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Abstract
Background: Anxiety has become a significant health concern affecting mental and physical well-being, with state anxiety
(s-anxiety)—a transient emotional response—linked to adverse cardiovascular and long-term health outcomes. Traditional
physiological monitoring lacks the contextual sensitivity needed to assess anxiety in real time. Electrooculography (EOG) and
electrodermal activity (EDA), 2 biosignals measurable by wearables, offer promising avenues for identifying biomarkers of
s-anxiety in naturalistic environments.
Objective: This study aims to identify novel biomarkers of s-anxiety using EOG and EDA signals collected in real-world
conditions. We further explore how noninvasive wearable technology can enable real-time monitoring of physiological
responses during induced stress, focusing on distinguishing true anxiety-related signals from artifacts in noisy environments.
Methods: Our study presents two datasets: (1) the EOG signal blink identification dataset Blink Identification Electrooculog-
raphy Dataset (BLINKEO), containing both true blink events and motion artifacts, and (2) the EOG and EDA signals dataset
Emotion, Electrooculography, and Electrodermal Activity Monitoring in Cold Pressor Conditions Dataset (EMOCOLD),
capturing physiological responses from a cold pressor test (CPT). From analyzing blink rate variability, skin conductance
peaks, and associated arousal metrics, we identified multiple new anxiety-specific biomarkers. Shapley additive explanations
(SHAP) were used to interpret and refine our model, enabling a robust understanding of the biomarkers that correlate strongly
with s-anxiety.
Results: BLINKEO feature analysis achieved a classification accuracy of 98.17% and F1-score of 0.87 in distinguishing
blinks from noise. In the EMOCOLD, survey results confirmed elevated anxiety and affectivity during the CPT, which
normalized during recovery. SHAP analysis revealed that specific EDA features (eg, Hjorth activity and spectral entropy) and
EOG features (eg, opening phase energy and signal height) consistently contributed to accurate predictions of s-anxiety and
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affectivity. Contextual combinations of features outperformed single-feature analyses, revealing relationships critical for robust
biomarker identification.
Conclusions: These results suggest that a combined analysis of EOG and EDA data offers significant improvements in
detecting real-time anxiety markers, underscoring the potential of wearables in personalized health monitoring and mental
health intervention strategies. This work contributes to the development of context-sensitive models for anxiety assessment,
promoting more effective applications of wearable technology in health care.

JMIRx Med 2025;6:e69472; doi: 10.2196/69472
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Introduction
Background
Despite being a short-term response, state anxiety (s-anxi-
ety) has emerged as a significant factor impacting long-
term health outcomes. Researchers have linked sustained
s-anxiety with adverse cardiovascular effects [1], underscor-
ing its profound effects on mental and physical health.
Approximately 23.1% of US adults experience some form
of diagnosable mental disorder [2], and 74% of US adults
reported experiencing stress-related health issues within a
given month [3], illustrating the widespread impact of
anxiety-induced stress. Reliable biomarkers are essential for
capturing the complexities of s-anxiety, enabling more precise
and effective models.

Noninvasive wearable technology has the potential to
transform health monitoring by continuously capturing
physiological data through real-time sensor measurements
[4,5]. These devices collect a broad array of metrics, yielding
critical insights into the body’s responses to anxiety. The
ability to seamlessly collect large amounts of health-related
data opens new ways to study and build an understanding of
the onset and progression of anxiety, enabling more effective
interventions and advancing our knowledge of human health.
Identifying reliable biomarkers of s-anxiety offers a promis-
ing pathway to real-time health monitoring using wearable
biosensors that can detect subtle physiological changes not
immediately obvious in raw signal data.

The cold pressor test (CPT) is a widely used experi-
mental method for studying anxiety responses in controlled
settings. Participants immerse their hand in ice-cold water
(0‐4 °C), eliciting a sympathetic nervous system response.
This test reliably induces physiological markers of anxiety
[6-8], such as increased heart rate and sweat production.
Other techniques, such as public speaking simulations and
mental arithmetic tasks [9], also provoke anxiety and can be
used to identify reliable biomarkers.

Physiological responses to s-anxiety and arousal have
been extensively documented, revealing clear links between
emotional states and indicators such as blink rate variability
[10] and stress-induced sweating [11]. The 2-factor model of
emotion, developed by Schachter and Singer [12], suggests
that emotions arise from physiological arousal and subse-
quent cognitive interpretation. This model underscores that
physiological responses are interpreted within a contextual
framework, which are further hidden in indirect biomarkers

for specific emotional experiences. For instance, fatigue,
which affects the blink conditions, can intensify physiological
arousal, directly impacting how the brain interprets anxious
states. Such contextual cues are crucial for understanding
s-anxiety in real-world settings, but they are often filtered out
or controlled for in existing studies. Electrodermal activ-
ity (EDA) is a common measure of physiological arousal,
but its reliability in depression research remains debated.
Some studies report reduced EDA responses in individu-
als with major depressive disorder, suggesting impaired
autonomic reactivity [13] and emotional hypo-responsiveness
[14]. However, conflicting findings point to variability due
to factors like medication use and methodological differen-
ces [15], emphasizing the need for further research on the
relationship between physiological signals and emotional
states.

Wearable devices offer a way to contextualize these
arousal states dynamically. Through advanced human-
machine interfaces, wearables can monitor how individuals
respond to their environments, integrating data on physi-
cal responses to build a richer understanding of s-anxiety.
There is growing interest in using noninvasive wearables to
collect richer biomarker data for mental health study [16,17],
interpreting physiological responses in respect to real-time
contextual cues and providing a more comprehensive view of
emotional states.

Research shows that blink rates tend to increase
under difficult mental tasks or anxiety-provoking situations
[18,19], reflecting activation of the autonomic nervous
system. Electrooculography (EOG) captures electrical signals
produced by eye movements, allowing for the detection of
blink-related patterns. But EOG signals are often filtered
out in stress studies to improve clarity of other signals
[20], potentially overlooking valuable information related
to emotional arousal. Studies suggest that specific compo-
nents of EOG signals can be analyzed to extract physiolog-
ical markers of s-anxiety, highlighting the need for further
research into EOG biomarkers. Furthermore, fatigue—closely
associated with emotional arousal—provides an additional
avenue for understanding anxiety through EOG features
[21,22]. Studies examining EOG signals in the context
of drowsiness reveal correlations between blink frequency,
blink duration, and stages of fatigue [19], highlighting a
noninvasive method for tracking emotional arousal over
time. Given the interplay between fatigue and anxiety, this
relationship prompted our investigation into how fatigue-
related features within EOG signals may serve as indirect
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indicators of anxiety, offering new opportunities for nuanced
and comprehensive stress monitoring.

Similarly, stress has a pronounced effect on sweat
production. Emotional sweating, triggered by the sympa-
thetic nervous system, occurs in response to psychological
stressors rather than temperature changes [15,16,23]. EDA is
a method that measures changes in skin conductance. Under
emotional arousal and stress, body sweats and skin conduc-
tance increases. Previous studies often rely on basic features
like median values [24] or the phasic component of the EDA
signal, focusing on nonspecific skin conductance respon-
ses (SCRs) to correlate with self-reported s-anxiety [25]
scores. In such studies, peaks in the phasic signal exceeding
0.01 µS were counted as responses, and the frequency of
these nonspecific SCRs per minute served as the primary
measure for physiological s-anxiety. EDA primarily reflects
the magnitude of emotional arousal without distinguishing
between positive and negative affective states [26]. In other
words, a high SCR could result from excitement or stress,
making it challenging to interpret EDA data as a standalone
indicator of anxiety. This underscores the importance of
using EDA in combination with other physiological markers
[27], such as heart rate variability or blink rate, to gain a
more comprehensive picture of an individual’s emotional and
physiological state. A more methodical exploration of signal
characteristics found in EDA and EOG signals reveal nuanced
physiological markers that strongly correlate with s-anxiety.

Currently, no widely accepted biomarkers reliably assess
anxiety across diverse contexts, highlighting the need for
continued exploration. Researchers have tested markers
like heart rate variability, skin conductance, and blink
rate, but results often vary due to individual differences
and contextual influences. While many studies report that
depressed patients exhibit reduced EDA responses, indicat-
ing diminished autonomic nervous system activity, some
research presents conflicting findings. These discrepancies
are attributed to variations in study designs, methodologies,
and the influence of factors such as antidepressant treatment
on EDA measurements [13].

While machine learning models have shown promise in
detecting anxiety, their black-box nature limits interpretabil-
ity, making it difficult to validate findings across diverse
populations [28]. By introducing additional context-sensitive
biomarkers, we aim to enhance the reliability and transpar-
ency of anxiety assessments, making models more applicable
to real-world scenarios.
Objective
In our research, we leverage EOG and EDA data to
develop a comprehensive, real-time model of s-anxiety.
We have compiled 2 distinct datasets for this purpose.
The first dataset, Blink Identification Electrooculography
Dataset (BLINKEO), consists of EOG signal features from
samples characterized by peak-like patterns, annotated to
differentiate natural blink events from extraneous noise
and wire movement artifacts. The second dataset, Emotion,

Electrooculography, and Electrodermal Activity Monitoring
in Cold Pressor Conditions Dataset (EMOCOLD), contains
time-series EOG and EDA signals along with demographic
data and stress responses elicited by the CPT. Using
interpretability techniques such as SHAP (Shapley additive
explanations), we identify and quantify specific biomark-
ers within the EOG and EDA data, with a focus on
blink rate variability and sweat-related stress indicators. Our
approach goes beyond simple anomaly detection by uncover-
ing nuanced, anxiety-specific physiological markers informed
by the 2-factor model of emotion. This research contributes to
a more detailed understanding of stress mechanisms, with the
potential to improve mental health interventions and enable
personalized, context-specific stress management strategies
with wearable technology.
Description of Question
This research aims to identify reliable, interpretable biomark-
ers of s-anxiety through EOG and EDA data for real-time
stress monitoring.

Methods
Blink Identification EOG (BLINKEO) Data
Collection
To create the BLINKEO dataset, EOG data were collected
and analyzed to differentiate natural blinks from noise or
wire movements. Our setup integrated the AD8232 (ana-
log devices), a biopotential amplifier designed to capture
physiological signals, which we optimized for measuring
EOG activity. To detect vertical eye movements using EOG,
one electrode was positioned above the eye and another
below it, aligning on the vertical axis. This configuration
captures the corneo-retinal potential changes associated with
upward and downward eye movements. All trials were
conducted on the same two individuals for consistency in
signal characteristics. A total of 65 trials involving repeated
blinking under controlled conditions where no extraneous
movement occurred. In addition, 19 trials lasting between 30
seconds and 2 minutes were conducted under conditions with
no blinking, but with deliberate wire movements introduced
by manually adjusting or lightly tugging the electrode leads.
These trials provided a baseline for accurately distinguishing
noise artifacts from genuine blink events. Table 1 shows the
characteristics of these trials, including session count, total
recording time, and peak detection results before and after
filtering.

To preprocess the EOG data, motion artifacts were
identified and removed, to make the data suitable for
downstream features. A fifth-order low-pass Butterworth
filter using the Scipy Signal butter function was applied
to isolate low-frequency components indicative of meaning-
ful physiological signals. This was followed by a Savitzky-
Golay filter using the Scipy Signal savgol_filter function
for additional smoothing, which preserved essential features
while reducing minor signal fluctuations [29].
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Table 1. Characteristics of blink and wire movement trials in the blink identification dataset. This table summarizes the number of independent
sessions, cumulative recording time, and peak detection results before and after literature-supported blink peaks filtering for both blink and wire
movement events.
Trial label Sessions, n (%) Total time (s) Peaks detected, n (%) Peaks after filtering, n (%)
Blink 65 (77) 12,103.14 6792 (54) 4734 (96)
Wire movement 19 (23) 2007.75 5704 (46) 203 (4)

Peak detection was performed using the Scipy Signal
find_peaks function, identifying peaks with a prominence
exceeding 0.1 with a peak width greater than 0.04 seconds
[30] (blinks typically last between 0.1 and 0.4 seconds [31],
averaging around 0.25 s). To focus on blink-like events,
we additionally applied criteria based on established blink
characteristics: a maximum peak width of 0.5 seconds and
a minimum peak height of 0.05 volts [30]. We compared
the signal quality after this initial peak detection with
that obtained using conventional blink filtering methods.
Traditional filtering techniques frequently overlook subtle

blink patterns or introduce artifacts during data cleaning,
potentially compromising accuracy. In contrast, a learned-fea-
ture approach refines this process by reducing noise and
enhancing the precision of true blink identification within the
dataset. Figure 1A shows examples of detected blink peaks
from the BLINKEO dataset, with red dotted lines marking the
center of each peak. This figure demonstrates the effective-
ness of the peak detection method described in this section,
highlighting its ability to accurately locate and extract the
central point of each blink event during blink trials.

Figure 1. A. Blink peak examples from the Blink Identification Electrooculography Dataset (BLINKEO). The grey dotted lines indicate the center
of the peak, extracted by the peak detection method outlined in this section. B. Blink examples (blue) plotted against wire examples (green), as
filtered EOG voltage signals, normalized per peak between 0 and 1. Peaks are time-aligned by time, in seconds, from the center of peak. Wire signals
typically have higher variability. C. A singular blink peak. The purple dot marks the peak of the blink event, while the outer edges of the red and
grey shaded sections represent the boundaries used for feature extraction. These boundaries are determined by identifying the nearest minimum on
each side of the peak, providing a precise range for analyzing blink characteristics. D. Another example of a blink peak, demonstrating the variability
in blink peak shapes observed across recordings. The feature extraction process remains consistent, with boundaries determined by identifying the
nearest minima on either side of the peak. EOG: electrooculography.
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However, wire movements can also produce peak-like shapes,
which poses challenges for this filtering method. While
effective in controlled or low-noise environments, the filter
is easily triggered by noisy conditions, where artifacts
such as wire movements may mimic blink patterns. Figure
1B presents time series segments of both blink and wire
movement examples that have been classified as blinks under
the current filtering approach, overlaid for comparison. The
figure shows that wire movements exhibit greater variability
in the regions surrounding the peak, as well as in the overall
shape of the peak itself. Current approaches are unable to
distinguish between true blinks and wire artifacts, underscor-
ing the limitations of the method in noisier environments.

For each detected peak, baseline values were calculated
to provide a reference point for the signal’s amplitude. This
involved locating the nearest minimum values on either side
of the peak by performing binary search with a window size
of up to 0.5 seconds in the left and right direction from
the peak observed (see algorithm pseudocode in Multimedia
Appendix 1). It recursively narrows down the search range to
locate a local minimum, while avoiding minor fluctuations.

After establishing the baseline points, we extracted a
comprehensive set of amplitude-independent features for each
peak. These features include blink duration and various
acceleration and velocity metrics, as used in previous EOG
feature extraction and peak signal analysis studies [32,33].
A total of 32 peak-related features and label are stored as
examples in the dataset, with labels distinguishing natural
blinks from noise artifacts.

Figure 1C shows examples of EOG signals from 2
independent singular blink events, with distinct sections
of the peak highlighted for clarity. The purple dot at the
peak center represents the highest voltage point, detected
by the peak detection algorithm. Red dots indicate local
maxima in velocity, while blue dots show local accelera-
tion points. Shaded regions in different colors represent key
sections of the blink, such as the rising and falling pha-
ses, as well as acceleration and deceleration phases. This
segmentation captures various aspects of the blink shape,
this detailed segmentation provides valuable insights into the
blink dynamics, enabling the extraction of relevant blink-rela-
ted features.

We establish bounds for each feature by discretizing its
range into 50 intervals. This discretization splits the fea-
ture’s values into small, equally spaced segments, enabling
a systematic exploration of possible lower and upper bounds
that optimize model accuracy.

The process begins by identifying the minimum and
maximum values of each feature. The range between these
values is divided by the bin count (50), yielding an

incremental “step size,” or delta value, for testing. This delta
value determines how much the threshold will shift at each
iteration when exploring the bounds. To identify the best
lower bound, the algorithm starts from the minimum value
and iteratively adds the delta value (eg, 0.2) to the threshold,
testing each increment by culling data points below it and
evaluating the model’s accuracy with the adjusted dataset.
The lower bound with the highest accuracy is selected as the
optimal starting point for that feature.

The search then proceeds to find an optimal upper bound,
beginning with the maximum value and reducing it by
increments of the delta value until reaching the previously
identified lower bound. This decremental approach ensures
the upper bound remains above the lower bound. Each
new threshold is applied to the dataset, and the accuracy
is recorded. The upper bound yielding the best accuracy
becomes the final threshold for that feature.

The individually optimized lower and upper bounds for
each feature are compiled into a list, representing the
complete culling thresholds that maximize model perform-
ance across the dataset. By discretizing each feature’s range
into 50 intervals, the individual search method ensures a
thorough yet efficient exploration of potential thresholds.
Emotion, EOG, and EDA Monitoring in
Cold Pressor Conditions (EMOCOLD)
Data Collection
The data collection process employed wearable sensors
to record EDA and EOG signals from participants dur-
ing controlled stress trials. EOG recording used the same
setup as the BLINKEO data collection. Electrodes were
positioned above and below one eye to detect vertical eye
movements by capturing corneo-retinal potential shifts. EDA
signals were recorded using a galvanic skin response sensor
with MCP606 (microchip technology) operational amplifiers,
operating at an excitation voltage of 0.5 V to measure skin
conductance. Electrodes were placed on the forehead, chosen
for its sensitivity to stress-induced sweat gland activity.
The recorded signals were digitized and processed in real
time using an ESP32-S3 WROOM-1 (Espressif Systems)
microcontroller, which managed data acquisition, signal
processing, and wireless transmission.

A total of 16 participants, between ages 26 and 31
years took part in the study, and demographic information,
including race and sex, was collected and is summarized
in Table 2. Data were taken from each subject only once.
Each trial lasted about 10‐15 minutes and was divided into 3
phases: baseline, CPT, and recovery. The length of the trial
and the data used for feature analysis is as detailed in Table 3.

JMIRx Med Dao et al

https://med.jmirx.org/2025/1/e69472 JMIRx Med 2025 | vol. 6 | e69472 | p. 5
(page number not for citation purposes)

https://med.jmirx.org/2025/1/e69472


Table 2. Characteristics of trials in the Emotion, Electrooculography, and Electrodermal Activity Monitoring in Cold Pressor Conditions Dataset
(EMOCOLD) dataset. Demographic details of the study participants, including race and assigned sex.
Characteristic Count, n (%)
Assigned sex
  Male 11 (69)
  Female 5 (31)
Race
  Asian 11 (69)
  Hispanic or Latino 2 (13)
  White 1 (6)
  Middle Eastern or North African 1 (6)
  Black or African American 1 (6)
Total participants 16 (100)

Table 3. Summary of trial durations across different experimental phases. Summary of the duration of time electrodermal activity and electrooculog-
raphy features are collected across different experimental phases. For each phase—baseline (before hand submersion), cold pressor test (cold water
immersion), and recovery (after hand removal)—the table lists the minimum, 25th percentile, median, 75th percentile, and maximum duration (in
seconds).
Experiment Length (seconds)

Minimum Median (IQR) Maximum
Trial
  Baseline 245.6 281.7 (274.0-310.0) 414.8
  CPTa 261.9 290.4 (278.4-306.4) 358.0
  Recovery 238.6 261.3 (252.8-278.1) 311.2
Feature collection
  Baseline 167.5 177.0 (172.1-182.3) 194.0
  CPT 160.6 177.2 (165.0-184.1) 188.2
  Recovery 157.1 172.1 (168.4-180.3) 191.9

aCPT: cold pressure test.

EOG signals were recorded using a 3-electrode configuration
designed to capture vertical eye movements, particularly blink
activity. Electrodes were positioned as follows: 1 above the
eye, 1 below the eye, and a reference electrode in the middle
of the forehead. This setup effectively captured vertical eye
movement signals, with the reference electrode providing
signal stability and reducing noise.

For EDA, a single electrode was placed on the forehead
to measure changes in skin conductance associated with
sympathetic nervous system activation. The forehead was
chosen for its accessibility and stable conductance properties,
making it suitable for detecting stress-related physiological
changes in skin conductance.

Participants wore the device throughout the CPT trials,
which were conducted to simulate acute stress events. The
trials included both physical and environmental stressors.

In the cold-water trials, participants immersed their hand
in a circulating water bath set to a constant temperature of
0‐6 °C. Participants maintained immersion for approximately
5 minutes or until voluntary withdrawal. This provided a
controlled means of eliciting stress responses.

The design of these trials facilitated the collection
of time-series data, capturing participants’ physiological
reactions to both physical exertion and environmental
stressors, thereby providing a comprehensive view of
their autonomic responses under varying stress conditions.
Features were extracted from partitions of this sensor
data, including statistical measures (mean [SD] and var-
iance), signal entropy, peak detection metrics, and fre-
quency-domain characteristics relevant to stress-induced
physiological changes. Figure 2 shows a graphical depiction
of the trial methodology.
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Figure 2. This figure presents a visual representation of the experiment timeline and the signals recorded during the experiment, detailing the
baseline, cold pressor test (CPT), and recovery phases. The raw electrooculography (EOG) and electrodermal activity (EDA) signals across these
phases show no immediately clear trend distinguishing the baseline and recovery from the CPT stressor. However, when specific features such as
blink duration from EOG and Hjorth activity from EDA are extracted and overlaid, more distinct patterns emerge, and can be used to quantify
physiological responses to stress induction and subsequent recovery.

At each stage of the experiment—baseline, CPT, and
recovery—participants completed an excerpt of the Positive
and Negative Affect Schedule (PANAS) and the State-Trait
Anxiety Inventory (STAI-State) to assess their emotional
responses. The PANAS measures both positive emotions
(eg, inspired and attentive) and negative emotions (eg, upset
and nervous) on a 5-point scale, capturing general mood
states. The STAI-State survey, consisting of items such as “I
feel tense” and “I feel worried,” assesses immediate anxiety
levels on a 4-point scale, making it particularly useful for
tracking s-anxiety in response to acute stress. The survey
recorded at each stage is detailed in Multimedia Appendix
2. Administering these surveys at each stage allowed us to
correlate physiological data from EOG and EDA signals with
subjective emotional responses, providing a comprehensive
view of how participants’ mood and anxiety levels evolved
across stress phases.
EOG Signal Segmentation
In analyzing EOG signals, we segmented the data to isolate
individual blink peaks, which are essential for understanding
blink dynamics in response to stress. From these peaks, we
extracted 35 features, including blink duration, amplitude,
frequency, and various acceleration and velocity metrics. A
comprehensive list of these features and their definitions is
provided in Multimedia Appendix 3.

EDA Signal Segmentation
The tonic and phasic components of skin conductance
reveal different aspects of autonomic arousal, with the
tonic level representing a stable baseline and the phasic
response capturing transient, stimulus-driven changes. Tonic
signals vary significantly across individuals due to factors
like skin type and hydration, making them challenging to
analyze consistently in relation to specific stress events.
Phasic responses, however, reflect rapid fluctuations in skin
conductance directly tied to acute stress or anxiety-inducing
stimuli, characterized by quick rises and gradual declines.

Phasic signals were divided into rise and fall phases to
capture the dynamics of the SCR, which is indicative of
sympathetic nervous system activation. Specifically, peaks
were detected by identifying rapid increases in skin con-
ductance (rise phases) followed by gradual decreases (fall
phases). To preprocess the EDA data and extract the phasic
signal, motion artifacts were identified and removed, to
make the data suitable for downstream features. A first-order
low-pass Butterworth filter was applied to isolate low-fre-
quency components indicative of meaningful physiological
signals.

This signal was divided into windows of 1 second in
length. Each section was analyzed to determine key features,
such as mean value, signal range, and standard deviation. 15
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features were extracted from these windows, and the full list
of features and their definitions can be found in Multimedia
Appendix 4. These features are critical for quantifying the
intensity and duration of autonomic arousal events, provid-
ing valuable insights into stress response dynamics. The
segmentation process allowed for the extraction of detailed
temporal characteristics of each skin conductance event,
facilitating a comprehensive analysis of physiological arousal
under stress.
Ethical Considerations
This study was conducted in accordance with ethical
guidelines for research involving human participants. A
total of 16 participants were recruited, following estab-
lished ethical guidelines as delineated in protocols approved
by the institutional review board at the California Insti-
tute of Technology (Caltech; protocol IR22-1280 and
IR21-1102). Participants were not compensated. Participants
were screened based on specific exclusion criteria, including
non-English speakers unable to understand survey require-
ments, inability to provide informed consent, medication
use affecting psychiatric states, pregnancy, irregular eye
conditions (eg, ocular dysmetria), and pre-existing psychiat-
ric or physical illnesses (eg, depression, anxiety, hyperten-
sion, hyperlipidemia, or chronic cardiovascular disease). All
participants’ data were fully anonymized, with identifying
information removed and data transmission secured using
byte-splicing encryption methods. The study adhered to data
privacy and security protocols to ensure the confidentiality
and protection of participants.

Results
Blink Identification EOG (BLINKEO)
Analysis
Building upon the nonintentional blink signal processing
outlined by previous research [34,35], a feature bound-
ing analysis aligned closely with the study’s approach of
differentiating blink events based on slope and derivative
features. By using blink duration alone as a feature, we
achieved a classification accuracy of 87.46% and an F1-score
of 0.80 in distinguishing blinks from wire movements (see
Multimedia Appendix 5). This suggests that feature extraction
can yield strong performance metrics. Even without deep
learning techniques, finding the right markers of blink peaks
can reach the same efficacy of the study’s outlined slope-
based signal differentiation.

In our approach, we systematically evaluate all possi-
ble combinations of 5 selected features to optimize classi-
fication performance for distinguishing blink events from
wire movements. For each feature combination, we apply a
breadth-first search (BFS) traversal to explore and fine-tune
the upper and lower bounds of each feature, seeking the
configuration that maximizes classification accuracy.

The BFS traversal begins with initializing the bounds for
each feature to cover its entire observed range, ensuring that
no data points are culled at the outset. Each feature range is
discretized into 15 bins, allowing for incremental adjustments
to the bounds with a step size (delta) calculated as the range
divided by the number of bins. These initial bounds are stored
as a “node” in the BFS queue, representing a unique culling
configuration.

During each iteration of the BFS traversal, we dequeue a
culling configuration and calculate its classification accu-
racy and F1-score using a performance function. If the
configuration achieves a higher accuracy than previously
recorded, it becomes the current optimal configuration. The
BFS traversal then generates neighboring configurations
by slightly tightening the bounds for each feature—either
increasing the lower bound or decreasing the upper bound by
the computed delta. Each of these neighboring configurations,
if unvisited, is added to the queue for further exploration.

This BFS traversal continues until all relevant bound
configurations for the current feature combination are
evaluated. The outcome is an empirically derived set of
feature bounds that maximizes classification performance for
each combination of features. By applying this process across
all combinations of the selected 5 features, we ensure a
comprehensive search of the parameter space, yielding an
optimal culling pipeline tailored for precise blink detection.
This method demonstrates the robustness of combining BFS
with multifeature analysis to achieve a high-performing,
data-driven classification model.

In our approach, we select combinations of 5 high-quality
features and use a BFS traversal to optimize their combined
bounds for maximal classification performance. For each
combination, BFS systematically explores adjustments to the
upper and lower bounds of each feature, identifying the
optimal configuration that yields the highest accuracy and
F1-score.

The optimal feature combination achieved an accuracy of
98.17% and an F1-score of 0.8734, using 5 key features that
capture distinctive characteristics of blink dynamics. These
features include velocity entropy, the entropy of the first
derivative of the signal, which measures the variability and
complexity of the blink motion; signal entropy, the entropy of
the signal itself, providing a broader assessment of the overall
blink pattern; slope at closing tent, maximum acceleration, the
maximum acceleration during the closing phase of a blink,
which isolates the rapid deceleration typical of blink closure;
blink duration, representing the total time span of the blink
event; and maximum acceleration velocity ratio, the ratio
between the maximum acceleration and maximum velocity
during the closing phase, which captures the relationship
between these peak dynamics, indicative of voluntary eye
closure. Figure 3 shows the results of each feature bounding
step, against the BLINKEO labeled examples.
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Figure 3. Optimal culling steps for differentiating blink events from wire movement artifacts in electrooculography (EOG) data. This figure presents
the sequential culling steps optimized to achieve the highest accuracy and F1-score in distinguishing blink events (green) from wire artifacts (blue)
in EOG data. Each subplot demonstrates a unique culling step, applying specific feature thresholds to progressively refine the data. The final subplot,
“Peaks preserved over culling pipeline,” illustrates the proportion of retained peaks at each stage for both blink and wire signals, showcasing the
efficacy of each step in isolating genuine blink events.
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These features together form a comprehensive representation
of blink characteristics, enabling differentiation of blinks
from other signal types in the culling pipeline. This highlights
how strategically selected bounds on multiple features, when
combined, result in high classification performance without
relying on complex algorithms.
Emotion, EOG, and EDA Monitoring in
Cold Pressor Conditions (EMOCOLD)
Analysis

Emotion Analysis
The EMOCOLD dataset analysis highlights significant
physiological and emotional responses to acute stress induced

by the CPT. Figure 4 shows participants’ aggregated self-
reported survey scores for positive affectivity, negative
affectivity, and s-anxiety across the 3 trial stages: baseline,
CPT, and recovery. Figure 4 shows that for each stage, survey
responses were summarized and visualized using box plots,
which display the distribution of scores. Positive affectivity
and negative affectivity are scored on a scale of 5‐25, and
s-anxiety is scored on a scale of 20‐80.
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Figure 4. User-reported survey responses during each stage of the trial, displaying both box-and-whisker plots and column graphs for positive
affectivity, negative affectivity, and state anxiety (s-anxiety) across the baseline, cold pressor test (CPT), and recovery stages. During the CPT,
participants showed higher levels of positive affectivity, negative affectivity, and stage anxiety. Elevated levels recovered to baseline responses when
participants took their hand out of the cold-water bath during the recovery phase. STAI: State-Trait Anxiety Inventory.

Participants reported increased positive and negative
affectivity, as well as elevated s-anxiety during the CPT,
which returned to baseline during recovery. This dual
affective response suggests heightened arousal may include
both alertness and discomfort. The recovery phase indicates
effective autonomic regulation, as emotional states normal-
ized once the stressor was removed. These findings validate
the CPT as a method for inducing short-term anxiety.

SHAP Analysis
Overview
SHAP analysis is a method used to explain the output of
machine learning models by breaking down the prediction
into contributions from each feature. SHAP values are based
on Shapley values from cooperative game theory, which
attribute the impact of each feature on the model’s output by
treating each feature as a “player” in a game and calculating
its contribution to the final prediction.

In this study, SHAP analysis was performed on combina-
tions of 5 features, selected from the total feature set of 15
EDA and 35 EOG features, highlighting the significance of
how certain biomarkers, used together, reveal more prominent
interactions and effects on model predictions. This approach
underscores that certain biomarkers, while potentially less
impactful individually, can demonstrate substantial impor-
tance when analyzed as part of a group. By evaluating these
interactions, we understand how combinations of features can
provide insights into the model’s behavior that single-feature
analyses might overlook.

The quality of a set of features is determined by consider-
ing their collective contribution to the model’s predictions,
measured through the mean absolute SHAP values across
the dataset. A high-quality set of features is one where the
combination of features demonstrates substantial importance,
as indicated by a higher mean absolute SHAP values. This
benchmark reflects not only the magnitude of individual
contributions but also the degree to which the features, as a
group, interact to enhance the predictive power of the model.
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The SHAP value maps provide insights into how various
EOG features used in combination, and EDA features used in
combination, contribute to predictions for positive affectiv-
ity negative affectivity, and s-anxiety. Each SHAP sub-plot
illustrates the impact of individual features on model outputs,
with higher SHAP values (toward the right) signifying a

positive contribution to the prediction, and lower SHAP
values (toward the left) indicating a negative contribution.
Figure 5A highlights the SHAP analysis identifying the
combination of features that best polarize model predictions
across the affective states.

Figure 5. 5A. Shapley additive explanations (SHAP) analyses for optimal combinations of 5 electrooculography (EOG) features (top row) and 5
electrodermal activity (EDA) features (bottom row) for positive affectivity (left column), negative affectivity (middle column), and state anxiety
(right column). 5B. SHAP analysis of feature combinations. This analysis explores the quality of distinguishing different affectivity levels using
different sets of features. This is an example of 5 EOG features and their impact on the negative affectivity score. Substituting one key feature with
another can reveal new interdependencies among remaining features, thereby enhancing the model’s interpretability.
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EOG Feature Analysis
Among the EOG features analyzed, the opening phase energy,
the integral of the opening phase of the peak signal, and
opening signal range, the amplitude of the opening phase
of the peak signal, consistently appeared in optimal fea-
ture combinations across all three outputs, suggesting their
robustness as predictors. In addition, the signal height feature
exhibited a particularly strong influence on predictions for
negative affectivity and s-anxiety, underscoring its signifi-
cance in these contexts.

EDA Feature Analysis
Among the EDA features analyzed, Hjorth parameters and
the signal SD emerged as important predictors across
the different affective states. These findings highlight the
importance of analyzing feature interactions to reveal critical
combinations that drive model performance, offering deeper
insights into the physiological signals underpinning emotional
and stress-related states.

The SHAP analyses in Figure 5B illustrate the importance
of considering features in combination when identifying the

most relevant biomarkers. By selecting sets of 5 features,
we aim to identify a group of biomarkers that not only are
individually relevant but also work effectively together. In
Figure 5B, the inclusion of the feature opening phase energy
contributes significantly to the model’s performance, yielding
a well-defined distinction in SHAP values. When opening
phase energy is removed from the features considered, model
performance decreases, and features such as blink full-close
duration appear to show more distinction.

Discussion
Principal Findings
The main findings of this study show the potential of
EOG and EDA as powerful tools for identifying nuanced
physiological biomarkers associated with s-anxiety. Through
the development and analysis of the BLINKEO and EMO-
COLD datasets, we have introduced novel datasets and
used advanced feature extraction techniques with interpret-
ability methods such as SHAP analysis to uncover anxi-
ety-specific markers. Our results emphasize the importance
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of understanding biomarkers in their context-dependent
interactions and collective contributions to predictive models.

By systematically evaluating combinations of features,
we mitigated challenges often faced in the literature, where
biomarkers show inconsistent or nonsignificant correlations
with anxiety due to situational variability. For instance,
while blink rate and skin conductance metrics have been
previously explored, our analysis reveals that their predictive
use depends heavily on contextual factors, such as the type
and intensity of the stressor. For example, biomarkers like
blink duration and skin conductance peaks performed well
under controlled CPT conditions but may not generalize to
other stress-inducing scenarios like public speaking. This
underscores the need for adaptive, context-sensitive models
that account for the situational variability of physiological
responses.

A key contribution of this work is the identification
of feature combinations that consistently provide reliable
predictions. For EOG data, features like blink duration, peak
height, and the opening integral were shown to be robust
predictors across various emotional states. Similarly, for
EDA data, features such as the mean signal, permutation
entropy, and Hjorth activity emerged as significant contribu-
tors. By leveraging SHAP analysis, we identified not only
which features are most relevant but also when and how
they interact to enhance model performance. This approach
offers a more comprehensive understanding of physiological
responses compared to studies focusing solely on single-fea-
ture analyses.

Our findings bridge a critical gap in the literature by
offering a systematic approach to addressing the variability
and context-dependence of physiological biomarkers. This
research advances the field by providing a framework for
building more robust, interpretable, and context-sensitive
models for anxiety assessment. The ability to dynamically
adapt to different stress scenarios makes these biomarkers
more applicable to real-world settings, paving the way for
more personalized and effective mental health interventions.
Limitations
This study advances s-anxiety biomarker detection using
EOG and EDA, but several limitations should be noted.

The participant pool (N=16) was demographically skewed,
with a predominance of male and Asian participants, limiting
generalizability. Data were collected only once per subject,
preventing analysis of intraindividual variability over time.
Future studies should incorporate larger and more diverse
populations with longitudinal data.

The CPT was conducted in a controlled lab environment,
which may not fully reflect real-world anxiety triggers.
In addition, motion artifacts in EOG recordings, despite
filtering efforts, could impact signal clarity. EDA signals
were recorded using a single forehead electrode, though
different placements (eg, fingertips) may improve accuracy.
Improved artifact detection and additional motion-tracking
sensors could enhance data quality.

Feature selection for SHAP analysis focused on optimizing
interpretability, but alternative selections may yield different
insights. Models and analyses constructed using this dataset
may not generalize well to other stress-inducing scenarios.
External validation using independent datasets is necessary to
confirm these findings.
Future Work
Future work should focus on validating these findings
across diverse populations and stress-inducing contexts to
further enhance the generalizability of these biomarkers.
An important next step is to investigate potential gender-
based and race-based differences in physiological responses
to acute stress and our current methods of inducing stress,
as this study was not explicitly designed for such analy-
sis but acknowledges its relevance. In addition, integrating
these models into wearable technology has the potential
to revolutionize mental health monitoring, providing real
time, personalized insights that could transform how we
understand and manage anxiety. By addressing the chal-
lenges of situational variability and leveraging the strengths
of combined biomarker analyses, this study contributes
significantly to the growing field of wearable health
technology and its applications in mental health.
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Multimedia Appendix 1
The bounds of each peak were determined by performing 2 binary searches within the position domain of the signal—one to
the left of the peak and one to the right.
[DOCX File (Microsoft Word File), 124 KB-Multimedia Appendix 1]

Multimedia Appendix 2
The survey items from the Positive and Negative Affect Schedule (PANAS) and the State-Trait Anxiety Inventory (STAI-
State) were used to assess participants’ emotional and anxiety responses during the experiment. The PANAS scale consists of
10 items measuring positive affectivity and negative affectivity, each rated on a 1-5 Likert scale, where higher scores indicate
stronger affective states. The STAI-State consists of 20 items assessing state anxiety, measured on a 1-4 Likert scale, where
responses indicate varying degrees of agreement with statements reflecting anxiety levels. Higher scores in negative affectivity
and anxiety-related items indicate greater distress, while higher scores in positive affectivity items indicate greater emotional
well-being. The table below details each item, its corresponding scale, and the affectivity or anxiety dimension it evaluates.
[DOCX File (Microsoft Word File), 17 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Feature names and definitions extracted from windowed segments of electrodermal activity (EDA) signals.
[DOCX File (Microsoft Word File), 15 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Feature names and definitions extracted from windowed segments of electrooculography (EOG) signals.
[DOCX File (Microsoft Word File), 17 KB-Multimedia Appendix 4]

Multimedia Appendix 5
A breadth-first search was performed to find the optimal range for distinguishing blinks from noise artifacts using the blink
duration feature, which was extracted from electrooculography (EOG) signal peaks using our method. The identified bounds of
0.1227 to 0.3990 seconds align with values reported in the literature.
[DOCX File (Microsoft Word File), 43 KB-Multimedia Appendix 5]
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