is the power consumption (watts) when patienti is assigned to server j; xij is the binary resource alloca-
tion variable (1 if patient i is assigned to server j; 0 oth-
erwise); N is the set of all patients requiring monitoring,N = 1, 2, . . . , n ; M is the set of available edge computing
servers, M = 1, 2, . . . , m ; Bi is the bandwidth requirement
of patient i (Mbps); and Cj is the computational capacity of
server j (operations per second).

The resource allocation optimization considers 4 critical
system parameters. Power consumption affects the overall
energy efficiency and operational costs of the monitoring
infrastructure. The binary allocation variable governs the
distribution of computational resources across the network,
ensuring that each patient is assigned to exactly 1 processing
server. The bandwidth requirements determine the communi-
cation overhead for transmitting vital sign data from each
patient, whereas the capacity constraints ensure that the
system operates within the feasible computational limits of
each edge server.

Constraint (equation 17) ensures that each patient is
assigned to exactly 1 server, preventing resource conflicts
and ensuring complete coverage. Constraint (equation 18)
guarantees that the total computational load assigned to any
server does not exceed its processing capacity, maintaining
system stability and response time requirements.

Latency Optimization
End-to-end latency is monitored and optimized using
equation 19:

(19)Le2e = Lu + Lt + Lp
where Le2e is the end-to-end latency, Lt is the transport
network latency, and Lp is processing latency.

Network optimization is achieved through priority packet
scheduling and redundant transmission paths. The system
maintains a dedicated bandwidth allocation of 10 Mbps for
vital sign data, ensuring uninterrupted data flow even during
peak network use. The packet scheduling priority is deter-
mined via equation 20:

(20)P i = wuUi + wrRi + wlLi
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where Ui is the urgency factor; Ri is the reliability require-
ment; Li is the latency requirement; and wu, wr, wl are the
corresponding weights.

Real-time latency monitoring and dynamic route optimiza-
tion further enhance the system’s reliability and performance
through continuous assessment, shown in equation 21:

(21)R t = 1 − Pe 1 − Pl 1 − Pu
where Pe is the packet error probability, Pl is the packet loss
probability, andPu is the system unavailability probability.

The packet scheduling priority weights in equation 20
were determined through simulation-based optimization using
the MIMIC-III clinical database. The optimization objective
was to minimize false alarms while maximizing critical
event detection accuracy across diverse patient scenarios,
formulated as a constrained optimization problem usingwu+wr + wl = 1.

The final optimized weights are as follows:
• wu=0.45 (urgency priority)
• wr=0.35 (reliability requirement)
• wl=0.20 (latency sensitivity)

Sensitivity analysis confirmed robust performance with
less than 2% accuracy degradation under –10% to +10%
weight variations. For different clinical contexts, weights
are adjusted as follows: intensive care unit (ICU) patients
use wu=0.60 for maximum urgency response, whereas home
monitoring emphasizes reliability with wr=0.50.

Data Processing Pipeline
The data processing pipeline implements a comprehensive
approach to handling vital sign data in real time. Initial
data collection occurs through high-precision sensors, with
immediate signal quality verification and validation. The
preprocessing stage applies sophisticated filtering techniques
to remove noise and artifacts from the raw signals while
preserving essential physiological information.

Signal normalization and segmentation are performed
using a sliding window approach, with windows of 500
samples and 100-sample stride lengths. This configuration
allows for continuous processing of incoming data while
maintaining temporal continuity. The preprocessing imple-
mentation includes adaptive filtering techniques that adjust
to varying signal qualities and patient conditions.

Parallel processing handles multiple vital sign parame-
ters simultaneously, enabling real-time analysis. The system
maintains synchronized processing of vital signs while
ensuring temporal alignment and correlation analysis. Results
from the study are immediately stored and transmitted to
health care providers, enabling rapid response to any detected
anomalies or concerning trends.

Implementation

Experimental Setup
The real-time vital sign monitoring system was implemen-
ted using a comprehensive experimental setup designed to
evaluate both the deep learning model performance and
system integration capabilities. The hardware infrastructure
consisted of an 11th-generation Intel Core i7-11700 processor
with 16 GB DDR4 RAM.

The software environment used PyTorch (version 1.12.0;
The Linux Foundation) for deep learning model development
complemented by NumPy and pandas for data preprocess-
ing and analysis. CUDA (version 11.6; NVIDIA) was used
for graphics processing unit acceleration, enabling efficient
parallel processing of vital sign data.
Baseline Comparison Systems
To evaluate our system’s performance, we compared it
against 3 established vital sign monitoring solutions currently
deployed in health care settings.

System A: ConventionalCare RPM Platform
System A represents a traditional cloud-based RPM solution
using 4G long-term evolution connectivity. The architecture
uses centralized cloud processing with rule-based threshold
alerting mechanisms. Vital sign data are transmitted from
patient sensors through 4G networks to cloud servers where
statistical analysis identifies values exceeding predefined
thresholds. The system operates across 15 hospitals serv-
ing 2500 concurrent patients, achieving 92.3% accuracy in
vital sign classification with average end-to-end latency of
45.2 ms. Processing relies on traditional statistical methods
without predictive capabilities. The threshold-based detection
mechanism operates as shown in equation 22:

(22)Alert = 1 if ∨ VS − VSbaseline ∨ θ0 otherwise
where VS represents current vital signs, VSbaseline is the
patient-specific baseline, and θ is the predefined threshold.

System B: EdgeMed Smart Monitoring
System B implements basic edge computing capabilities with
simplified machine learning models deployed at network
edges. The system uses hybrid Wi-Fi and cellular connec-
tivity, processing initial data locally before transmission
to central servers. Linear regression models perform trend
analysis as shown in equation 23:

(23)y = β0 + β1x1 + β2x2 +…+ βnxn
The platform serves 8 medical centers monitoring 1800
patients concurrently. The architecture achieves 90.8%
prediction accuracy with 67.8-ms average latency. While
offering improved response times compared to purely
cloud-based solutions, the system lacks sophisticated
temporal analysis capabilities.
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System C: NextGen 5G Health Platform
System C leverages 5G non–stand-alone networks with
limited network slicing capabilities. The platform implements
basic CNN models for vital sign analysis but lacks temporal
dependency modeling and advanced attention mechanisms.
Processing occurs through a cloud-edge hybrid architecture
without comprehensive optimization for health care–specific
requirements. The system serves 6 hospitals with 1200 active
patients, demonstrating 89.4% accuracy with 82.3-ms latency,
representing current 5G health care implementations without
specialized deep learning optimization.

Security Architecture and Data
Protection
Our system implements comprehensive security measures
to ensure patient data protection and regulatory compliance
throughout the monitoring pipeline.

Encryption and Data Transmission Security
End-to-end encryption uses Advanced Encryption Standard
256 encryption algorithms for all data transmission among
sensors, edge devices, and central servers. The 5G URLLC
slice implements additional security layers through network-
level encryption protocols. Digital certificates ensure device
authentication, whereas public key infrastructure manages
secure key distribution across the monitoring network.
Equation 24 formulates the encryption process:

(24)C = EAES − 256 K, P ⊕ IV
where C represents ciphertext, K is the encryption key, P
plain-text vital sign data, and IV  is the initialization vector.

Privacy-Preserving Techniques
Data minimization principles ensure that only essential vital
sign parameters are transmitted and stored. Local edge
processing conducts the initial analysis without requiring raw
sensor data transmission to cloud servers. Differential privacy
techniques add calibrated noise to aggregated statistics while
preserving individual patient privacy, as shown in equation
25:

(25)f` x = f x + Lap Δfϵ
where f` x  is the privacy-preserving function, Δf is the
global sensitivity, and ϵ is the privacy budget.

Regulatory Compliance Implementation
HIPAA compliance is achieved through comprehensive
access controls, audit logging, and data encryption both in
transit and at rest. Administrative safeguards include role-
based access control with multifactor authentication for health
care providers. General Data Protection Regulation compli-
ance for international deployment includes explicit consent
mechanisms, data portability features, and right-to-erasure
implementation.

Network Security Measures
5G network slicing creates isolated communication chan-
nels dedicated to health care data transmission. Intrusion
detection systems monitor network traffic for anomalous
patterns indicating potential security threats. Regular security
assessments and penetration testing validate system resilience
against evolving cybersecurity threats.

Network configuration used a 5G testbed environment
implementing Third Generation Partnership Project release
16 specifications. The testbed included a 5G New Radio base
station operating in the n78 band (3.5 GHz) with 100-MHz
bandwidth. Network slicing was implemented using the
OpenAirInterface platform, which was configured to maintain
URLLC requirements with dedicated QoS flows for vital sign
data transmission.

We used the MIMIC-III clinical database for sys-
tem development and validation, specifically focusing on
continuous vital sign recordings from ICU patients. The
dataset comprised recordings from 1000 patients, including
heart rate, blood pressure, and respiratory rate measure-
ments sampled at 100 Hz. The data were preprocessed to
remove artifacts and normalized using z score standardiza-
tion.
Model Development
The development of the deep learning model followed
a structured approach to ensure optimal performance in
real-time vital sign analysis. The training process used an
iterative methodology implementing a hybrid CNN-LSTM
architecture trained on sliding windows of vital sign data. The
training was conducted using mini batch stochastic gradi-
ent descent with a batch size of 32, optimized to balance
computational efficiency and model convergence. The Adam
optimizer was used with an initial learning rate of 0.001,
implementing a cosine annealing schedule for learning rate
decay.

Hyperparameter optimization was conducted using
Bayesian optimization with the Optuna framework (Preferred
Networks, Inc), exploring key parameters including network
depth, filter sizes, and LSTM hidden dimensions. The
optimization of 100 configurations used a 5-fold cross-valida-
tion approach to ensure robust parameter selection. Critical
hyperparameters identified through this process included a
2-layer LSTM with 256 hidden units and a 4-head attention
mechanism for temporal feature extraction.

The validation methodology implemented a rigorous
3-stage process: cross-validation during training, independ-
ent validation on a held-out dataset, and real-time perform-
ance validation using streaming data. Performance metrics
focused on prediction accuracy and computational efficiency,
including MAE, root mean square error, and inference
latency. The model achieved an MAE of 2.1% for vital sign
prediction while maintaining an inference time below 10 ms.
The deep learning model development for vital sign analysis
is shown in Figure 3. The hyperparameter algorithm is shown
in algorithm 1 in Textbox 1.
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Figure 3. Deep learning model development for vital sign analysis. LSTM: long short-term memory.

Attention

Textbox 1. Hyperparameter optimization and model training.
Input: training dataset D, validation dataset V, and hyperparameter space H
Output: optimized model parameters θ
1. Initialize Optuna study S
2. for i=1 to 100 do ▷ Hyperparameter optimization
3. h ← S.suggest_hyperparameters()
4. Initialize model M with hyperparameters h, Adam optimizer (lr=0.001)
5. for epoch=1 to max_epochs do
6. for each batch b in D do
7. out ← OutputLayer(Attention(LSTM(CNN(b))))
8. L=MSE(out, targets) + λ · temporal_consistency
9. θ ← θ − α∇L ▷ Adam update
10. end for
11. Apply cosine annealing: lr=lr_min+0.5(lr_max − lr_min)(1+ cos(πt/T))
12. end for
13. Validate on V; apply early stopping if criteria met
14. Record validation performance in S
15. end for
16. return Final model M* with best hyperparameters from S

System Integration
System integration followed a systematic approach to ensure
the seamless operation of all components. The integration
process began with individual component testing followed
by incremental integration of connected components. Edge
processing units were integrated first, establishing the
data preprocessing pipeline and validating signal quality
assessment algorithms. The deep learning model was then
deployed on the edge devices and carefully optimized for
model quantization to maintain real-time performance while
reducing computational requirements.

Testing procedures were implemented at multiple levels
beginning with unit tests for individual components and

progressing to integrated system testing. Performance stress
tests evaluated system behavior under various load condi-
tions, including simultaneous monitoring of multiple patients
and network congestion scenarios. End-to-end latency tests
confirmed the system’s ability to maintain subsecond
response times under operational conditions. Security testing
verified the encryption and data protection measures, ensuring
compliance with health care data regulations.

The deployment strategy used a phased approach,
beginning with a pilot deployment in a controlled clin-
ical environment. Docker containers packaged all sys-
tem components, ensuring consistent deployment across
different infrastructure environments. Kubernetes (Cloud
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Native Computing Foundation) orchestration managed system
components’ scaling and load balancing, with automated
failover mechanisms ensuring system reliability. Monitoring
tools including Prometheus and Grafana (Grafana Labs)
were implemented to track system performance and resource

use in real time. Deployment included automated rollback
procedures and version control to maintain system stability
during updates. The system integration algorithm is shown in
algorithm 2 in Textbox 2.

Textbox 2. System and edge device integration.
Input: system components C = {c₁, …, cn}; edge devices E = {e₁, …, em}
Output: Integrated system S

1. for each ci in C do
2. Validate(ci), UnitTest(ci); LogError and Rectify if failed
3. end for
4. for each ej in E do ▷ Edge integration
5. DeployPreprocessing(ej), ValidateSignalQuality(ej)
6. OptimizeModel(ej) with quantization: int8, O3, 10ms latency
7. end for
8. for each level in [unit, component, system] do ▷ Integration testing
9. RunTests(level), MeasurePerformance(), ValidateLatency()

10. end for

Results
Performance Evaluation
Our comprehensive evaluation of the real-time vital sign
monitoring system encompassed multiple performance
dimensions, including model accuracy, system latency,
resource use, and scalability testing. The evaluation was
conducted over 3 months using data collected from 1000
patients in intensive care settings, representing diverse
medical conditions and demographic groups.

Model Accuracy Metrics
The CNN-LSTM model’s performance was evaluated across
numerous vital sign parameters, demonstrating exceptional
accuracy in real-time prediction and analysis. For heart rate

monitoring, the model achieved an MAE of 1.82%, nota-
bly outperforming traditional threshold-based systems. Blood
pressure predictions showed strong accuracy with an MAE of
2.14%, whereas respiratory rate monitoring achieved an MAE
of 1.95%. These results indicate robust performance across all
monitored vital signs.

Figure 4 illustrates the system’s performance timeline
over a 20-hour monitoring period, demonstrating consistent
accuracy and latency. The model demonstrated remarka-
ble stability in prediction accuracy across different patient
conditions. Table 1 shows detailed performance analysis.

The model achieved 96.5% accuracy in critical care
patients, 95.8% accuracy in postoperative monitoring, and
97.2% accuracy in general ward patients.

Figure 4. Performance timeline.
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Table 1. Detailed model performance metrics for different vital signs.
Vital sign MAEa (%) RMSEb (%) R2 F1-score
Heart rate 1.82 2.31 0.956 0.945
Blood pressure 2.14 2.76 0.942 0.932
Respiratory rate 1.95 2.48 0.938 0.928

aMAE: mean absolute error.
bRMSE: root mean square error of approximation.

Resource Use Analysis
Table 2 presents comprehensive resource use metrics
demonstrating the system’s efficient resource management
during operational periods. The analysis reveals optimal
performance across all system components while maintain-
ing substantial operational headroom. Central processing unit
use averaged 45% during normal operations, with peak

use reaching 72% during intensive processing periods, well
below the 85% threshold limit. This demonstrates efficient
parallel processing implementation and adequate computa-
tional capacity for concurrent patient monitoring. The central
processing unit efficiency score of 0.92 indicates optimal
resource allocation with minimal computational waste.

Table 2. Resource use, thresholds, and efficiency scores for the system components.
Resource Use, mean (SD) Peak use Threshold Efficiency score
CPUa (%) 45 (5.2) 72 85 0.92

GPUb (%) 38 (4.1) 65 80 0.95

Memory (%) 52 (6.3) 78 90 0.89
Network (Mbps) 6.2 (1.0) 8.8 10 0.94

aCPU: central processing unit.
bGPU: graphics processing unit.

Graphics processing unit resources showed excellent use
patterns, averaging 38% with peak use of 65% against
the 80% threshold. The 95% efficiency score reflects the
optimized deep learning model implementation and effec-
tive CUDA use for parallel neural network inference.
This performance ensures consistent real-time processing
capabilities even during peak monitoring periods.

Memory use remained at an average of 52% with
peaks at 78%, remaining safely below the 90% threshold.
The 89% efficiency score demonstrates effective memory
management through optimized data structures and gar-
bage collection strategies. This memory profile supports
simultaneous monitoring of multiple patients without
performance degradation.

Network use averaged 6.2 Mbps, with peaks at 8.8
Mbps within the allocated 10 Mbps bandwidth slice. The
94% efficiency score indicates optimal data compression
and transmission protocols, ensuring reliable vital sign data
delivery while maintaining substantial bandwidth reserves for
emergency situations or increased patient loads. The model
achieved solid performance in heart rate prediction, with an
MAE of 1.82%. The prediction accuracy remained stable
across patient conditions and monitoring durations, demon-
strating the model’s robustness. Figure 5 illustrates resource
use.
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Figure 5. Resource use. CPU: central processing unit; GPU: graphics processing unit.

System Latency Analysis
End-to-end system latency was thoroughly analyzed under
various operational conditions. The system consistently
maintained low-latency performance, which is crucial for
real-time monitoring applications. Latency measurements
were collected at different times of the day and under
varying network loads to ensure a comprehensive evaluation.
Table 3 shows the system latency breakdown, whereas

Figure 6 shows the latency analysis. The results demonstrate
that network transmission achieved submillisecond perform-
ance through 5G URLLC implementation, edge processing
successfully reduced central processing overhead, model
inference maintained stability across varying load conditions,
and the overall pipeline latency remained within the stringent
requirements necessary for clinical applications.

Table 3. Detailed system latency analysis.
Latency (ms), mean (SD) Peak latency (ms)

Data collection 2.3 (0.4) 3.1
Network transmission 0.8 (0.2) 1.2
Edge processing 4.2 (0.6) 5.7
Model inference 7.1 (0.8) 8.9
Total pipeline 14.4 (1.2) 18.9
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Figure 6. Latency analysis.

Network Robustness and Reliability
Assessment
Comprehensive robustness testing evaluated system
performance under various adverse network conditions to
ensure clinical reliability.

Network Congestion Performance
Testing under simulated network congestion conditions
revealed graceful performance degradation. At 50% network
capacity, the system maintained 96.1% prediction accu-
racy with 18.2-ms average latency. Under 75% congestion,
accuracy dropped to 95.3% with 24.6-ms latency. At 90%
network capacity, the system maintained 94.7% accuracy
with 31.2-ms latency while implementing priority-based data
transmission for patients in critical condition.

Packet Loss Tolerance
The system demonstrated robust performance under packet
loss conditions through intelligent retransmission and data
interpolation mechanisms. With 1% packet loss, prediction
accuracy remained at 96.2% with minimal latency impact. At
5% packet loss, accuracy dropped to 94.8% while maintain-
ing real-time performance through predictive data reconstruc-
tion. Under severe 10% packet loss conditions, the system
maintained 92.1% accuracy by prioritizing critical vital sign
parameters and implementing emergency alerting protocols.

Coverage Fluctuation Adaptation
5G coverage variations were managed through automatic
fallback mechanisms to 4G networks with adjusted QoS
parameters. During coverage transitions, the system main-
tained monitoring continuity with temporary accuracy
reduction (93.5%) and increased latency (45 ms) until optimal
connectivity was restored. Seamless handover protocols
ensured no data loss during network transitions.

Resource use was monitored continuously during system
operation, with particular attention to peak use periods. The
system demonstrated efficient resource management while
maintaining performance standards. Figure 5 shows the
resource use.

System Scalability and Performance Analysis
The system’s scalability was evaluated through progressive
load testing with patient populations ranging from 100 to
5000 concurrent monitoring sessions. Performance metrics
demonstrated linear scalability up to 2000 patients, with
graceful degradation beyond this threshold.

Computational Scalability
Resource use increased linearly with patient load up to
2000 concurrent sessions, maintaining prediction accuracy
above 95%. Beyond this threshold, the system implemented
intelligent load balancing and priority queuing to maintain
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monitoring of patients in critical condition while temporarily
reducing update frequencies for stable patients. Edge device
clustering enabled horizontal scaling, with each edge node
supporting up to 50 concurrent patients while maintaining
sub–15-ms inference latency. The scalability relationship is
modeled as follows:

(26)Latency n = L0 + α ⋅ n + β ⋅ n2
where n is the number of concurrent patients, L0 is the
baseline latency (14.4 ms), and α and β are scaling
coefficients determined empirically as α = 0.002 ms andβ = 1.2 × 10−6 ms.

Network Scalability
5G network slicing dynamically allocated bandwidth based
on patient priority levels and clinical acuity. The sys-
tem supports up to 1000 high-priority patients (ICU or
critical care) and 4000 standard-priority patients (general
ward monitoring) simultaneously. Adaptive compression
algorithms reduced bandwidth requirements by up to 60%
during peak use periods while preserving clinical data
integrity.

Storage and Data Management Scalability
Distributed storage architecture supported petabyte-scale data
retention with automatic tiering based on data age and clinical
relevance. Real-time data processing maintained 14.4-ms
average latency regardless of historical data volume through
efficient indexing and caching strategies.

Comparative Analysis

Benchmark Comparison
Our system was benchmarked against the 3 base-
line systems described in the Implementation section.
The comparative analysis focused on key performance
indicators crucial for real-time patient monitoring. Table 4
presents a comprehensive system comparison with existing
solutions. The benchmarking results reveal substantial
performance advantages across multiple dimensions: a
remarkable 47% reduction in end-to-end latency compared
to system A ensures faster response times critical for
emergency scenarios, a 4.2% improvement in prediction
accuracy over the next best system enhances diagnostic
reliability, and 20% higher resource efficiency than that of
competing solutions demonstrates superior optimization of
system resources.

Table 4. Comprehensive comparison of system performance metrics.
Performance metric Proposed system System A System B System C
Prediction accuracy (%) 96.5 92.3 90.8 89.4
End-to-end latency (ms) 14.4 45.2 67.8 82.3
Resource efficiency (%) 78.5 65.2 61.4 58.9
Scalability score 0.92 0.78 0.71 0.65
Cost-efficiency 0.88 0.72 0.68 0.63

Statistical Analysis
Statistical significance testing was conducted using paired
1-tailed t tests to validate the performance improvements.
Table 5 shows the statistical significance analysis. The
rigorous statistical evaluation confirms that the observed

performance improvements were statistically significant
across all metrics (P<.05), with large effect sizes that
demonstrate not only statistical but also practical significance
of these improvements.

Table 5. Statistical comparison of the proposed system with other systems.
Comparison t test (df) P value Effect size Significance
Versus system A 8.45 (999) .001 0.82 Yes
Versus system B 12.32 (999) .001 0.95 Yes
Versus system C 15.67 (999) .001 1.12 Yes

The analysis further reveals that these performance advan-
tages remained consistent across different operational
scenarios, indicating system reliability under varying
deployment conditions, and the system maintained robust
performance across diverse patient populations, confirming
its generalizability and clinical utility. These results dem-
onstrate that our proposed system significantly improved
technical performance and clinical utility, providing a reliable
real-time vital sign monitoring platform in health care
settings.

Discussion
Technical Achievements and Clinical
Impact
The experimental results demonstrate significant advance-
ments in real-time vital sign monitoring through the integra-
tion of deep learning and 5G technologies. The achieved
prediction accuracy across various vital signs, combined
with subsecond end-to-end latency, represents a substantial
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improvement over existing systems. These performance
metrics are particularly noteworthy given the complexity of
real-time health care monitoring applications and the stringent
requirements for clinical deployment.

The hybrid CNN-LSTM architecture with attention
mechanisms successfully addresses the temporal dependen-
cies inherent in vital sign data while maintaining com-
putational efficiency suitable for edge deployment. The
integration of 5G URLLC capabilities provides the necessary
network infrastructure to support real-time data transmission
with guaranteed QoS, addressing a critical limitation of
existing RPM systems.

Despite these achievements, several limitations warrant
discussion. The system’s performance has been valida-
ted primarily in controlled clinical environments with
stable network conditions. Real-world deployment may
face additional challenges, such as varying electromagnetic
interference in hospital environments, diverse patient mobility
patterns, and integration with existing hospital information
systems. Furthermore, while the system demonstrates robust
performance under simulated adverse conditions, long-term
reliability studies spanning multiple years would provide
additional validation for widespread clinical adoption.

The resource requirements, while optimized through edge
computing and model quantization techniques, may present
implementation challenges in resource-constrained health
care settings or low- and middle-income regions where
advanced 5G infrastructure is not yet available. The sys-
tem’s dependency on 5G networks also limits its immediate
applicability to areas with limited 5G coverage, although the
implemented fallback mechanisms to 4G networks provide
some mitigation.
Security and Privacy Considerations
The comprehensive security implementation addresses critical
concerns regarding health care data protection through
multiple layers of protection including end-to-end encryp-
tion, secure key management, and regulatory compliance
mechanisms. The differential privacy techniques ensure
patient anonymity in aggregated analytics while maintain-
ing data utility for clinical insights. However, the evolv-
ing landscape of cybersecurity threats requires continuous
security updates and monitoring to maintain protection
against emerging attack vectors.

The balance between security measures and system
performance represents an ongoing challenge. While current
encryption implementations maintain real-time performance
requirements, future enhancements such as homomorphic

encryption for privacy-preserving analytics may introduce
additional computational overhead that requires careful
optimization.
Scalability and Deployment
Considerations
The demonstrated scalability up to thousands of concur-
rent patients provides confidence for large-scale deployment
across hospital networks and health care systems. The linear
scaling characteristics up to the tested threshold, combined
with graceful degradation mechanisms, ensure maintained
service quality during peak demand periods. However,
scaling beyond current tested limits would require additional
infrastructure investment and may necessitate distributed
deployment architectures.

The practical implications of this research extend beyond
technical achievements. The system’s ability to provide
real-time vital sign prediction with high accuracy has
significant potential to improve patient care, particularly in
intensive care settings where early detection of deteriorating
conditions is crucial. The reduced latency enables health
care providers to respond more rapidly to critical changes
in patient status, potentially improving clinical outcomes and
reducing adverse events.
Conclusions and Future Work
This research successfully demonstrates a real-time vital
sign monitoring system integrating deep learning with
5G networks. The hybrid CNN-LSTM architecture with
attention mechanisms achieved superior prediction accuracy
while maintaining subsecond latency through optimized edge
deployment and 5G URLLC integration.

Key contributions include comprehensive security
implementation with end-to-end encryption and regulatory
compliance, demonstrated scalability supporting thousands of
concurrent patients, and robust performance under adverse
network conditions. The system establishes new benchmarks
for real-time patient monitoring, enabling proactive med-
ical intervention through early detection of deteriorating
conditions.

Future research directions include integration of multimo-
dal physiological data; development of adaptive, patient-spe-
cific learning mechanisms; and investigation of federated
learning approaches for privacy-preserving model improve-
ment across health care facilities. Extension to home-based
monitoring and integration with existing hospital information
systems represent practical next steps for widespread clinical
deployment.
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