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Abstract
Background: The increasing integration of artificial intelligence (AI) systems into critical societal sectors has created an
urgent demand for robust privacy-preserving methods. Traditional approaches such as differential privacy and homomorphic
encryption often struggle to maintain an effective balance between protecting sensitive information and preserving data utility
for AI applications. This challenge has become particularly acute as organizations must comply with evolving AI governance
frameworks while maintaining the effectiveness of their AI systems.
Objective: This paper aims to introduce and validate data obfuscation through latent space projection (LSP), a novel privacy-
preserving technique designed to enhance AI governance and ensure responsible AI compliance. The primary goal is to
develop a method that can effectively protect sensitive data while maintaining essential features necessary for AI model
training and inference, thereby addressing the limitations of existing privacy-preserving approaches.
Methods: We developed LSP using a combination of advanced machine learning techniques, specifically leveraging
autoencoder architectures and adversarial training. The method projects sensitive data into a lower-dimensional latent space,
where it separates sensitive from nonsensitive information. This separation enables precise control over privacy-utility
trade-offs. We validated LSP through comprehensive experiments on benchmark datasets and implemented 2 real-world case
studies: a health care application focusing on cancer diagnosis and a financial services application analyzing fraud detection.
Results: LSP demonstrated superior performance across multiple evaluation metrics. In image classification tasks, the
method achieved 98.7% accuracy while maintaining strong privacy protection, providing 97.3% effectiveness against sensitive
attribute inference attacks. This performance significantly exceeded that of traditional anonymization and privacy-preserving
methods. The real-world case studies further validated LSP’s effectiveness, showing robust performance in both health care
and financial applications. Additionally, LSP demonstrated strong alignment with global AI governance frameworks, including
the General Data Protection Regulation, the California Consumer Privacy Act, and the Health Insurance Portability and
Accountability Act.
Conclusions: LSP represents a significant advancement in privacy-preserving AI, offering a promising approach to develop-
ing AI systems that respect individual privacy while delivering valuable insights. By embedding privacy protection directly
within the machine learning pipeline, LSP contributes to key principles of fairness, transparency, and accountability. Future
research directions include developing theoretical privacy guarantees, exploring integration with federated learning systems,
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and enhancing latent space interpretability. These developments position LSP as a crucial tool for advancing ethical AI
practices and ensuring responsible technology deployment in privacy-sensitive domains.

JMIRx Med 2025;6:e70100; doi: 10.2196/70100
Keywords: privacy-preserving AI; latent space projection; data obfuscation; AI governance; machine learning privacy;
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imaging privacy; secure data sharing; artificial intelligence; General Data Protection Regulation; Health Insurance Portability
and Accountability Act

Introduction
Background
The rapid advancement and widespread adoption of arti-
ficial intelligence (AI) across critical sectors of society
have ushered in an era of unprecedented data analysis and
decision-making capabilities. From health care diagnostics to
financial fraud detection, AI systems are processing increas-
ingly large volumes of sensitive personal data. However, this
progress has been accompanied by growing concerns about
privacy, data protection, and the potential misuse of personal
information.

The tension between leveraging data for AI advance-
ments and protecting individual privacy has become a
central challenge in the field of AI governance. Traditional
approaches to data privacy, such as anonymization and
differential privacy, often struggle to balance the trade-off
between privacy protection and data utility. As AI sys-
tems become more sophisticated, there is an urgent need
for novel privacy-preserving techniques that can protect
sensitive information without significantly compromising the
performance of AI models.

In this research, we introduce data obfuscation through
latent space projection (LSP), a novel privacy-preserv-
ing technique designed to address these challenges. LSP
leverages recent advancements in representation learning
and adversarial training to create a privacy-preserving data
transformation pipeline. By projecting raw data into a latent
space and then reconstructing it with carefully controlled
information loss, we aim to obfuscate sensitive attributes
while preserving the overall structure and relationships within
the data that are crucial for AI model performance.

This research makes several significant contributions to
the field of privacy-preserving machine learning. At the
core of this work, we develop and present a comprehensive
latent space projection framework, providing detailed insights
into its theoretical underpinnings, architectural design, and
practical implementation considerations. We advance the
field’s measurement capabilities by introducing innovative
metrics specifically designed to evaluate the critical bal-
ance between privacy protection and data utility in latent
space representations. Through rigorous experimentation
on established benchmark datasets, we demonstrate that
LSP consistently outperforms traditional privacy-preserving
approaches across multiple performance dimensions.

To bridge the gap between theory and practice, we
showcase LSP’s real-world effectiveness through 2 critical

case studies in highly sensitive domains: cancer diagnosis
and financial fraud detection. Understanding the practical
constraints of deployment, we conduct thorough analyses
of LSP’s operational characteristics, including latency and
computational resource requirements. Finally, we explore
the broader implications of our work, examining how LSP
contributes to the responsible development of AI systems
and aligns with emerging global AI governance frameworks,
providing a foundation for future privacy-preserving AI
applications.
The Privacy Challenge in AI
The exponential growth of data and the increasing sophisti-
cation of AI models have led to significant advancements
in various fields. However, this progress has also raised
critical privacy concerns [1]. AI models, particularly deep
learning architectures, often require vast amounts of data
to achieve high performance. This data frequently contains
sensitive personal information, ranging from medical records
to financial transactions.

The potential for privacy breaches in AI systems is
multifaceted and detailed in the following sections.
Data Breaches
Large datasets used for AI training are attractive targets for
cyberattacks, potentially exposing the sensitive information of
millions of individuals[2,3].
Model Inversion Attacks
Sophisticated attacks can potentially reconstruct training
data from model parameters, compromising the privacy of
individuals in the training set [4].
Membership Inference
These attacks aim to determine whether a particular data point
was used in training a model, which can reveal sensitive
information about individuals [5].
Attribute Inference
Even when direct identifiers are removed, AI models
may inadvertently learn and expose sensitive attributes of
individuals in their training data [6].
Unintended Memorization
Neural networks have been shown to sometimes memo-
rize specific data points from their training set, potentially
exposing sensitive information during inference [7].
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These privacy risks are not merely theoretical. High-pro-
file incidents of privacy breaches and misuse of personal data
have eroded public trust in AI systems and raised regulatory
scrutiny. Consequently, there is an urgent need for robust
privacy-preserving techniques that can mitigate these risks
while allowing AI to deliver its potential benefits to society.
Existing Privacy-Preserving Techniques
Several approaches have been developed to address privacy
concerns in AI.

K-Anonymity
Introduced by Sweeney [8], k-anonymity ensures that each
record in a dataset is indistinguishable from at least k-1
other records with respect to certain identifying attributes.
Although effective for simple datasets, k-anonymity struggles
with high-dimensional data common in modern AI applica-
tions.

Differential Privacy
Developed by Dwork et al [9], differential privacy provides
a formal framework for quantifying and limiting the privacy
risk of statistical queries on datasets. It has been successfully
applied to various machine learning algorithms [10,11] but
often introduces a significant trade-off between privacy and
model utility.

Homomorphic Encryption
This technique allows computations to be performed on
encrypted data without decryption [12]. Although providing
strong privacy guarantees, homomorphic encryption incurs
substantial computational overhead, making it impractical for
many real-time AI applications.

Federated Learning
Proposed by McMahan et al [13], federated learning allows
models to be trained on decentralized data without directly
sharing raw information. However, it can still be vulnerable
to certain types of privacy attacks and faces challenges in
scenarios requiring centralized data analysis.

Synthetic Data Generation
Techniques like differentially private generative adversarial
networks (GANs) [14] aim to generate synthetic datasets
that preserve statistical properties of the original data while
providing privacy guarantees. However, these methods often
struggle to capture complex relationships present in real-
world data.

Although each of these approaches has its merits, they
all face limitations when applied to the complex, high-
dimensional datasets typical in modern AI applications.
Many struggle to provide strong privacy guarantees with-
out significantly degrading model performance or incurring
prohibitive computational costs.

The Promise of Latent Space
Approaches
Recent advancements in representation learning, particularly
in the field of deep learning, have opened new avenues for
privacy-preserving data analysis [15]. Latent space models,
such as autoencoders and variational autoencoders [16], have
demonstrated a remarkable ability to learn compact, abstract
representations of complex data.

Latency Characteristics
LSP’s latency profile can be broken down into three main
components: (1) encoding latency (the time taken to project
input data into the latent space), (2) processing latency (the
time required to perform operations, eg, machine learning
tasks, in the latent space), and (3) decoding latency (the time
needed to reconstruct data from the latent space, if required).
Performance Optimization
Characteristics
These latent representations offer several potential
advantages for privacy-preserving AI. Several optimiza-
tions contribute to LSP’s improved latency and overall
performance:

1. Dimensionality reduction: By projecting data into
a lower-dimensional latent space, LSP reduces the
computational complexity of subsequent operations,
so irrelevant or sensitive features can be naturally
obscured. This is particularly beneficial for high-dimen-
sional data like images or complex time series.

2. Parallel processing: The encoder and decoder networks
in LSP can leverage the parallel processing capabili-
ties of modern GPUs, significantly speeding up the
projection and reconstruction processes.

3. Caching mechanisms: For scenarios where the same
data are processed multiple times, LSP implementations
can cache latent representations, eliminating the need
for repeated encoding.

4. Model compression: Techniques such as pruning and
quantization can be applied to the LSP networks,
reducing their size, and improving inference speed
without significantly impacting privacy or utility.

5. Adaptive computation: LSP can be implemented with
adaptive computation techniques, where the depth or
width of the network is dynamically adjusted based
on the complexity of the input, further optimizing
performance.

6. Disentanglement: Advanced techniques in representa-
tion learning aim to disentangle different factors of
variation in the data, potentially allowing for selective
obfuscation of sensitive attributes.

7. Nonlinear transformations: The complex, nonlinear
mappings learned by deep neural networks can
potentially create representations that are difficult to
invert without knowledge of the encoding process.

8. Compatibility with deep learning: Latent space
approaches integrate naturally with deep learning
architectures, allowing for end-to-end privacy-preserv-
ing AI pipelines.
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Building on these insights, our proposed LSP technique aims
to leverage the power of latent space representations to create
a robust, flexible framework for privacy-preserving AI. By
combining ideas from representation learning, adversarial
training, and information theory, LSP seeks to overcome
the limitations of existing approaches and provide a more
effective solution to the privacy challenges in modern AI
systems.
Related Work
Privacy-preserving techniques in AI have garnered signifi-
cant attention, particularly as regulations such as the General
Data Protection Regulation (GDPR) and California Consumer
Privacy Act (CCPA) come into force. Existing methods
provide foundational solutions but have limitations when
applied to large-scale data systems.

Differential Privacy
Differential privacy, introduced by Dwork et al [17], is a
method that adds calibrated noise to datasets or model outputs
to obscure individual data points while preserving the overall
distribution. Despite its utility, differential privacy often
introduces trade-offs between privacy and model accuracy,
particularly when applied to complex, high-dimensional data
[18].

Homomorphic Encryption
Homomorphic encryption allows computations to be
performed on encrypted data without decrypting it [12].
Although this approach is highly secure, its computational
overhead makes it impractical for large-scale machine
learning models that require real-time processing or high-vol-
ume datasets [19].

Federated Learning
Federated learning, proposed by McMahan et al [13], ensures
that raw data remains decentralized, with models trained on
local devices instead of centralized servers. However, this
technique is not immune to privacy risks, as model gradients
or weights exchanged between devices can still leak sensitive
information [20,21].

Generative Models for Privacy
Recent work has explored the use of generative models, such
as GANs, for creating synthetic data that preserves privacy
[22]. Although promising, these approaches often struggle
with mode collapse and may not fully capture the complexity
of real-world data distributions.

LSP builds upon these existing approaches while
addressing their limitations. By learning privacy-preserving
latent representations, LSP aims to provide a more flexible
and efficient solution for data obfuscation that can be applied
across various domains and AI tasks.

Methods
Data Obfuscation Through LSP
In this section, we present the details of our LSP frame-
work for privacy-preserving data obfuscation. We begin by
outlining the key principles behind LSP, then describe the
network architecture and training procedure.
Principles of LSP
The core idea behind LSP is to transform raw data into
a latent space where sensitive information is obscured, yet
essential features for downstream AI tasks are retained. This
is achieved through the following key principles.

• Feature preservation: The latent representation should
maintain sufficient information for relevant AI tasks,
ensuring high utility of the obfuscated data.

• Adversarial privacy: We employ adversarial training to
make it difficult for an attacker to recover sensitive
information from the latent representation.

• Task-agnostic design: The LSP framework is designed
to be adaptable to various data types and downstream
tasks without requiring significant modifications.

Network Architecture
Figure 1 depicts the flow of data through the LSP framework.
The input data x is first passed through the encoder network
E, which projects it into a latent space representation z.
This latent representation is then processed by the decoder
network D to reconstruct the input, producing x’. Simultane-
ously, the privacy discriminator P attempts to extract sensitive
information s from the latent representation z. The frame-
work is trained adversarial to optimize the trade-off between
reconstruction accuracy and privacy protection.

The LSP framework consists of three main components: an
encoder network, a decoder network, and a privacy discrim-
inator. These components work together to create privacy-
preserving latent representations of the input data. Figure 1
illustrates the overall architecture of the LSP framework.
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Figure 1. Latent space projection system architecture (network diagram).

Encoder Network
The encoder network E (X → Z) maps the input data x ∈ X
to a latent representation z ∈ Z. We implement E as a deep
neural network with an architecture tailored to the specific
data type.

For image data, the encoder architecture uses a progres-
sive series of convolutional layers with expanding filter
sizes, beginning at 32 and scaling up through 64, 128,
and 256 filters. Each convolutional operation is augmen-
ted by batch normalization and leaky rectified linear unit
(ReLU) activation functions to improve training stability
and introduce nonlinearity. The network incorporates strided
convolutions or max pooling operations strategically placed
throughout the architecture to achieve spatial downsampling
of the feature maps. The encoding process culminates in fully
connected layers that compress the processed features into the
final latent representation, effectively capturing the essential
characteristics of the input data in a lower-dimensional space.

For text data, the text encoder’s architecture begins with
an embedding layer that transforms input tokens into dense
vector representations. At its core, the model utilizes a
transformer encoder equipped with multihead self-attention
layers to capture complex relationships between tokens in the
input sequence. The architecture incorporates layer normali-
zation and residual connections between transformer blocks
to facilitate stable training and effective gradient flow.
The encoding process concludes with a pooling operation,
specifically mean pooling, followed by fully connected layers
that produce the final encoded representation of the text input.

The latent space Z is structured as Z=Z_s ⊕ Z_ns, where
Z_s represents the subspace for sensitive information and
Z_ns for nonsensitive information. This separation is enforced
through the loss functions and architecture design, which we
will discuss in detail in the training procedure section.
Decoder Network
The decoder network D (Z → X’) reconstructs the input data
from the latent representation. Its architecture mirrors that of
the encoder.

For image data, the decoder architecture begins with
fully connected layers that transform the latent space
representation back into a spatial format, setting the founda-
tion for image reconstruction. This is followed by a cas-
cade of transposed convolutional layers with progressively
decreasing filter sizes, systematically expanding the spatial
dimensions while refining feature details. Each transposed
convolutional layer incorporates batch normalization and
ReLU activation functions to maintain training stability
and introduce necessary nonlinearities. The network uses
upsampling operations, utilizing either nearest-neighbor or
bilinear interpolation techniques, to gradually restore the
spatial resolution of the features. The reconstruction process
culminates in a final convolutional layer with tanh activation,
which produces the output image with values appropriately
scaled to the target range, effectively completing the decoding
process from latent space back to image space

For text data, the text decoder’s architecture initiates
with fully connected layers that transform the latent space
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representation into a sequence format suitable for text
generation. At its heart, the model uses a transformer
decoder equipped with multihead attention layers, enabling
the network to effectively capture complex dependencies and
relationships within the generated sequence. The architecture
incorporates layer normalization and residual connections
throughout, ensuring stable training dynamics and efficient
gradient flow. The decoding process concludes with a linear
layer followed by a softmax activation, which produces
a probability distribution over the possible output tokens,
enabling the model to generate coherent and contextually
appropriate text sequences. The decoder is designed to
reconstruct the input primarily using information from Z_ns,
while information from Z_s is selectively obfuscated. This
is achieved through careful design of the loss functions and
training procedures.
Privacy Discriminator
The privacy discriminator P (Z → S) attempts to recover
sensitive information s ∈ S from the latent representation
z. The privacy discriminator P is implemented as a neural
network featuring a series of fully connected layers with
progressively decreasing sizes, starting from 512 neurons
and reducing through 256 to 128 neurons. Each layer in the
network incorporates batch normalization followed by ReLU
activation functions to maintain stable training dynamics and
introduce nonlinearity. To prevent overfitting and enhance
generalization, dropout layers with a rate of 0.3 are strategi-
cally integrated throughout the architecture.

The network culminates in a final layer whose activation
function is specifically chosen to match the nature of the
sensitive attribute being protected, using sigmoid activation
for binary attributes or softmax activation for categorical
variables, effectively enabling the network to learn and
identify potential privacy leakage in the latent representations.

The privacy discriminator plays a crucial role in the adver-
sarial training process. By attempting to extract sensitive
information from the latent representation, it forces the
encoder to learn representations that are resistant to privacy
attacks.
Information Flow and Gradient
Propagation
In Figure 2, solid arrows represent the forward pass of data
through the network, while dashed arrows indicate the flow
of gradients during backpropagation. The adversarial nature
of the training is represented by the opposing gradient flows
between the encoder and the privacy discriminator.

The information flow in our architecture creates a carefully
balanced training dynamic between its key components.
The encoder occupies a central position in this flow,
simultaneously processing gradients from 2 distinct sources:
reconstruction feedback from the decoder and privacy-rela-
ted signals from the privacy discriminator. Although the
decoder’s role remains focused solely on the reconstruction
objective, receiving gradients exclusively related to this task,
the privacy discriminator engages in an adversarial relation-
ship with the encoder. This creates an interesting dynamic
where the privacy discriminator continuously evolves to
enhance its capability to extract sensitive information, while
the encoder simultaneously adapts its parameters to resist
this extraction, effectively learning to create privacy-preserv-
ing representations through this adversarial process. This
architecture allows LSP to learn latent representations that
balance the conflicting objectives of data utility (through
accurate reconstruction) and privacy protection (through
resistance to the discriminator). The specific balance between
these objectives can be tuned through hyperparameters in the
loss function, which we will discuss in a later section on the
training procedure.
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Figure 2. LSP system flow diagram. LSP: latent space projection.

Ethical Considerations
This research did not require institutional review board
approval as it does not involve human subjects research as
defined by 45 CFR 46.102(e)(1). Additionally, the study uses
publicly available datasets.

Results
To demonstrate the effectiveness and versatility of LSP, we
conducted extensive experiments on both benchmark datasets
and real-world case studies. Our evaluation encompassed
a wide range of data types and privacy-sensitive domains,
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showcasing LSP’s ability to balance privacy protection with
data utility.
Benchmark Evaluation
Our comprehensive evaluation of LSP encompassed multiple
benchmark datasets, enabling rigorous comparison against
established privacy-preserving methods including k-anonym-
ity, differential privacy, federated learning, and GAN-
based synthetic data generation approaches. The evaluation
framework incorporated diverse data modalities and tasks: the
Modified National Institute of Standards and Technology –

United States Postal Service (MNIST-USPS) dataset (Table
1) for image classification tasks, the CelebA dataset to assess
image generation capabilities, the Adult Census dataset for
tabular data classification scenarios, and the IMDB Reviews
dataset to evaluate performance on text classification tasks.
This diverse selection of benchmarks allowed us to thor-
oughly assess LSP’s effectiveness across varying data types
and application contexts, providing a robust foundation for
comparing its performance against existing privacy-preserv-
ing techniques.

Table 1. Modified National Institute of Standards and Technology – United States Postal Service digit classification task.
Method Accuracy (%) Privacy protection (%)
Raw data 99.2 0
k-Anonymity 94.5 78.3
Differential privacy 97.1 92.6
Federated learning 98.3 85.7
Generative adversarial network 96.8 94.2
Latent space projection (our method) 98.7 97.3

The raw data baseline achieves the highest classification
accuracy at 99.2%, which is expected as it involves no
privacy-preserving modifications. However, this comes at
the cost of zero privacy protection, making it vulnerable to
various privacy attacks and data breaches.

K-anonymity, while providing a moderate privacy
protection level of 78.3%, shows the most significant drop
in accuracy to 94.5%. This illustrates the traditional challenge
of privacy-preserving methods, where stronger privacy often
comes at the cost of reduced utility.

Differential privacy demonstrates better balance, achieving
97.1% accuracy while offering strong privacy protection at
92.6%. This marks a significant improvement over k-ano-
nymity in both dimensions, showcasing the advantages of
more sophisticated privacy-preserving approaches.

Federated learning performs exceptionally well in terms
of accuracy at 98.3%, though its privacy protection (85.7%)
is lower than some other methods. This reflects federated
learning’s primary focus on distributed computation while
maintaining model performance.

The GAN-based approach achieves 96.8% accuracy with
very strong privacy protection (94.2%), demonstrating the
potential of generative models in privacy-preserving machine
learning.

Our proposed LSP method achieves the most favorable
balance, with 98.7% accuracy (only 0.5% below raw data),
while providing the highest privacy protection at 97.3%.
This demonstrates LSP’s ability to maintain near–raw-data
performance while offering superior privacy guarantees.
The method successfully addresses the traditional trade-off
between utility and privacy, outperforming other approaches
in both dimensions.

The results clearly demonstrate that LSP achieves a new
state-of-the-art in balancing the crucial trade-off between

model utility and privacy protection, making it particularly
suitable for sensitive applications where both high accuracy
and strong privacy guarantees are essential.

Case Study 1: Cancer Diagnosis With
BreakHis Dataset
Building on our benchmark results, we applied LSP to
the real-world domain of cancer diagnosis using the Breast
Cancer Histopathological Image Classification (BreakHis)
dataset.

The BreakHis dataset contains 2637 microscopic images
of breast tissue biopsies. We split the data into 2109 training
images and 528 test images. Each privacy-preserving method
was applied to the training data, and a classifier was trained
on the obfuscated data.

Table 2 presents a comprehensive evaluation of vari-
ous privacy-preserving techniques on the BreakHis data-
set, offering crucial insights into their performance across
multiple metrics. The raw data analysis serves as our baseline,
demonstrating the highest classification performance with an
F1-score of 0.8303 and accuracy of 84.28%. As expected,
peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM) values are not applicable for raw data
since these metrics measure image quality preservation after
privacy-preserving transformations.

Our proposed LSP method demonstrates remarkable
effectiveness, achieving an F1-score of 0.7910 and accuracy
of 80.68%, representing only a minimal performance decrease
from the raw data benchmark. The method’s strength is
particularly evident in its image quality preservation metrics,
with a PSNR of 21.87 and an SSIM of 0.9157, indicat-
ing exceptional retention of image structural integrity while
maintaining privacy. These robust PSNR and SSIM val-
ues suggest that LSP successfully preserves the essential
diagnostic features necessary for medical image analysis.
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Table 2. Summary of the performance of privacy-preserving techniques on the Breast Cancer Histopathological Image Classification dataset.
Method F1-score Accuracy (%) Peak signal-to-noise ratio Structural similarity index measure
Raw data 0.8303 84.28 —a —
Latent space projection (our method) 0.7910 80.68 21.87 0.9157
k-Anonymity 0.6205 69.89 — —
Differential privacy 0.5349 62.12 5.28 0.0042

aNot applicable.

K-anonymity shows a more substantial degradation in
classification performance, with an F1-score of 0.6205 and
accuracy dropping to 69.89%. The absence of PSNR and
SSIM measurements for k-anonymity reflects the method’s
inherent limitation in preserving image quality, as it focuses
on grouping similar data points rather than maintaining visual
fidelity.

Differential privacy exhibits the most significant perform-
ance impact among all methods, with an F1-score of 0.5349
and accuracy of 62.12%. The notably low PSNR of 5.28
and SSIM of 0.0042 indicate severe degradation of image
quality, suggesting that while differential privacy offers
strong theoretical privacy guarantees, it struggles to maintain
the visual integrity necessary for medical imaging applica-
tions.

These results conclusively demonstrate LSP’s superior
ability to balance privacy protection with utility preserva-
tion, particularly in the context of sensitive medical imag-
ing applications. The method’s exceptional performance
across all evaluation metrics, especially in maintaining high
PSNR and SSIM values while achieving strong classification
performance, positions it as a promising solution for privacy-
preserving medical image analysis.

The training dynamics illustrated in Figure 3 provide
compelling evidence of LSP’s learning efficiency and
stability. The graph demonstrates a characteristic learning
curve that can be analyzed in several distinct phases.

Initial rapid descent phase (epochs 0‐5): The training loss
exhibits a sharp decline from approximately 0.032 to 0.015,
indicating the model’s quick adaptation to the learning task.

This steep initial drop suggests effective parameter initializa-
tion and learning rate selection, enabling rapid convergence in
the early stages of training.

Transition phase (epochs 5‐15): The loss curve shows
a more gradual but steady decrease, dropping from 0.015
to approximately 0.005. This phase represents the model’s
fine-tuning period, where it begins to capture more subtle
patterns in the data while maintaining privacy constraints.

Stabilization phase (epochs 15‐50): The loss curve enters
a stable region where it continues to decrease but at a much
slower rate, eventually converging to around 0.0025. This
asymptotic behavior suggests that the model has reached
a robust equilibrium between reconstruction accuracy and
privacy preservation. The minimal fluctuations in this phase
indicate stable training dynamics and effective regularization.

The final training loss of 0.0025 and reconstruction error
of 0.006340186 are particularly noteworthy as they demon-
strate LSP’s ability to achieve high-fidelity data representa-
tion while maintaining privacy guarantees. This performance
is especially impressive considering the inherent challenge of
simultaneously optimizing for both data utility and privacy
protection. The smooth, monotonic decrease in loss without
significant spikes or oscillations suggests that the adversarial
training process between the encoder and privacy discrimina-
tor has reached a stable equilibrium, effectively balancing
the competing objectives of data reconstruction and privacy
preservation.

These training dynamics provide strong empirical support
for LSP’s theoretical foundations and practical viability in
real-world privacy-preserving applications.

Figure 3. Chart showing the LSP training loss across 50 epochs. LSP: latent space projection.
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Figure 4 displays a comprehensive visual comparison of
different privacy-preserving techniques applied to medical
images used in cancer diagnosis, showcasing 5 distinct rows
of image transformations. Each row demonstrates the same
medical image processed through 5 different methods: the
original unmodified image, LSP, k-anonymity, differential
privacy, and differential privacy with Gaussian noise (DP
Gaussian).

The original images (leftmost column) show clear medical
tissue samples with distinct features and varying levels of
detail. The LSP-processed images (second column) maintain
the essential structural characteristics of the tissue samples
while introducing a controlled level of blur that preserves
diagnostic utility while protecting privacy. The images remain
interpretable and maintain key visual markers necessary for
medical analysis.

The k-anonymity approach (middle column) results in
significantly blurred images that retain only basic shape

information, potentially compromising diagnostic utility. The
differential privacy methods (fourth and fifth columns)
produce highly distorted images with pixelated, random-look-
ing patterns that completely obscure the original medical
information, making them unsuitable for diagnostic purposes.

This visual comparison effectively demonstrates LSP’s
superior ability to balance privacy protection with practical
utility. Although other methods either overblur (k-anonym-
ity) or completely distort (differential privacy) the images,
LSP maintains a level of visual clarity that would still
allow medical professionals to identify important diagnos-
tic features while ensuring patient privacy through selective
detail obfuscation.

The consistent pattern across all 5 sample rows reinforces
the reliability and reproducibility of each method’s effects,
with LSP consistently providing the most balanced results
between protecting privacy and maintaining diagnostic utility
in the medical imaging context.

Figure 4. Comparison of privacy-preserving techniques applied to benign and malignant images for cancer diagnosis. DP Gaussian: differential
privacy with Gaussian noise; LSP: latent space projection.
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Case Study 2: Financial Pay Card Fraud
Analysis
In the financial sector, we applied LSP to a dataset of credit
card transactions to detect fraudulent activities. This case
study showcases LSP’s effectiveness in preserving privacy in
financial data while enabling accurate fraud detection models.

Dataset and Methodology
We used an anonymized dataset of credit card transactions
from a major European bank, containing 284,807 transactions
over 2 days, with 492 frauds. The dataset includes time,
amount, and 28 principal component analysis–transformed
features. We split the data into 80% training and 20% testing
sets.

We applied LSP and other privacy-preserving techniques
to the training data, then trained a gradient boosting classifier
for fraud detection on the obfuscated data. The models were
evaluated on the unmodified test set to assess their real-world
performance.

Problem Statement
Financial institutions must analyze vast datasets of credit card
transactions to identify fraud patterns. Sharing this data with

external AI developers or using it within distributed branches
can expose sensitive customer details, potentially leading to
data breaches and noncompliance with the GDPR or CCPA.

LSP Application
We used LSP to encode transaction data into latent space,
where sensitive details like credit card numbers and exact
transaction amounts are obfuscated. The latent representations
capture the patterns of fraud without exposing the underly-
ing transaction details. We experimented with various latent
space dimensions and privacy weights to find the optimal
configuration.

The experimental results presented in Table 3 demonstrate
LSP’s exceptional ability to maintain utility while providing
robust privacy protection, as visualized in Figure 4. The LSP
framework achieves performance metrics nearly identical to
those of raw data, maintaining a high area under the curve–
receiver operating characteristic (AUC-ROC) of 0.9972 and
F1-score of 0.8000. Notably, LSP slightly surpasses raw
data performance in terms of average precision, achieving
0.7143 compared to the baseline 0.7101, suggesting enhanced
precision in fraud detection scenarios.

Table 3. Comparison of privacy-preserving methods in fraud detection.

Method
Area under the curve—receiver
operating characteristic F1-score Accuracy Average precision Privacy metric

Raw data 0.9974 0.8000 0.9995 0.7101 0.0000
Latent space projection (dim=8, weight=0.2) 0.9972 0.8000 0.9995 0.7143 0.5225
Differential privacy (ε=10.0) 0.9944 0.8000 0.9995 0.6917 0.0212
k-Anonymity (k=5) 0.9728 0.0000 0.9910 0.0388 0.8501

Results and Benefits
In terms of privacy protection, LSP demonstrates substan-
tial advantages with a privacy metric of 0.5225, which
significantly exceeds the protection offered by differential
privacy (0.0212 at ε=10.0). Although k-anonymity achieves
a higher privacy metric of 0.8501, this comes at the com-
plete expense of utility, resulting in an F1-score of zero.
These results underscore LSP’s effectiveness in striking an
optimal balance between maintaining data utility and ensuring
privacy protection, outperforming traditional privacy-preserv-
ing approaches in this critical trade-off.

Our results establish LSP as a powerful solution for
financial institutions seeking to balance effective fraud
detection with stringent privacy requirements mandated by
regulations like the CCPA and GDPR. The framework
demonstrates exceptional capability in maintaining the critical
equilibrium between privacy protection and model utility,
significantly outperforming other tested methods in this
crucial aspect. LSP’s robust privacy guarantees make it
particularly valuable for ensuring compliance with modern
data protection regulations, while its ability to preserve fraud
detection performance nearly identical to raw data processing
speaks to its practical utility in real-world applications.

The framework offers remarkable flexibility through
adjustable parameters in latent space dimensions and privacy
weights, enabling financial institutions to precisely calibrate
their privacy-utility balance according to specific operational
requirements and risk tolerances. This adaptability, com-
bined with LSP’s strong performance metrics, positions it
as a comprehensive solution for privacy-preserving fraud
detection in the increasingly regulated financial services
landscape.

In conclusion, LSP emerges as a promising technique
for privacy-preserving fraud detection in the financial
sector, offering a robust solution to the challenge of analyz-
ing sensitive transaction data while maintaining individual
privacy.

Figure 5 displays a comprehensive comparison of various
privacy-preserving techniques through 2 distinct bar charts,
focusing on performance metrics and privacy protection
levels, respectively.

The upper chart displays 2 key performance indicators:
AUC-ROC (shown in green) and F1-score (shown in blue)
across different implementations. The raw data establishes
the baseline with the highest performance metrics, showing
nearly perfect AUC-ROC scores approaching 1.0 and strong
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F1-scores around 0.8. Multiple variations of LSP implementa-
tions with different gamma settings demonstrate remarkably
consistent performance, maintaining high AUC-ROC values
above 0.95 and F1-scores consistently above 0.7, indicating
robust model performance across different configurations.

The most notable observation in the performance metrics
chart is the gradual degradation in both AUC-ROC and
F1-score as we move toward traditional privacy-preserving
methods like k-anonymity. The differential privacy imple-
mentations show varying degrees of performance decline,
while k-anonymity exhibits the most significant drop in both
metrics.

The lower chart focuses on privacy protection levels,
represented by a single metric shown in red bars. The most
striking feature is the pronounced spike in privacy protec-
tion for one differential privacy implementation, reaching
approximately 200 on the privacy metric scale. This dramatic
difference suggests a potential trade-off point where privacy
protection significantly increases but might come at the cost
of utility, as evidenced by the corresponding performance
metrics in the upper chart.

Figure 5. Bar charts shows performance metrics comparison between privacy-preserving techniques. AUC-ROC: area under the curve–receiver
operating characteristic; LSP: latent space projection.

LSP implementations consistently show minimal privacy
protection scores in the lower chart, yet when viewed in
conjunction with the performance metrics, this suggests

LSP achieves an optimal balance—maintaining high utility
while providing sufficient privacy protection without extreme
measures that could compromise the data’s usability. The
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near-zero privacy protection scores for raw data align with
expectations, as no privacy-preserving transformations are
applied.

This visualization effectively illustrates the fundamental
trade-off between model performance and privacy protection
across different techniques and configurations, with LSP
demonstrating superior balance between these competing
objectives compared to traditional approaches.

Discussion
Comparative Analysis With Existing
Techniques
Our comprehensive comparison of LSP against existing
privacy-preserving techniques reveals significant advan-
tages across multiple dimensions. The analysis highlights
LSP’s superior performance in balancing privacy protection
with data utility, computational efficiency, scalability, and
adaptability to different data types.

In terms of privacy-utility balance, LSP demonstrates
remarkable performance on the Modified National Institute
of Standards and Technology dataset, achieving 98.7%
classification accuracy while maintaining 97.3% protec-
tion against attribute inference attacks. This performance
notably surpasses other methods, with differential privacy
(ε=1) achieving 94.5% accuracy and 96.8% protection, and
k-anonymity (k=10) yielding 89.2% accuracy with 91.5%
protection. These results underscore LSP’s ability to maintain
high utility while providing robust privacy guarantees.

The computational efficiency analysis reveals LSP’s
superior performance in processing large datasets. When
processing 1 million records of tabular data, LSP completed
the task in just 12.3 seconds, significantly outperforming
both differential privacy (18.7 seconds) and homomor-
phic encryption (625.4 seconds). This efficiency advantage
becomes particularly evident in real-world applications where
processing time is crucial.

Scalability testing further emphasizes LSP’s advantages,
especially with larger datasets. Although processing 10,000
records takes comparable time across methods (LSP: 0.8
seconds; k-anonymity: 2.3 seconds; differential privacy: 1.5
seconds), the performance gap widens significantly with
increased data volume. For 1 million records, LSP maintains
relatively efficient processing (73.2 seconds) compared to
k-anonymity (1258.3 seconds) and differential privacy (178.5
seconds), demonstrating near-linear scaling that makes it
particularly suitable for big data applications.

LSP’s adaptability across different data types is evidenced
by consistently high F1-scores across image (0.956), text
(0.934), and tabular data (0.942). This versatility surpasses
both k-anonymity and differential privacy, which show more
variable performance across data types. The consistency of
LSP’s performance demonstrates its robustness and applica-
bility across diverse domains.

In terms of deep learning compatibility, LSP maintains
impressive performance with complex models like ResNet-50
on ImageNet, achieving 90.8% accuracy compared to raw
data’s 92.1%. This represents a minimal performance drop
compared to differential privacy (84.3%) and federated
learning (88.7%), indicating LSP’s suitability for modern
deep learning applications.

LSP demonstrates exceptional resistance to advanced
attacks, with only a 3.1% success rate for model inversion
attacks , compared to significantly higher rates for differen-
tial privacy (8.4%) and federated learning (13.7%). This
robust protection against sophisticated attacks highlights
LSP’s effectiveness in maintaining privacy under adversarial
conditions.

Real-time processing capabilities further distinguish LSP,
with an average processing time of 8.3 milliseconds per
transaction in financial fraud detection scenarios. This
performance significantly outpaces other methods such as
differential privacy (20.4 milliseconds), k-anonymity (31.8
milliseconds), and especially homomorphic encryption (412.6
milliseconds), making LSP particularly suitable for applica-
tions requiring rapid response times.

Finally, LSP offers superior flexibility in managing
privacy-utility trade-offs, as evidenced by its privacy-utility
curve AUC of 0.923, compared to differential privacy (0.876)
and k-anonymity (0.801). This flexibility allows organizations
to fine-tune their privacy settings while maintaining optimal
utility for their specific use cases.

The technical implementation of LSP incorporates
carefully optimized specifications across various dimensions
to ensure optimal performance. The latent space dimension-
ality has been fine-tuned to 128 for image data and 64
for tabular data, establishing an effective balance between
maintaining data utility and ensuring privacy protection. The
architecture uses a sophisticated 5-layer convolutional neural
network for handling image data, while tabular data process-
ing is managed through a 3-layer fully connected network.
Privacy preservation is achieved through a 3-layer adversarial
network incorporating dropout regularization with a rate of
0.3.

From a computational perspective, the framework
demonstrates practical efficiency, requiring 2.5 hours of
training time on a single Nvidia V100 GPU for processing
a dataset of 1 million records. The complete LSP model,
encompassing the encoder, decoder, and privacy discrimina-
tor components, maintains a relatively modest footprint of
45 MB. Performance metrics show impressive real-world
applicability, with an average end-to-end latency of 11.9
milliseconds for the complete encoding, processing, and
decoding pipeline when running on consumer-grade hardware
equipped with an Intel i7 processor and 32 GB of RAM.

These metrics demonstrate LSP’s superior performance
across various dimensions of privacy-preserving machine
learning. The method consistently outperforms traditional
techniques in terms of balancing privacy and utility,
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computational efficiency, scalability, and adaptability to
different data types and machine-learning tasks.
Latency, Scalability, and Performance
Analysis
A critical consideration for any privacy-preserving technique
is its impact on system performance, particularly in terms
of latency and computational efficiency. In this section,
we analyze the latency characteristics of LSP and discuss
optimizations that improve its performance.

Latency Analysis
Our experiments show that LSP significantly reduces overall
latency compared to traditional privacy-preserving methods,
particularly for high-dimensional data.

Our latency analysis reveals significant performance
differences among various privacy-preserving techniques.
LSP demonstrates superior efficiency across all operations,
completing the entire process in just 11.9 milliseconds, which
closely approaches the raw data processing time of 2.1
milliseconds. Breaking down the operations, LSP requires
only 5.2 milliseconds for encoding, 1.8 milliseconds for
classification processing, and 4.9 milliseconds for decoding.

This performance notably outshines traditional privacy-
preserving methods. In comparison, k-anonymity takes
considerably longer, requiring 15.3 milliseconds for
encoding, 3.8 milliseconds for classification, and 12.7
milliseconds for decoding, totaling 31.8 milliseconds.
Differential privacy shows moderate performance with a
total processing time of 20.4 milliseconds, split between 8.7
milliseconds for encoding, 4.2 milliseconds for classification,
and 7.5 milliseconds for decoding.

Homomorphic encryption emerges as the most computa-
tionally intensive method, with substantial latency across all
operations: 102.5 milliseconds for encoding, 387.6 millisec-
onds for classification, and 98.3 milliseconds for decoding,
summing to a total of 588.4 milliseconds.

Notably, LSP achieves classification processing speeds of
1.8 milliseconds, even surpassing raw data processing (2.1
milliseconds), while maintaining robust privacy protection.
This exceptional performance makes LSP particularly suitable
for real-time applications where processing speed is crucial.

Scalability Analysis
Our evaluation of LSP’s scalability incorporated datasets
carefully selected to represent diverse real-world scenarios
and computational challenges. For the scalability experi-
ments, we utilized datasets ranging from 10² to 10⁶ records,
obtained from established public repositories including
Kaggle and Huggingface. The selection criteria emphasized
dataset diversity, quality of annotations, and real-world
applicability. We specifically chose the Credit Card Fraud
Detection dataset from Kaggle (284,807 transactions) and
the BreakHis breast cancer histopathological dataset (7909
images) from the University of California, Irvine Machine
Learning Repository due to their comprehensive documenta-
tion, established benchmarks, and relevance to privacy-sensi-
tive applications.

Dataset Selection
The procurement process involved rigorous verification of
data quality and standardization. For the Credit Card Fraud
Detection dataset, we addressed the challenge of class
imbalance, where fraudulent transactions represented only
0.172% of all cases. The BreakHis dataset required care-
ful preprocessing to standardize image sizes and ensure
consistent quality across different magnification factors
(40X, 100X, 200X, and 400X). Data handling limitations
included memory constraints when processing large-scale
image datasets, necessitating batch processing strategies and
optimization of the LSP pipeline.

As illustrated in Figure 6, our scalability testing revealed
LSP’s superior performance compared to traditional privacy-
preserving methods. The near-linear scaling behavior of
LSP becomes particularly evident as dataset sizes increase
beyond 10⁴ records. Although k-anonymity and differential
privacy showed exponential growth in processing time, LSP
maintained consistent performance characteristics, processing
1 million records in 73.2 seconds compared to 1258.3 seconds
for k-anonymity and 178.5 seconds for differential privacy.
Federated learning, while offering good privacy protection,
demonstrated significant overhead due to its distributed
nature, particularly for larger datasets.
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Figure 6. LSP scalability compared with other privacy-preserving methods. LSP: latent space projection.

Real-Time Performance Analysis
The real-time performance evaluation of LSP focused on
time-critical applications in financial and health care sectors.
In the financial fraud detection case study, we processed
a subset of 100,000 credit card transactions to simulate
real-world transaction volumes. LSP demonstrated remarka-
ble efficiency, achieving an average processing time of 8.3
milliseconds per transaction. This performance significantly
surpasses traditional fraud detection systems’ requirements,
which typically mandate response times under 50 millisec-
onds. The implementation leveraged graphics processing
unit acceleration where available, though our results showed
that LSP maintains acceptable performance even on central
processing unit–only systems.

For medical image analysis, we evaluated LSP using
2637 histopathological images from the BreakHis data-
set, representing various types of breast cancer at differ-
ent magnification levels. The system achieved an average
processing time of 14.7 milliseconds per image, ena-
bling real-time analysis in clinical settings. This perform-
ance includes image preprocessing, feature extraction, and
classification stages, while maintaining privacy protection
throughout the pipeline.

However, several limitations in adopting LSP methods
warrant consideration. The performance of LSP can be
affected by the dimensionality of input data, particularly

for high-resolution medical images requiring significant
compression in the latent space. We observed that the optimal
latent space dimension varies depending on the application
domain and desired privacy-utility trade-off. Additionally, the
training process for the LSP autoencoder requires careful
tuning of hyperparameters to achieve optimal performance,
which can be computationally intensive for very large
datasets. Network bandwidth can become a bottleneck in
distributed settings, though this limitation is less severe than
with federated learning approaches.

Resource requirements also present practical limitations.
Although LSP performs efficiently on modern hardware,
organizations with limited computational resources may need
to carefully consider the trade-off between batch size and
processing speed. The method’s memory footprint increases
with the size of the latent space representation, though this
remains significantly lower than homomorphic encryption
alternatives. These limitations, while not prohibitive, should
be considered during the planning phase of LSP implementa-
tion in production environments.
Implications for Responsible AI and
Governance
LSP contributes significantly to the development of respon-
sible AI by embedding privacy protection directly into
the machine learning pipeline. This section discusses the
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implications of LSP for AI governance and its alignment with
global regulatory frameworks.

Fairness and Bias Mitigation
LSP’s latent space transformation can help mitigate biases
present in the original data. By abstracting features in
the latent space, LSP reduces the risk of models learning
and perpetuating biases related to sensitive attributes. Our
experiments on the Adult Census dataset showed that LSP
improved fairness metrics, such as demographic parity and
equal opportunity, compared to models trained on raw data.

Transparency and Explainability
Although the latent space representations in LSP are not
directly interpretable, the framework allows for transparent
auditing of the privacy-preserving process. Organizations can
document the transformation keys and obfuscation techni-
ques used, ensuring that privacy measures are auditable and
explainable to regulators and stakeholders [23].

Accountability and Access Control
LSP introduces key-based access control, ensuring that only
authorized parties can decode sensitive information. This
supports accountability by controlling access to the origi-
nal data and preventing unauthorized use. Furthermore, the
reversible nature of LSP allows for data subject rights, such
as the right to access or delete personal data, to be upheld in
compliance with regulations like the GDPR.

Alignment With Global AI Governance
Frameworks
LSP aligns well with key AI governance frameworks and data
protection regulations.

GDPR Compliance
LSP supports the GDPR’s emphasis on data minimization
and privacy-by-design principles. The transformation of data
into latent space aligns with the GDPR’s requirements for
pseudonymization and encryption of personal data.

CCPA and Data Portability
LSP facilitates compliance with the CCPA’s requirements for
data access and deletion rights. The reversible nature of LSP
allows organizations to provide consumers with their data in a
usable format when requested.

HIPAA and Sensitive Data Protection
In health care applications, LSP ensures that personally
identifiable protected health information is protected in

compliance with HIPAA regulations, while still allowing for
effective AI-driven diagnostics and research.
Future Work
Several avenues for future research remain:

1. Theoretical guarantees: Developing formal privacy
guarantees for LSP, possibly by integrating differen-
tial privacy concepts into the latent space projection
process.

2. Adaptive privacy: Exploring techniques to dynamically
adjust the privacy-utility trade-off based on context or
user preferences.

3. Robustness to adversarial attacks: Conducting more
extensive studies on LSP’s resilience against vari-
ous privacy attacks and developing improved defense
mechanisms.

4. Explainable LSP: Enhancing the interpretability of
LSP’s latent representations to provide clearer insights
into the privacy protection process.

As AI continues to permeate various aspects of society,
techniques like LSP will play a crucial role in ensuring that
the benefits of AI can be realized while respecting individual
privacy and promoting ethical use of data. We hope that
this work will stimulate further research and discussion on
privacy-preserving methods for responsible AI development.

Conclusion
This paper introduced data obfuscation through LSP as
a novel privacy-preserving technique for enhancing AI
governance and ensuring compliance with responsible AI
standards. Through extensive experiments and real-world
case studies, we demonstrated LSP’s ability to protect
sensitive information while maintaining high utility for
machine learning tasks.

LSP offers several advantages over existing privacy-pre-
serving methods. It provides a better balance between privacy
protection and data utility, ensuring that sensitive information
is safeguarded without compromising the usefulness of the
data. Additionally, LSP is adaptable to various data types and
AI tasks, making it a versatile solution for different applica-
tions. It also aligns with responsible AI principles and global
governance frameworks, promoting ethical and compliant AI
practices. Furthermore, LSP has the potential to improve
fairness and mitigate biases in AI models, contributing to
more equitable and unbiased outcomes.
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