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Abstract

Background: Rapid and safe deployment of lateral-flow antigen tests, coupled with uncompromised quality assurance, is
critical for outbreak control and pandemic preparedness, yet real-world performance assessment still lacks laboratory and
quantitative approaches that remain uncommon in current regulatory science. The approach proposed here can help standardize
and accelerate early phase appraisal of antigen tests in preparation for clinical validation.

Objective: The aim of this study is to present a quantitative, laboratory-anchored framework that links image-based test
line intensities and the population distribution of naked-eye limits of detection (LoD) to a probabilistic prediction of positive
percent agreement (PPA) as a function of viral-load-related variables (eg, quantitative real-time polymerase chain reaction
[qRT-PCR] cycle thresholds [Cts]). Using dilution-series calibrations and a Bayesian model, the predicted PPA-vs-Ct curve
closely tracks the observed PPA in a real-world self-testing cohort.

Methods: The proposed methodology combines: (1) a quantitative evaluation of the test signal response to concentrations of
target protein and inactive virus or active virus, (2) a statistical characterization of the LoD using the observer’s visual acuity of
the test band, and (3) a calibration of a gold-standard method (eg, qRT-PCR cycles) against virus concentration. We elaborate
these quantitative methods and unfold a Bayesian-based predictive model to describe the real-world performance of the antigen
test, quantified by the probability of positive agreement as a function of viral-load variables like qRT-PCR Cts.

Results: We applied the methodology by characterizing each brand of COVID-19 antigen test and estimating its real-world
probability of agreement with qRT-PCR. We aligned protein and inactivated-virus standard curves at matched signal intensities
and fit a linear calibration linking protein to viral concentrations. Using logistic regression, we modeled the PPA as a
continuous function of qRT-PCR Ct, then integrated this curve over a predefined reference Ct distribution to obtain the
expected sensitivity. This standardization enables consistent performance comparisons across sites.

Conclusions: Modeling performance under real-world conditions requires coupling laboratory evaluation with the popula-
tion’s ability to perceive the test’s visual signal. We represent observer capability as a probability density function of the
LoD over the signal-intensity domain. Rather than reporting bin-based sensitivity, we summarize performance with the
PPA as a continuous function of qRT-PCR Ct. Our framework produces PPA-Ct curves by composing (1) normalized
signal-to-concentration models from the laboratory, (2) the observer LoD distribution, and (3) a Ct-to-viral-load calibration.
The resulting inferences are inherently context-bound—disease-, assay-, and setup-specific. External validity depends on
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the particular antigen lateral-flow test, the user population (visual acuity and interpretation), and cross-laboratory qRT-PCR
calibration. Comprehensive clinical studies under intended-use conditions are still required before making generalized claims.

Trial Registration: ClinicalTrials.gov NCT05884515; https://clinicaltrials.gov/study/NCT05884515

JMIRx Med 2025;6:68376; doi: 10.2196/68376

Keywords: COVID-19; SARS-CoV-2 antigen test; lateral flow assay; point-of-care diagnostics; real-world performance;
Langmuir—Freundlich isotherm; Bayesian regression (Monte Carlo); probability of positive agreement; limit of detection;

image-based signal quantification

Introduction

Quantifying the performance of antigen lateral flow tests
(Ag-LFT) according to the US regulatory science stand-
ards commonly requires the calculation of test perform-
ance statistics—for example, sensitivity or positive percent
agreement (PPA) of an antigen test’s (AT) binary assessments
with reference to the quantitative real-time polymerase chain
reaction (QRT-PCR) gold standard [1-3]. These statistics are
based on human clinical samples, requiring paired qRT-PCR
cycle thresholds (Cts) to generate performance data and
corresponding test validations as described in a comprehen-
sive literature review for COVID-19 studies [4]. The clinical
performance of Ag-LFTs increases at higher viral loads (low
Ct values), which present early on in the symptom window,
and test performance declines with low viral loads (high Ct
values) at the end of the acute disease window [2,5-10]. These
realities motivate a fast, laboratory-anchored, model-based
appraisal that anticipates PPA-vs-Ct before large trials. That
is, AT performance is closely related to the sample viral
load and the performance statistics are dependent on several
factors such as viral load distribution, specific virus variants
[8.9,11], and symptomatic versus asymptomatic cases [7,12],
as well as the observer’s training [6,13-17]. Hence, the
regulatory process is typically a lengthy process and includes
appropriate sample size and requires a viral load distribution
to cover the spectrum of target concentrations.

Because Ag-LFTs are powerful tools for transmission
control and epidemic mitigation, the fast and safe deploy-
ment of tests without compromising quality assurance in
the evaluation process is key for outbreak control and
pandemic preparedness. Home testing and easy access to
Ag-LFTs enables them to be used for serial testing, as has
been recommended. For COVID-19 Ag-LFTs, serial testing
increases effective sensitivity [18], including in home testing
[7,13,19].

We have developed a methodology for the quantita-
tive evaluation of SARS-CoV-2 ATs based on laboratory
measurements of the regions of interest (ROIs), including the
test’s regions and corresponding normalized signal inten-
sity and binary naked-eye user assessments for positive
or negative results. In both cases, we characterized the
test performance according to the sample concentration of
the target recombinant protein, with heat-inactivated virus
as well as biologically active virus, and we used human
samples self-collected 2 times per week, under a prospec-
tive clinical protocol (ClinicalTrials.gov: NCT05884515). To
support accurate self-reporting, participants received a brief,
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standardized orientation with visual aids on test interpreta-
tion, photo capture, and upload procedures. Including the
statistical characterization of the user population’s limit of
detection (LoD) in the signal intensity domain, we developed
a predictive model for the probability of positive agreement in
real-world conditions.

Our method involves (1) characterizing the AT signal
intensity with protein and inactivated virus dilutions, (2)
calibrating the qRT-PCR cycles with virus dilutions, (3)
characterizing the signal intensity LoD of the user population
for the AT, and (4) predicting the real-world probability of a
positive agreement signal response of the AT. Our methods
have the advantage of being formulated using continuous
variable analysis and probability models instead of plain
discrete analysis and sample statistics.

We demonstrate our methodology capabilities when
comparing the predicted probability of positive agreement
with that generated using real-world data collected through an
institutional review board (IRB)-approved study for frequent
antigen testing to monitor COVID-19 in an underserved
population (ClinicalTrials.gov: NCT05884515). Participants
consisted of individuals from vulnerable populations in
low-income and assisted-living facilities located in the city
of Chelsea, MA. Recruitment included people living in
state-regulated, independent senior living communities and
other residents of Chelsea. The consented participants were
provided with ATs to routinely self-test for COVID-19 at
home or in community centers, 2 times per week, uploading
the test results and photos to the project informatics platform.
We obtained confirmatory qRT-PCR data for all positive
results detected by the home AT and for a random number
of negative results from an independent Clinical Laboratory
Improvement Amendments laboratory. The certified Clinical
Laboratory Improvement Amendments laboratory procedures
were approved by the IRB and the qRT-PCR data shared
included the Ct values for each submitted test.

We describe the quantitative analysis of the AT for signal
intensity and naked-eye binary data, the characterization of
the user’s LoD, the calibration of the qRT-PCR, and the
formulation of the predictive model. In the Results section,
we illustrate the application of the described methodology
with the characterization of an AT in the common cassette
device presentation and compare the predicted result with the
real-world probability of positive agreement.

JMIRx Med 2025 | vol. 6 1 e68376 | p. 2
(page number not for citation purposes)


https://doi.org/10.2196/68376
https://med.jmirx.org/2025/1/e68376

JMIRx Med Bosch et al
of the test band, and (3) a calibration of a gold-standard
method (ie, qRT-PCR cycles) against virus concentration. We
elaborate these quantitative methods and unfold a Bayesian-
based predictive model to describe the real-world perform-
ance of the AT, quantified by the probability of positive
agreement as a function of viral-load variables like qRT-PCR
Cts. Figure 1A describes the different types of information
involved in the predictive model.

Methods

Overview

The present methodology combines (1) a quantitative
evaluation of the test signal response to concentrations of
target protein and inactive or active virus, (2) a statistical
characterization of the LoD using observers’ visual acuity

Figure 1. (A) Schematic of the inference model. Input components are based on various laboratory calibrations of the antigen test—normalized signal
intensity against protein and/or virus concentrations, qRT-PCR Cts against virus concentrations, and the limit of detection PDF of the observer
population’s visual assessment of the test result. The model predicts performance for real-world conditions of the antigen tests, quantified as the
probability of agreement function. (B) Schematic of the antigen test results as positive or negative (recombinant antigen and/or inactivated virus or
patient sample), according to the manufacturer’s protocol and read at the specified development time. The cassette image was generated using a cell
phone camera, and the annotated regions of interest were the control band (C), local white background (W), and test band (T) areas. Mean gray scale
values from these regions of interest are used to compute normalized signal intensity for model fitting. Ct: cycle threshold; PDF: probability density

function; PPA: positive percent agreement; qRT-PCR: quantitative real-time polymerase chain reaction.
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AT Signal Response Characterization

In a selected lateral flow test, we measured the signal
intensity of the test, white background, and control band,
captured digitally in a photograph using a cell phone camera
(Figure 1B). We processed this image and evaluated the
average pixel intensity in 3 ROIs on the nitrocellulose
strip. The resulting gray scale-normalized signal intensity
is a continuous variable independent of the observer. There
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are existing methodologies to assess AT performance, such
as test band signal intensity [20] and LoD studies [21].
We calculated the signal intensity by subtracting the white
background and test band average pixel brightness and
normalizing by the largest signal intensity present in the
dataset. The software was designed to provide use instruc-
tions, obtain gray scale pixel intensity of the ROI, compute
normalized pixel intensities, and generate a written report
[22].
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We analyzed the signal intensity response of an AT,
calculating the signal intensity across a dilution series of
the target recombinant protein. To fit these data, we used
techniques based on isotherm modeling [23,24] and used the
Langmuir-Freundlich adsorption model [25,26],

b
= kC

= — 1

1+kcCP M
with I being the normalized signal intensity, C the concen-
tration, k the adsorption equilibrium constant, and b an
empirical exponent close to one. The model parameters to
estimate by fitting the normalized intensity data corresponded
to the adsorption constant k and the exponent b. We used
a Bayesian regression solved with Monte Carlo sampling,
which provided a description of the model uncertainties. We
followed a similar procedure to characterize the relationship
of the normalized signal intensity with other variables in
addition to that of using recombinant protein concentrations
(eg, with a known plaque-forming unit/mL of SARS-CoV-2
followed by chemical inactivation of the virus).

Probability of Agreement Function in
Naked-Eye Assessment

A common use of ATs involves human naked-eye interpre-
tation of the result. The outcome of each assessment is a
binary variable, either positive or negative (1 for positive
or 0 for negative for mathematical analysis). We considered
that for the naked-eye analysis, individuals required training
to follow specific protocols to properly report test results.
Before self-testing, participants completed a brief, standar-
dized orientation (10-15 min) delivered in English or Spanish
according to specifications of the Chelsea study. The module
covered (1) correct nasal specimen collection and adherence
to the manufacturer’s instructions for use, (2) strict timing of
the development/read window, (3) interpretation of positive,
negative, and invalid outcomes, and (4) photographing and
uploading results from a cell phone camera or tablet to the
study’s digital platform in real time. Participants received
a 1-page pictorial quick-start guide. In addition, refresher
prompts were available on the study platform. Thereby,
efforts were made to stabilize the observer LoD distribution
data used in our model.

The PPA or sensitivity of a test is a well-known measure
of test performance. The PPA is strongly dependent on the
viral concentration distribution of the tested samples (eg,
sensitivity improves with higher concentrations of the target).

For an accurate description of the naked-eye performance
of the test, we estimated the PPA as a function of the
nucleoprotein concentration or other viral concentration—rela-
ted variable, such as qRT-PCR Cts [8]. We modeled the PPA
with a logistic function,

1 )

p(X) = 1 +e—(a+bx)
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with x being the viral-load-related variable and p(x) being
the probability of positive agreement function. The model
parameters to estimate fitting the binary naked-eye data
are the intercept a and the slope b. The PPA function is
commonly described against qRT-PCR cycles; similarly, we
applied this method for other viral-load—related variables (like
concentration and normalized signal intensity).

Predictive Model for the Probability of
Positive Agreement

The formulation of the model followed a probabilistic
approach, meaning that variables and relationships across
the model were randomized and described by probability
density functions (PDFs). We defined random variables used
in this formulation. There was a group of continuous positive
variables that were related to the viral load: the recombi-
nant protein concentration X, the virus concentration Xy,
the test—normalized signal intensity X, the observer LoD—
normalized signal intensity Xxj,q, and the qRT-PCR cycles
Xcycle- In addition, we had the binary agreement variable A,
which indicated the observer assessment of the test outcome,
with values of O (for negative) or 1 (for positive).

For the purpose of this analysis, the LoD did not represent
an exact value. We analyzed the LoD associated with a group
of observers (ie, a certain population) or a single observer;
LoD depends on different environmental circumstances (eg,
illumination, visual context) and individual abilities. Hence,
we consider the LoD as a random variable defined by a PDF
Pron(Xi0a) in the domain of the normalized signal intensity
Xint- The probability of positive agreement (ie, the conditional
positive agreement PDF) was the corresponding cumulative
distribution function of the LoD PDF,

Xint
P(A = 1] Xin) = f PrLop(X10d) dXiod (3)
0

Correspondingly, the LoD PDF in the signal intensity domain
was the derivative of the probability of positive agreement in
the same domain. It summarized the process of observation
and assessment of the testing device by the observer or the
observer population.

Probability of Positive Agreement Across
Viral-Load-Related Domains

To follow, we transformed the probability of agreement in
the signal intensity domain (expression 3) to the rest of the
viral-load-related domains: recombinant protein concentra-
tion, viral concentration, and qRT-PCR cycles. The defined
random variables and their causal dependencies are described
in the Bayesian network of Figure 2. Let us consider, first,
the case of the protein concentration domain. As per the
intensity analysis described previously, we experimentally
estimated a conditional probability for the signal intensity
given the recombinant protein concentration p(xint|xpmt).
We used this information to propagate the probability of
positive agreement from the signal intensity domain to the
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protein concentration domain. For this purpose, we applied
the probability chain rule,

P(A, Xint | xprot) = P(A | Xints xprot) P(xim | xprot) (4)

Bosch et al
Integrating in the X,y domain and taking into
account that the observer assessment is only depend-
ent on normalized signal intensity (see Figure 2)

p(A | Xint » xprot) = p(A | xint)’

Figure 2. Bayesian network showing (boxes) the model random variables, (arrows) their causal relations and (annotations) relation models. LoD:

limit of detection; PCR: polymerase chain reaction.
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P(A | xprot) = fP(A | xint) p(xint | xprot) dxint (5) & p . .
cycles Xcycle = {X1, X2,...X4, ..., Xy} , the previous integral is

The functions within the integral involve the PPA in the
signal intensity domain (expression 3) and the PDF of
signal intensity conditioned to the protein concentration. We
determined the integral by Monte Carlo integration. Similarly,
we transformed the probability of agreement to the virus
concentration domain and qRT-PCR cycles domain as

p(A | xvir) = /P(A | xim) p(xint | xprol) p(-xprot | xvir) dxint dxprot (6)
and
P(A | xcycle) = /P(A | xint) p(xint | xprot) p(xprot | xvir) p(xvir | xcycle) dxim dxprot dxvir (7)

To model the probability of agreement in the domain of
gRT-PCR cycles, as is common for real-world testing, we
solved Equation 7 by Monte Carlo integration. For this
purpose, we needed to estimate models for the 4 conditional
probabilities within the right-hand integrand, which involve
the information represented in Figures 1 and 2. In our
implementation, we first integrated in the virus concentration
domain to have a relationship between the protein concentra-
tion and the qRT-PCR cycles, p(Xprot | Xcycle). Thus,

P(A | chcle) = /P(A | xint) p(xinl | xpml) p(xpml | xcycle) dxint dxprol (8)

The conditional probability of positive agreement
p(A|xcycle) fully describes the test performance in the
qRT-PCR cycle domain. For a given PDF of the sample
polymerase chain reaction (PCR) cycles distribution, the
resulting sensitivity p (4) is by integration,

P(A =1)= /P(A =1| xcycle) p(xcycle) dxcycle (9)
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approximated by the average of the PPA function evaluated at
the sample qRT-PCR cycles,

1 N
PA=1) ~ 2 pA=1]x) (10)

We have made software available to calculate the probability
of agreement [22].

Ethical Considerations

This study was reviewed and approved by Advarra IRB for
the protocol “Center of Complex Interventions — IDx20-001,
Community frequent antigen testing to monitor COVID-19
in senior public housing setup (Pro00059157).” The most
recent continuing review approval was granted on Novem-
ber 13, 2023, with an approval period through Novem-
ber 13, 2024. Advarra attests compliance with the US
Department of Health and Human Services 45 CFR 46
and Food and Drug Administration 21 CFR 50/56 and
is registered with OHRP/FDA (IRB number 00000971).
All procedures adhered to the ethical standards of the
responsible institutional/national committees and the World
Medical Association Declaration of Helsinki. All personnel
received certification and training through the Collaborative
Institutional Training Initiative for human subjects research
protection. There was no compensation to participants.

All study personnel completed Collaborative Institutional
Training Initiative coursework prior to engaging in any
human-subjects activities. This training is required by our
IRB and institutional policy and included role-appropriate
modules in Biomedical Human Subjects Research, Good
Clinical Practice, Responsible Conduct of Research, Conflicts
of Interest, and Health Insurance Portability and Account-
ability Act Privacy/Security. Certificates were verified by
the private investigator and maintained on file. The curric-
ulum covers the Belmont Report principles and applicable
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regulations (45 CFR 46 and Food and Drug Administration
21 CFR Parts 50/56), informed consent and documentation,
recruitment and equitable selection, protection of vulnera-
ble populations, adverse event and deviation reporting, data
privacy/confidentiality, and secure data management.

Because the protocol involves point-of-care antigen testing
and handling of respiratory specimens, staff also com-
pleted biosafety/Blood borne Pathogen training and fol-
lowed BSL-2-appropriate standard operating procedures. All
participant-facing procedures (screening, consent, anterior-
nares swab collection, test execution, results disclosure) were
conducted only by trained personnel under IRB-approved
standard operating procedures. Study data were coded with
limited identifiers, stored in access-controlled databases, and
managed according to least-privilege access and audit-trail
requirements. This statement documents personnel compe-
tence and compliance with human-subjects protections for the
conduct of this study.

Prior to study procedures, all participants were informed
of the study purpose, procedures, potential risks and benefits,
data uses, and their right to withdraw without penalty. Written
informed consent was obtained from each participant using
IRB-approved consent materials. No identifiable personal
information is reported in this manuscript.

Data were collected and stored using IRB-approved
procedures designed to protect participant privacy and
confidentiality; only deidentified or aggregated data are
presented. For studies of internet/digital tools, we complied
with applicable local, national, and international regulations
on the protection of personal information, privacy, and human
rights.

Any protocol amendments, consent-form changes, or
substantive reportable events (eg, unanticipated problems,
adverse device effects, or protocol violations affecting rights,

https://med.jmirx.org/2025/1/e68376

Bosch et al

safety, or data integrity) were submitted to Advarra in
accordance with IRB requirements prior to implementation.

Results

We illustrate the application of the described methodology to
characterize the analyzed COVID-19 AT brand and predict
the corresponding real-world probability of agreement against
qRT-PCR data.

Figure 3 shows the signal intensity data corresponding
to protein dilutions prepared in the laboratory for this
AT and the corresponding Langmuir-Freundlich regression
model; from the analysis, we modeled the conditional PDF
P (Xint| Xprot) - Figure 4 illustrates our modeled relationships
across various viral-load-related variables based on our
experimental characterization of the AT and gRT-PCR
calibration. Figure 4A shows the signal intensity analysis of
the AT based on serial dilutions of inactivated virus. The
plot is similar to Figure 3, which shows the signal response
to protein dilutions. By combining the protein and virus
curves for common signal intensity responses, we calibrated
a linear model that describes the relationship between protein
and inactivated virus concentration (Figure 4B). Figure 4C
shows the calibration of the qRT-PCR Ct curve based on
PCR-analyzed inactivated virus dilution series. The qRT-PCR
analysis of the dilution series was conducted by the same
center used for self-testing our ordinary (real-world) testing
program. Figure 4D shows the relationship between gqRT-
PCR cycles and protein concentration, transformed from the
viral concentration domain by the protein-virus relationship
characterized in Figure 4B. All the relationships shown in
Figure 4 are modeled as conditional PDFs; for illustration, the
plots show specific confidence limits.
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Figure 3. Normalized signal intensity data for 3 series of protein dilution curves for one of the COVID-19 test brands and Langmuir-Freundlich
model. The estimation of the LoD (LoD confidence intervals at 95%). LoD in signal intensity was 5% in the normalized signal intensity. LoD: limit

of detection.
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Figure 4. Characterization of the signal response with inactivated virus and domain-related transformation functions calibrated from experimental
data. (A) The normalized signal response analysis for serial dilutions of inactivated virus. (B) Protein and virus concentration linear relational model
based on the common signal intensity response of the devices, which allows transforming virus concentration to protein concentration and vice versa.
(C) PCR cycle response calibration to inactivated virus dilution series. (D) qRT-PCR cycle response related to protein concentration, by combining
transformations (B) and (C). LoD: limit of detection; PCR: polymerase chain reaction; pfu: plaque-forming unit; qRT-PCR: quantitative real-time

polymerase chain reaction.
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An additional component required by our predictive method
is the LoD PDF of the observer’s population pyop(Xieq)
in the domain of the signal intensity. Figure 5A shows
the real-world binary assessment conditioned to the signal
intensity (based on Chelsea study participants’ AT results and
uploaded cell phone camera photos), the corresponding PPA
function of the signal intensity estimated by logistic regres-
sion, and the LoD PDF in the domain of the signal intensity.
The former is the observed LoD in the domain of the signal
intensity for the participant population. Although, we can
characterize the LoD in the domain of the signal intensity
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based on the real-world naked-eye data of the participant
population, it is interesting to compare this estimation to
one based on easier-to-obtain naked-eye data. Figure 5B
shows naked-eye test results, the PPA function, and LoD
PDF for trained staff assessing the AT result using a dilution
series of recombinant SARS-CoV-2 nucleoprotein (including
at a concentration of 0; ie, negatives) with blinded concentra-
tion labels. Acknowledging the nonnegligible effect of user
heterogeneity [27] and external conditions, the probability
functions (cumulative and density) were remarkably similar,
as shown in Figures 5A and 5B.
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Figure 5. Probability of positive agreement and LoD probability density for naked-eye assessments of antigen tests in common cassette presentation
made by two different groups of observers. (A) Trained staff observing results from SARS-CoV-2 nucleoprotein dilutions blinded to the observer and
(B) community participants of the study reporting self-tested results. In the case of trained staff, normalized intensity was calculated from laboratory
environment photographs using cell phone cameras. The community participants’ mobile phone photographs were uploaded to the digital reporting
system and the visual assessment was a self-report also recorded in real time through the study’s digital platform. LoD: limit of detection; PDF:

probability density function.
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With the analysis shown in Figures 3-5, modeling the input
components of the predictive model, we performed our
calculations of the PPA function of the qRT-PCR cycles and
compared it with the observed PPA function (ie, derived from
real-world data).

Figure 6A shows the real-world data of binary results
obtained with the AT (ie, self-tested and logged data from
the Chelsea study) and the corresponding observed PPA as
a function of the qRT-PCR cycles. The calculation involved
a description of the model uncertainties, illustrated in the

https://med.jmirx.org/2025/1/e68376

plot with confidence intervals. Superimposed, we represented
the predicted PPA function in the domain of the qRT-PCR,
calculated using our method (Equation 8). The plot clearly
shows that the predicted and observed PPA functions are
very close and within the figure’s confidence limits. Figure
6B shows a box plot of the overall data PPA for samples
collected in the real-world setting for the AT and a compari-
son of the corresponding predicted real-world PPA according
to expression 10. We can verify that both box plots provided
close results, within statistical significance.
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Figure 6. (A) Probability of agreement functions based on experimental real-world data (black curve) and resulting from our predictive model (blue
curve). The experimental PPA function was obtained from a logistic regression analysis of the Chelsea project data for the test users; the gray
area shows 95% confidence limits on the experimental PPA function. (B) Box plots showing the PPA calculated over the real-world raw data, the

observed PPA function, and the predicted PPA function. Box plot bounds are Clopper-Pearson confidence limits for percentiles 50% (box) and 95%
(segment). PPA: positive percent agreement; PCR: polymerase chain reaction.
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a relatively stable visual decision threshold inherent to this
Princi pa | Findin gs device design. We also demonstrated the practicality of paired

Our predictive framework and the COVID-19 case study
indicate that the real-world performance of ATs can be
forecast from rapid laboratory measurements together with
a statistical characterization of the population’s LoD. First,
analysis of test signal intensity and calibration to gqRT-
PCR can be completed entirely under controlled laboratory
conditions—a rapid process that yields precise estimates of
baseline AT performance. Second, we show that empirically
characterizing the observer population’s LoD distribution for
visual interpretation of ATs is feasible.

Across two distinct observer groups and testing settings,
the LoD PDFs and the resulting PPA-normalized signal

https://med.jmirx.org/2025/1/e68376

AT/qRT-PCR sampling with image uploads, with minimal
discrepancy between self-reported results and those recor-
ded by trained staff. Nonetheless, environmental variability
(lighting, optics and image compression, and differences
among phone cameras), user motivation, and other external
factors can broaden the effective LoD distribution.

Because we estimated the PPA as a continuous function
of gqRT-PCR Ct via logistic regression and then compu-
ted the expected sensitivity over a predefined reference Ct
distribution, performance can be standardized across sites,
time periods, and brands despite heterogeneous sampling.
Bayesian fitting used in this study provides a practical path
to hierarchical (brand-level) extensions we have recently
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reported in a complementary publication of the Chelsea
clinical study.

Laboratory analyses and our predictive modeling
framework provide a fast, standardized path to anticipate
clinical performance and guide smarter evaluations of ATs,
which is very useful information for the real-world valida-
tion of ATs. For regulatory decisions, quantitative summa-
ries should be reported —PPA(Ct) with uncertainty bandwith
and expected sensitivity under a preregistered reference Ct
distribution —alongside observer LoD distributions (trained
vs lay) and robustness to environmental and site effects, all
with traceable calibrations and bridging analyses across lots,
sites, and readers. After clearance, life cycle quality control
should be maintained via routine lot verification, stability
tracking, app-enabled field analytics for normalized signal
intensity and invalid rates, anomaly detection, and timely
label updates when variant-linked changes arise. At mini-
mum, each evaluation should include the PPA(Ct) function
with 95% ClIs, expected sensitivity under a stated reference
Ct distribution, observer LoD PDFs, calibration, and fit
diagnostics.

The accurate calibration of the relational components
(Figure 2) is fundamental for the fitness of the model. We
performed triplicate dilution curves during the process of
sample preparation for analysis. Additionally, we verified
that thermal inactivation of the virus, as carried out for
generating the serial virus dilutions, resulted in marginal loss
of capsid protein detection (approximately a 2-fold differ-
ence), likely due to heat stability. We also used chemically
inactivated virus alongside heat-inactivated virus stocks for
signal intensity calibration.

The purpose of this study was to describe a method for
the quantification and prediction of AT performance. Further
work is underway, as we seek to expand our data for the

Bosch et al

comparative analysis of performance prediction across several
test brands, comparative calibration of the qRT-PCR cycles
across service providers, and further characterization of the
signal intensity LoD for common ATs.

Conclusions

An accurate description of the AT signal intensity response
conditioned by variables related to viral load, such as
concentration of recombinant protein and concentration of
inactivated virus, was established under laboratory conditions.
These evaluations involved image processing of photographs
and human naked-eye assessments using dilution series of
the nucleoprotein of the SARS-CoV-2 virus. Modeling the
performance on real testing conditions involved integrating
the mentioned laboratory evaluation with information on the
ability of the observer population to recognize the device’s
visual response, which can be described by the LoD PDF
of the observer population in the domain of the test signal
intensity. We described the overall test performance with
the PPA function of the qRT-PCR Cts instead of using the
common PPA (ie, sensitivity) for segments of clinical data.
Our framework predicts PPA versus Ct by linking laboratory-
normalized signal intensity—concentration models, observer
LoD distributions, and a Ct—viral-load calibration. Conclu-
sions are mathematical and are specific to the disease, assay,
and setup. External validity depends on specific Ag-LFTs,
user populations (for visual acuity and test interpretation),
and qRT-PCR calibration across laboratories. Although the
Chelsea dataset supports internal validity, broader clinical
evaluation under intended-use conditions is required before
generalized clinical claims, particularly for disease targets
other than COVID-19. Therefore, the presented methodology
has promising applications for the evaluation of ATs, as it
involves a quick appraisal of real-world test performance.
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