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Abstract
Background: On average, 1 in 10 patients die because of a diagnostic error, and medical errors represent the third largest
cause of death in the United States. While large language models (LLMs) have been proposed to aid doctors in diagnoses, no
research results have been published comparing the diagnostic abilities of many popular LLMs on a large, openly accessible
real-patient cohort.
Objective: In this study, we set out to compare the diagnostic ability of 18 LLMs from Google, OpenAI, Meta, Mistral,
Cohere, and Anthropic, using 3 prompts, 2 temperature settings, and 1000 randomly selected Medical Information Mart for
Intensive Care-IV (MIMIC-IV) hospital admissions. We also explore improving the diagnostic hit rate of GPT-4o 05‐13 with
retrieval-augmented generation (RAG) by utilizing reference ranges provided by the American Board of Internal Medicine.
Methods: We evaluated the diagnostic ability of 21 LLMs, using an LLM-as-a-judge approach (an automated, LLM-based
evaluation) on MIMIC-IV patient records, which contain final diagnostic codes. For each case, a separate assessor LLM
(“judge”) compared the predictor LLM’s diagnostic output to the true diagnoses from the patient record. The assessor
determined whether each true diagnosis was inferable from the available data and, if so, whether it was correctly predicted
(“hit”) or not (“miss”). Diagnoses not inferable from the patient record were excluded from the hit rate analysis. The reported
hit rate was defined as the number of hits divided by the total number of hits and misses. The statistical significance of the
differences in model performance was assessed using a pooled z-test for proportions.
Results: Gemini 2.5 was the top performer with a hit rate of 97.4% (95% CI 97.0%‐97.8%) as assessed by GPT-4.1,
significantly outperforming GPT-4.1, Claude-4 Opus, and Claude Sonnet. However, GPT-4.1 ranked the highest in a separate
set of experiments evaluated by GPT-4 Turbo, which tended to be less conservative than GPT-4.1 in its assessments.
Significant variation in diagnostic hit rates was observed across different prompts, while changes in temperature generally had
little effect. Finally, RAG significantly improved the hit rate of GPT-4o 05‐13 by an average of 0.8% (P<.006).
Conclusions: While the results are promising, more diverse datasets and hospital pilots, as well as close collaborations with
physicians, are needed to obtain a better understanding of the diagnostic abilities of these models.
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Introduction
Background
In the United States alone, medical errors are the third
largest cause of death [1], and within these errors, diagnos-
tic errors result in the death or permanent disability of
800,000 people each year [2]. Research by The National
Academy of Medicine [3] as well as Newman-Toker et al [4]
estimated that diagnostic errors are responsible for approxi-
mately 10% of patient deaths [3,4] and 6%‐17% of hospital
complications [3]. Moreover, 75% of diagnostic errors are
cognitive errors [5], which are most commonly caused by
premature closure and the failure to consider alternatives
after an initial diagnosis has been established. Cognitive
errors are also naturally linked to the overload and stress
physicians experience, with current burnout rates reaching the
highest ever levels recorded [6]. Given the recent progress
in artificial intelligence (AI), large language models (LLMs)
have been proposed to help with various aspects of clinical
work, including diagnosis [7]. GPT-4, an LLM developed by
OpenAI, has shown promise in medical applications with its
ability to pass medical board exams in multiple countries and
languages [8-11].
Comparing the Diagnostic Abilities of
LLMs
Limited studies have attempted to compare the diagnostic
abilities of LLMs and have mostly included (1) clinical
vignettes; (2) case records directly from clinics; and (3)
case reports, such as the New England Journal of Medicine
(NEJM) Case Challenges. The latter are more complex than
clinical vignettes and contain red herrings and other distrac-
tors to truly challenge a physician [12]. Khan and O’Sulli-
van [12] used 10 case challenges and compared diagnoses
from GPT-3.5, GPT-4 (Bing), and Gemini 1.5 with the
help of 10 physicians who filled out a grading rubric. The
authors reported strong agreement among the graders who
collectively preferred Gemini among the 3 models. Chiu
et al [13] used 102 case records from the Massachusetts
General Hospital and showed that GPT-4 outperformed Bard
and Claude 2 in terms of diagnostic accuracy based on
the International Classification of Diseases, 10th Revision
(ICD-10) hierarchy. Shieh et al [14] asked GPT-3.5 and
GPT-4 to analyze 109 USMLE (United States Medical
Licensing Examination) Step 2 clinical knowledge practice
questions (vignettes) as well as 63 case reports from various
journals. The researchers concluded that while GPT-4 was
87.2% accurate on the vignettes, it was only able to cre-
ate a shortlist of differential diagnoses for 47 of the case
reports (75%). Other scholars have assessed the capabilities
of various LLMs within a given specialty, such as otolaryng-
ology [15] and radiology [16].

Many authors have focused on evaluating the diagnostic
ability of a single LLM: GPT-4 was the most popular choice

as it was generally the most accurate LLM at the time.
Eriksen et al [17] asked GPT-4 to choose 1 of 6 diagnostic
options for each of 38 NEJM case challenges, whereas Kanjee
et al [18] relied on NEJM clinicopathological case conferen-
ces and tasked GPT-4 to first state the most likely diagnosis
and then give a list of differentials. Manual review by the
authors concluded that in 45 out of the 70 cases, the correct
answer was included in the differentials (in 27 cases, it was
the most likely diagnosis). Shea et al [19] used GPT-4 to
diagnose 6 patients with extensive investigations but delayed
definitive diagnoses and showed that GPT-4 has the potential
to outperform clinicians and alternative diagnostic tools such
as the Isabel DDx companion. Fabre et al [20] assessed
10 NEJM cases, and while they concluded that the final
diagnosis was correctly identified by the AI in 8 cases (it
was included in the list of differentials), they also assessed
treatment suggestions and found that GPT-4 failed to suggest
adequate treatment in 7 cases. Notably, some researchers
focused on assessing agreement between doctors and GPT-4,
rather than evaluating the accuracy directly. Hirosawa et
al [21,22] measured the Cohen κ coefficient in 2 different
studies, with the first one relying on cases from the American
Journal of Case Reports and the second one primarily relying
on 52 complex case reports published by the authors. In both
cases, the researchers found fair to good agreement (0.63 [21]
and 0.86 [22], respectively) between doctors and GPT-4.

These evaluation strategies work for case challenges but
would not suffice for a large cohort of highly comorbid
real patients, such as the Medical Information Mart for
Intensive Care-IV (MIMIC-IV) [23], where patients might
have multiple conditions concurrently. To solve this issue,
Sarvari et al [24] outlined a methodology to use AI-assisted
evaluation (LLM-as-a-judge [25]) to quickly estimate the
diagnostic accuracy of different models on a set of highly
comorbid real hospital patients. This automated approach not
only allows the evaluation of larger datasets (we increased the
sample size 10-fold from <100 [typically seen in evaluations
based on clinical cases] to 1000), but also facilitates quick
benchmarking of multiple models, which is our goal in this
study. Automated evaluation provides reliable estimates, as
judged by 3 medical doctors in the aforementioned study [24],
and as AI models improve, we only expect this to become
better. Moreno and Bitterman [26] also hinted at nonhuman
evaluation as a method to allow for a larger-scale beta test,
and Zack et al [27] actively employed this method to match
generated diagnoses to ground truth diagnoses and shared the
prompt as supplementary material.

Despite recent successes, there are subdomains where
GPT-4o has been proven to be inferior to alternative AI
methods or human diagnosis, particularly when it comes to
medical image analysis. GPT-4o was found to perform poorly
in detecting pneumonia from pediatric chest x-ray images
compared to traditional convolutional neural network–based
methods [28]. Zhang et al [29] compared GPT-4o to 3
medical doctors in terms of their abilities to diagnose

JMIRx Med Sarvari & Al-fagih

https://med.jmirx.org/2025/1/e67661 JMIRx Med 2025 | vol. 6 | e67661 | p. 2
(page number not for citation purposes)

https://med.jmirx.org/2025/1/e67661


26 glaucoma cases and found, using Likert scales, that
GPT-4o performed worse than the lowest-scoring doctor
in the completeness category. Cai et al [30] assessed the
clinical utility of GPT-4o in recognizing abnormal blood
cell morphology, an important component of hematologic
diagnostics, in 70 images. The LLM achieved an accuracy of
only 70% (compared to 95.42% accuracy for hematologists),
as reviewed by 2 experts in the field.
Objective
In this study, we compared the diagnostic abilities of
18 different LLMs from 6 different companies on 1000
electronic patient records, using 3 prompts and 2 temperature
settings. Given that the patient records contained the final
diagnostic codes of the patients (the ground truth diagnoses),
we used the LLM-as-a-judge method, where the assessor
LLM merely needs to compare the generated diagnoses from
the 18 different LLMs to the ground truth for each of the 1000
patients. We hypothesized that there would be significant
differences between the diagnostic abilities of the evaluated
LLMs. We also postulated that prompting and hyperparame-
ter (temperature) changes would cause significant differences
in the results. Finally, we investigated whether retrieval-aug-
mented generation (RAG) can boost the model’s hit rate by
utilizing a reference document [31] that includes the latest
clinical reference ranges, offering precise guidance to the
model for identifying abnormalities [31].

Methods
Ethical Considerations
The MIMIC-IV is a publicly available database and
was previously ethically approved by the institutional

review boards at Beth Israel Deaconess Medical Center
(2001P001699) and the Massachusetts Institute of Technol-
ogy (0403000206) in accordance with the tenets of the
Declaration of Helsinki. The waiver of the requirement for
informed consent was included in the institutional review
board approval, as all protected health information was
deidentified [23]. One of the authors (PS) was granted access
to the database after completing training in human research
(CITI Human Research certification number: 54889098)
and signing a data use agreement in PhysioNet (agreement
number 64081). The experiments described in this paper
were mostly conducted on Microsoft Azure (Azure OpenAI
service), Google Vertex AI, or Anthropic Claude, according
to the “Responsible use of MIMIC data with online serv-
ices like GPT” guidance by PhysioNet [31]. Additionally,
the authors relied on the Cohere application programming
interface (API) because the Cohere models were not available
on any of the other platforms. This was deemed safe given
that Cohere is Health Insurance Portability and Accountabil-
ity Act compliant, stores the data on Google Cloud, and does
not use the data for model training (once the user has opted
out) [32]. Occasionally, the direct OpenAI API connection
was used after ensuring that no data (including input, output,
and user feedback) were shared with OpenAI. The code
associated with this publication has been shared in an open
repository, and information is provided in the Data Availabil-
ity section of this manuscript.
LLM Setup and Evaluation
The models we compared for medical diagnosis in our
analysis are summarized in Table 1.

Table 1. List of the 21 models compared in this study.
Model Date/version used Platform Reference
GPT-4-Turbo-preview November 6, 2023 Microsoft Azure APIa [33]
Medlm-medium May 8, 2024, and March 19, 2025 Google Vertex AIb API [34,35]
Gemini-1.5-Pro-preview April 9, 2024 Google Vertex AI API [36]
Command R Plus April 2024 Cohere API [37]
GPT-4o May 13, 2024 Microsoft Azure API [38]
Claude-3‐5-Sonnet June 20, 2024 Anthropic Claude API [39]
GPT-4o August 6, 2024 Microsoft Azure API [38]
Mistral-large August 22, 2024 Microsoft Azure API [40]
Meta-Llama-3.1-405B-Instruct August 22, 2024 Microsoft Azure API [41]
GPT-4o November 20, 2024 Microsoft Azure API [38]
o3-mini January 31, 2025 Microsoft Azure API [42]
Claude-3‐7-Sonnet February 19, 2025 Anthropic Claude API [43]
GPT-4.5-preview February 27, 2025 OpenAI API [44]
Gemini-2.0-Flash March 19, 2025 Google Vertex AI API [36]
Llama-4-Scout-17b-16e April 5, 2025 Google Vertex AI API [45]
GPT-4.1 April 14, 2025 Microsoft Azure API [46]
o3 April 16, 2025 Microsoft Azure API [47]
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Model Date/version used Platform Reference
o4-mini April 16, 2025 Microsoft Azure API [48]
Claude-Sonnet-4 May 14, 2025 Anthropic Claude API [49]
Claude-Opus-4 May 14, 2025 Anthropic Claude API [50]
Gemini-2.5-Flash June 17, 2025 Google Vertex AI API [36]

aAPI: application programming interface.
bAI: artificial intelligence.

The automated evaluation was performed by GPT-4‐1106-
preview (GPT-4 Turbo) and by GPT-4.1 (April 14, 2025) via
OpenAI API with always zero temperature.

The MIMIC-IV data sample containing 1000 hospital
admissions (median number of words: 694, IQR 329; cap at
1000) and diagnostic and evaluation prompts were taken from
[24]. The evaluation methodology is summarized in Figure 1.
In some experiments, the total number of diagnoses (hits +

misses + noninferables + exclusions) was slightly lower than
the expected number of 14,403 due to diagnostic or self-eval-
uation glitches (LLMs refused to answer or did not follow the
requested format exactly). We marked the experiment valid if
these errors accounted for <0.25% of the total ground truth
diagnoses; otherwise, we reran the failed responses until the
experiment became valid.

Figure 1. Summary of the evaluation methodology. Dx: diagnosis; LLM: large language model; MIMIC IV: Medical Information Mart for Intensive
Care-IV.

Our initial idea was to simply compare the predicted
International Classification of Diseases (ICD) codes to
the ICD codes extracted from the patients’ billing reports
(ground truth) and examine what proportion was guessed
correctly. However, the MIMIC-IV data did not contain
patient history (previous diagnoses and medications), patient
physical examinations, and other useful measurements such
as electrocardiography (ECG). Of course, without medication
records, we would not know if the patient has a coagulation
disorder or is taking anticoagulants, and without ECG data,
we would not be able to diagnose atrial fibrillation. Hence,
such diagnoses were not inferable from the data, and we
excluded them. Further, given the lack of patient diagnostic
history and the very specific ICD code names, it would not be
possible to distinguish between diseases with different onsets
(acute vs chronic) or between diseases with differing degrees
of severity. Hence, we deem the prediction correct if the
predicted and ground truth diagnoses are 2 related diseases
(eg, caused by the same pathogen and affecting the same
organ), which are indistinguishable given the patient data. In
this case, the further tests the LLM has been instructed to
suggest in the prompt from Sarvari et al [24] would be of

crucial importance to understand the exact disease pathology.
There are also ICD codes that do not correspond to diagnoses
(eg, do not resuscitate, homelessness, and unemployment),
and we excluded such codes from this study. We defined a
correct prediction as a “hit” and the failure to predict a ground
truth diagnosis as a “miss.”

In terms of the evaluation metrics, we solely focused on
the hit rate (also called recall, true positive rate, and sensi-
tivity) in this study. The reported hit rate was the average
across all the ground truth diagnoses of the 1000 sample
patients. The rationale is as follows: for every single disease
in the world, the patient may have it or not have it. As such,
when making predictions, the LLM is effectively executing
binary classifications for every single disease. Of course,
even a highly comorbid patient will not have 99.99%+ of the
possible diseases, and hence, the metrics related to negative
selected elements, such as specificity, are very close to 1
by default and are not meaningful to report. As a result, the
meaningful metrics here are precision and hit rate. However,
a good quantification of precision is challenging in this case
because false positives are difficult to establish, as not every
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single medical condition ends up on the billing report of the
patient. Hence, it is unclear and subjective whether certain
well-reasoned diagnostic predictions should be marked as
false positives just because they did not show up on the
patient’s billing report. As a solution, we have reported the hit
rate while (1) indirectly constraining the number of predic-
tions by limiting the LLM output tokens to 4096 and (2)
ensuring explainability by asking the LLM to reason why it
predicted certain conditions.
RAG Setup
GPT-4o-05‐13 with RAG was implemented via the Azure
Search API. A critical element of RAG is the reference
document, from which relevant information is retrieved and
supplied to the LLM to enhance its performance. Ideally,
such a document should contain key information related to
the task at hand, especially details that the LLM may not
already know or for which its internal knowledge could be
outdated or conflicted. Based on the most frequent diagnostic
misses identified in the study by Sarvari et al [24], including
anemia, hypoxemia, hypoosmolality, and hypernatremia, we
recognized that many of these conditions can be diagnosed
primarily through the interpretation of laboratory values
against established reference ranges. To address this, we
identified the need for clinical guidelines that directly support
diagnoses reliant on specific laboratory thresholds. There-
fore, we selected a document with laboratory test reference
ranges as the reference document for RAG, as these ranges
provide explicit criteria needed for accurate identification

of such conditions. Accordingly, a document containing
laboratory test reference ranges from The American Board of
Internal Medicine updated January 2025 [51] was vector-
ized (embedded by the text-embedding-3-large model from
OpenAI) and indexed to be used for RAG, with an overlap
of 100 tokens and a chunk size of 800 tokens. The 10
closest matching chunks to the patient data input (out of the
32 total chunks, corresponding to over 3 times input token
cost reduction) were retrieved using the HNSW algorithm
with a bidirectional link count of 4, an efConstruction of
400, an efSearch of 500, and cosine similarity. Note that
when we compared the RAG-based diagnostic engine to
its non-RAG equivalent, we also leveraged RAG in the
automated evaluation. This was to ensure that not just the
diagnostic but also the evaluator LLM is aware of the latest
clinical reference ranges. This was a crucial step, as without
explicitly giving the reference ranges to the assessor model,
we did not notice a statistically significant improvement
caused by RAG.
Prompt Engineering and Temperature
In this study, we experimented with 3 diagnostic prompts.
Prompt A was a highly specific one-shot learning prompt.
Prompt A/2 was almost the same as prompt A, but was a
bit ambiguous in its way of asking to report the diagnoses.
Prompt B provided a detailed background and task descrip-
tion and aimed to help the LLM with organizing its thoughts.
The prompts are presented in Textbox 1.

Textbox 1. Prompts.
Prompt A
“Suggest as many potential diagnoses as possible from the following patient data.
In addition, include previously diagnosed conditions and information about patient’s medical history (if any).
Give exact numbers and/or text quotes from the data that made you think of each of the diagnoses and, if necessary, give
further tests that could confirm the diagnosis.
Once you're done, suggest further, more complex diseases that may be ongoing based on the existing diagnoses you already
made.
Use the International Classification of Disease (ICD) naming standard for reporting the diagnoses, but you don't have to
specify the codes.
Before finalizing your answer check if you haven’t missed any abnormal data points and hence any diagnoses that could be
made based on them. If you did, add them to your list of diagnoses.”
The prompt also contains a very detailed example, which can be viewed in the GitHub repository (details are provided in the
Data Availability section).
Prompt A/2
Same as prompt A (including the example), but we asked the model to report the diagnoses in the following (slightly
ambiguous) way:
“Use the International Classification of Disease (ICD) standard for reporting the diagnoses.”
Prompt B
“You are an expert diagnostician machine for use by doctors. If the user input is not patient data, you politely decline
the request. Please suggest diagnoses and conditions, followed by the evidence points supporting each diagnosis in the
form of bullet points. Include previous diagnoses and pertinent information about the patient’s medical history (if any).
Pay close attention to all the history and investigations provided. Put asterisks around the diagnoses to highlight them.
Give each evidence points as a separate bullet point beneath the diagnosis. Include in your evidence points any relevant
clinical scores that can be calculated from the information I have given. Do not explain the evidence points, only state
them. For every diagnosis you list, if there are alternative differentials possible, state the most likely three in a bullet point
beneath the evidence points (you do not need to state the evidence supporting them - you only need to do that for the main
diagnoses). For the main diagnoses, give only confirmed diagnoses and evidence points that can be inferred solely based on
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the information I have given - do not use any other information. Only give me the information I have asked for - do not
give me any other information. Do not give me any introductions or conclusions, safety instructions, or safety warnings. Use
British English.
To illustrate how the information should be presented:
*MAIN DIAGNOSIS 1 AS HEADING*
evidence points to support MAIN DIAGNOSIS 1
The final bullet point is alternative differentials to consider: alternative 1, alternative 2, alternative 3
*MAIN DIAGNOSIS 2 AS HEADING*
evidence points to support MAIN DIAGNOSIS 2
The final bullet point is alternative differentials to consider: alternative 1, alternative 2, alternative 3
and so on...
Before finalizing your answer check if you haven’t missed any abnormal data points and hence any diagnoses or alternative
differentials that could be made based on them. If you did, add them to your reply. If two diagnoses are commonly caused
by the same underlying disease, have them under one header, which is the underlying disease.”
Added prompt section for retrieval-augmented generation (both for diagnosis and auto-evaluation)
This system is Retrieval-Augmented Generation (RAG) enabled. **Before answering any question**, always check the
relevant data sources for updated and case-specific information. Ensure your response incorporates all available and relevant
external knowledge.

Apart from the prompts, we also experimented with 2
different hyperparameter values, namely the default tempera-
ture (0.7 or 1, depending on the model) and a temperature
of zero. In the Results section, we report outcomes for all
prompts and temperature values measured, and test whether
they statistically significantly influence the hit rate. For the
prompt used for the automated evaluation, please see the
study by Sarvari et al [24].

Hypothesis Testing
To compare whether the hit rates (proportions) of 2 differ-
ent models are statistically significant, we used the pooled
z-test, which can be performed even when the number of
inferable diagnoses slightly differs between 2 experiments.
We chose pooling because our null hypothesis involves
testing equal proportions, implying the same true proportion
of success, p (which also means equal variances, since each
of the proportions follows a binomial distribution). We chose
the z-test because the sampling distribution of the sample
mean (the number of correctly identified diagnoses) follows a
normal distribution as the sample size increases, according to
the Central Limit Theorem. We used a 2-sided test, unless
otherwise stated. A common rule of thumb regarding the
Central Limit Theorem for proportions is to require both
np and n(1-p) to be larger than 10 (in other words, have at

least 10 correctly and 10 incorrectly identified diagnoses).
This requirement was easily satisfied in our case. Finally, we
calculated the 95% CI of the hit rate by adding and subtract-
ing 1.96 (z0.05) times the standard error of the mean, which
is simply the square root of p(1-p)/n. To make the statistical
significance calculations manageable, we assumed, during the
calculations, that the automated evaluation would make no
mistakes.

Results
LLM Evaluation With GPT-4 Turbo and
Multiple Prompts
The 1000 randomly selected patients were highly comorbid,
with an average of 14.4 (IQR 10; minimum: 1, maximum:
39) distinct diagnostic codes per patient. Table 2 shows the
results of all the GPT-4 Turbo evaluation experiments we
ran in this study. The best overall hit rate of 99.8% (roun-
ded to the first decimal point) was achieved by the GPT-4.1
foundation LLM with prompt B and default temperature. The
next best hit rate of 99.7% was achieved by GPT-4o 11‐20
with prompt B and zero temperature, Claude 3.7 with prompt
B and default temperature, and GPT-4.5 with both default and
zero temperature settings.

Table 2. Results of all GPT-4 Turbo evaluation experiments.
Company and model Prompt A hit rate (%) Prompt B hit rate (%)

Zero temperature Default temperature Zero temperature Default temperature
Google
  MedLM (medlm-medium) —a 98.7b; 92.9 — —
  Gemini 1.5 Pro (preview-0409) 98.8 97.7 — —
  Gemini 2 Flash — 98.3 99.4 99.6
Meta
  Llama 3.1 — 98.8 — —
Mistral
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Company and model Prompt A hit rate (%) Prompt B hit rate (%)

Zero temperature Default temperature Zero temperature Default temperature
  Mistral 2 Large — 99.1 — —
Cohere
  Command R Plus (04‐2024) — 99.3 99.0 98.9
Anthropic
  Claude 3.5 (Sonnet-20240620) 99.5 98.8 — —
  Claude 3.7 (Sonnet-20250219) — 99.2 99.6 99.7
OpenAI
  GPT-4 11‐06-preview (Turbo) — 99.3b; 99.0 — 99.3
  o3-mini (2025-01-31) — 99.3b; 99.3 — 98.7
  GPT-4o 05‐13 99.2; 99.4; 99.5 98.6b; 99.4 99.4 99.3; 99.3; 99.3; 99.5
  GPT-4o 08‐06 98.2b; 99.0 97.8b; 99.1 99.3; 99.3 99.3
  GPT-4o 11‐20 — 98.4b; 99.1 99.7 99.6
  GPT-4.5 (preview 2025-02-27) — 98.8b; 99.3 99.7 99.7
  GPT-4.1 — — — 99.8

aNot applicable. No experiments run with such settings.
bPrompt A/2 result.

In Table 3, we have included further details for the best
results (hit rate of at least 99.5%) in the GPT-4 Turbo
evaluation experiments.

Table 3. Details of the best GPT-4 Turbo evaluation experiments (diagnostic hit rate of at least 99.5%).

Model Settingsa
Hit rate (%; hits/
inferable), mean (SD) Hits, n

Hits + misses
(inferable), n

Noninferable
+ excluded, n

Link to
result

Claude 3.5 (Sonnet-20240620) Prompt A, T=0 99.5 (0.2) 7054 7089 7311 [52]
GPT-4o 05‐13 Prompt A, T=0 99.5 (0.2) 7259 7296 7017 [53]
GPT-4o 05‐13 Prompt B, default T 99.5 (0.2) 6802 6835 7567 [54]
Gemini 2 Flash Prompt B, default T 99.6 (0.2) 6761 6790 7612 [55]
Claude 3.7 (Sonnet-20250219) Prompt B, T=0 99.6 (0.2) 6761 6790 7612 [56]
GPT-4o 11‐20 Prompt B, default T 99.6 (0.2) 6953 6980 7392 [57]
GPT-4o 11‐20 Prompt B, T=0 99.7 (0.1) 6838 6860 7512 [58]
Claude 3.7 (Sonnet-20250219) Prompt B, default T 99.7 (0.1) 6862 6885 7518 [59]
GPT-4.5 (preview 2025-02-27) Prompt B, default T 99.7 (0.1) 7014 7036 7367 [60]
GPT-4.5 (preview 2025-02-27) Prompt B, T=0 99.7 (0.1) 6897 6917 7484 [61]
GPT-4.1 Prompt B, default T 99.8 (0.1) 7229 7246 7157 [62]

aT indicates temperature.

LLM Evaluation With GPT-4.1
Given that GPT-4.1 was the top-performing diagnostic LLM
when evaluated by GPT-4 Turbo, we postulated that the

automated evaluation quality would increase if we used this
model as the evaluator. Table 4 shows the details of the
GPT-4.1 evaluation experiments.

Table 4. Details of all GPT-4.1 evaluation experiments (prompt B, default temperature).

Model
Hit rate (%; hits/inferable),
mean or mean (SD) Hits, n

Hits + misses
(inferable), n

Noninferable +
excluded, n P valuea Link to result

o4-mini 91.8 (0.8) 4630 5045 9358 —b [63]
GPT-4o 05‐13 total 93.0 (0.4) 15,105 16,240 26,969 .003
  GPT-4o 05‐13 run0 93.0 5008 5386 9017 — [64]
  GPT-4o 05‐13 run1 93.1 5061 5436 8967 — [65]
  GPT-4o 05‐13 run2 92.9 5036 5418 8985 — [66]
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Model
Hit rate (%; hits/inferable),
mean or mean (SD) Hits, n

Hits + misses
(inferable), n

Noninferable +
excluded, n P valuea Link to result

LLaMa4 Scout 93.4 (0.7) 5113 5472 8931 .28 [67]
Claude 4 Sonnet 94.4 (0.6) 5030 5327 9076 .03 [68]
Claude 4 Opus 95.2 (0.6) 5061 5317 9086 .08 [69]
o3-mini 96.6 (0.5) 5348 5534 8896 <.001 [70]
GPT-4.1 96.8 (0.5) 5394 5575 8828 .74 [71]
Gemini 2.5 97.4 (0.4) 5767 5921 8482 .04 [72]

aSignificance (to previous row).
bNot applicable.

The top-performing model Gemini 2.5 found the exact
condition or one deemed directly related to it (ie, equally
reasonable to infer given the patient data) in 5767 cases out
of the 5921 inferable diagnoses, giving it a diagnostic hit

rate (sensitivity) of 97.4% (95% CI 97.0%‐97.8%). The 5767
hits the model made corresponded to 1409 unique diagnoses.
Table 5 summarizes the most common hits and misses by this
LLM.

Table 5. Most common diagnostic hits and misses made by Gemini 2.5 (prompt B, temperature=1).
Disease Type Occurrence, n
Heart failure Hit 378
Anemia Hit 338
Diabetes mellitus Hit 315
Kidney failure Hit 223
Acidosis Hit 151
Hypokalemia Miss 16
Hypotension Miss 8
Dehydration Miss 7
Hypoxemia Miss 7
Hyperkalemia Miss 6
Hypo-osmolarity and hyponatremia Miss 6

By comparing Table 3 with Table 4, we can observe that
GPT-4.1, in general, classified fewer diagnoses as hits and
more as noninferables. In Table 6, we contrast a few cases

where GPT-4 Turbo hits were shown as noninferables by
GPT-4.1, to gain insights into how the different models
interpret the auto-evaluation task.

Table 6. Contrast of cases between GPT-4 Turbo and GPT-4.1.

Hadm ID Diagnosis GPT-4 Turbo evaluation (question 1a)
GPT-4.1 evaluation (question 1 response is “yes”;
question 2b)

22780338 Unspecified asthma with
(acute) exacerbation

No, this could be considered as part of the
differential diagnosis for *Chronic Pulmonary
Disease*

No, there is no mention of a history of asthma,
wheeze, reversible airway obstruction, or
bronchodilator response in the data provided.
Additional data such as a history of asthma,
clinical wheeze, or spirometry would have been
helpful.

22780338 Body mass index (BMI)
40.0‐44.9, adult

No, this is related to *Chronic Type 2
Respiratory Failure (Hypercapnic Respiratory
Failure)* as severe obesity hypoventilation
was considered [as an alternative]

No, BMI is not provided in the data. Height and
weight or BMI value would have been needed.

22780338 Long-term (current) use of
insulin

No, this is related to the management of *Poor
Glycemic Control (Diabetes Mellitus,
Uncontrolled)*

No, there is no mention of insulin use in the data
provided. Medication history would have been
needed.

20760364 Displaced bicondylar
fracture of right tibia, initial
encounter for closed fracture

No, this diagnosis is a more specific version
of *Tibial plateau fracture with hemarthrosis
(right knee)*

No, the CTc scan describes a “minimally displaced
right posterolateral tibial plateau fracture” but does
not mention a bicondylar fracture or displacement
of both condyles. Additional imaging details or
radiology report specifying bicondylar
involvement would have been helpful.
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Hadm ID Diagnosis GPT-4 Turbo evaluation (question 1a)
GPT-4.1 evaluation (question 1 response is “yes”;
question 2b)

22922413 Ventricular tachycardia No, this could be related to *Volume
Overload / Mild Heart Failure / Congestion*
as cardiac arrhythmias can be a complication
of heart failure.

No, there is no ECGd or rhythm data provided in
the initial query to directly infer ventricular
tachycardia. Additional data such as telemetry,
ECG, or clinical documentation of arrhythmia
would have been helpful.

27531305 Delirium due to a known
physiological condition

No, this is similar to the increased confusion
mentioned in the postoperative state and could
be a complication of the perioperative period.
[mentioned as an alternative]

No, the initial data mentions “increased confusion”
in the imaging indication, but there is no formal
cognitive assessment, no details on mental status
changes, or other features of delirium (eg,
inattention, fluctuating course, disorganized
thinking). Additional data such as a formal mental
status exam, CAM (Confusion Assessment
Method) score, or documentation of acute onset
and fluctuating course would have been helpful.

aQuestion 1 asks if this is a new diagnosis; see Sarvari et al [24] for the evaluation prompt.
bQuestion 2 asks if the new diagnosis could have been inferred from the data; see Sarvari et al [24] for the evaluation prompt.
cCT: computed tomography.
dECG: electrocardiography.

Note that evaluation with GPT-4.1 appeared generally more
aligned with the intended purpose of the evaluation prompt,
and while in some cases there was no obvious right or
wrong answer, a stricter, more careful evaluation is generally
preferred. This and other GPT-4 Turbo evaluation shortcom-
ings are discussed in the Limitations section.
Prompt Engineering and Temperature
Comparing prompt A/2, prompt A, and prompt B, we
observed that, compared to GPT-4 05‐13, the newer, larger

models (Gemini 2, Claude 3.7, GPT-4o 08‐06, GPT-4o
11‐20, and GPT-4.5) preferred prompt B over prompt A, and
prompt A over prompt A/2 (where measured), while older or
smaller models (MedLM, Command R Plus 04‐2024, GPT-4
Turbo, and GPT-o3-mini) did not show such clear patterns,
with many seeming to have the opposite preference. These
findings are summarized in Table 7 and Table 8.

Table 7. Prompt preference of the latest models.

Modela Prompt A/2 preference, % (n/N)
Prompt A preference, %
(n/N)

Prompt B preference, %
(n/N) P value

Gemini 2 Flash —b 98.3 (6340/6450) 99.6 (6761/6790) <.001c

Claude 3.7 (Sonnet-20250219) — 99.2 (6784/6840) 99.7 (6862/6885) <.001c

GPT-4o 08‐06; T=0 98.2 (6325/6440) 99.0 (7014/7083) 99.3 (13,150/13,248) <.001d; .08c

GPT-4o 08‐06; default T 97.8 (6321/6462) 99.1 (7115/7184) 99.3 (6733/6781) <.001d; .10c

GPT-4o 11‐20 98.4 (6736/6846) 99.1 (7326/7390) 99.6 (6953/6980) <.001c,d

GPT-4.5 (preview 2025-02-27) 98.8 (6761/6844) 99.3 (7057/7106) 99.7 (7014/7036) .001d; .002c
aT indicates temperature.
bNot applicable.
cPrompt A vs prompt B.
dPrompt A/2 vs prompt A.

Table 8. Prompt preference of the older or smaller models.

Model
Prompt A/2 preference, %
(n/N)

Prompt A preference, %
(n/N)

Prompt B preference, %
(n/N) P value

MedLM (medlm-medium) 98.7 (6448/6534) 92.9 (5612/6038) —a <.001b

Command R Plus (04‐2024) — 99.3 (7390/7439) 98.9 (6809/6886) .003c

GPT-4 11‐06-preview (Turbo) 99.3 (6844/6893) 99.0 (6646/6713) 99.3 (6838/6889) .07b; .11c

GPT-o3-mini 99.3 (7119/7169) 99.3 (7041/7090) 98.7 (6404/6488) .96b; <.001
aNot applicable.
bPrompt A/2 vs prompt A.
cPrompt A vs prompt B.
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During our experiments, for most models, we found no
proof for significant differences between zero and default
temperatures. However, in the case of Claude 3.5 and
prompt A, temperature zero significantly increased perform-
ance (P<.001).
RAG Evaluation
We hypothesized that RAG on recently published (2025
January) reference ranges [51] would help LLMs give more
accurate and up-to-date diagnoses. To prove this, we chose
GPT-4o 05‐13, a fairly accurate model (as shown in Table 3),
which had its knowledge cutoff back in October 2023. We
ran 6 experiments in total, all using prompt B and default

temperature, and all evaluated by RAG-based GPT-4.1 (using
the same reference ranges). The results of the 6 experiments
are shown in Table 9. The RAG-based model predictions
were found to be significantly better than the non-RAG
predictions (mean hit rate 92.5% vs 91.7%; P<.006). Note
that the same (non-RAG) GPT-4o 05‐13 predictions were
used for both Tables 4 and 9, which means that the difference
in hit rates comes from the difference in evaluation (RAG-
based). As expected, giving the assessor model access to the
latest reference ranges made it stricter, resulting in a lower
estimated hit rate for GPT-4o 05‐13 (93.0% vs 91.7%; mean
of 3 runs).

Table 9. Retrieval-augmented generation hypothesis results.
Experiment run GPT-4o 05‐13 hit rate, % (n/N) GPT-4o 05‐13 RAGa hit rate, % (n/N)
Run 0 91.7 (4961/5411) 92.5 (5119/5533)
Run 1 91.8 (5008/5457) 92.2 (5069/5500)
Run 2 91.6 (4997/5453) 92.7 (5082/5484)
Total 91.7 (14,966/16,321) 92.5 (15,270/16,517)

aRAG: retrieval-augmented generation.

Discussion
LLM Diagnoses
In this paper, we compared the diagnostic abilities of multiple
LLMs on a subset of the MIMIC-IV dataset, using a
previously established LLM-as-a-judge method. The method
uses the ICD codes from the patient record as the ground
truth and (1) removes noninferable diagnoses and (2) accepts
similar ICD diagnoses as correct predictions when there is not
enough data to infer the exact code. We found that Gemini
2.5 was the top-performing LLM with a hit rate of 97.4%,
significantly outperforming GPT-4.1 as well as Claude-4
Opus and Sonnet, as evaluated by GPT-4.1. Using automa-
ted evaluation via GPT-4 Turbo, we observed that open-
source models, such as Mistral 2 and Llama 3.1, performed
reasonably well, with performance being better than that of
some of the closed-source models from Google but signifi-
cantly worse than that of alternatives from Anthropic and
OpenAI. We also showed that differences in prompting and
hyperparameter (temperature) changes can cause significant
variations in the results. It was particularly interesting to
observe the prompt preferences among the various models
tested in the experiments. The latest models demonstrated
enhanced knowledge, larger context windows, and greater
overall intelligence. Consequently, providing an example
(one-shot learning), as seen in prompt A, is not always
necessary for these models. However, the precision of the
query (with prompt B being more specific than prompt A,
which in turn surpasses prompt A/2) appears to be indis-
pensable. Without a clear, well-crafted query, these models
may underperform, even compared to their older, smaller
counterparts. This highlights the continued importance of
prompt engineering, even as models advance. Finally, we
concluded that RAG can significantly improve the hit rate

of GPT-4o (P<.006), confirming our hypothesis that RAG
can enhance LLM performance. We hypothesized that RAG
using clinical reference ranges would help the LLM have
fewer diagnostic misses for conditions where the reference
document explicitly provides up-to-date normal clinical
values. This improvement may occur because the document
either supplies new or updated information not memorized by
the LLM during training or directly “reminds” the LLM of
the correct reference ranges at inference time. To illustrate,
we compared the hit rates for all osmolality-related condi-
tions in the dataset (hyper- or hypo-osmolality, potentially
with hypo- or hypernatremia) between the RAG architecture
and baseline GPT-4o. Although the RAG-supported LLM
with access to the American Board of Internal Medicine
document of laboratory reference ranges [51], which clearly
highlighted normal osmolality values, still failed to diagnose
many abnormal osmolality-related conditions, it correctly
identified more cases than its non-RAG counterpart (163/228
vs 146/226). Although this difference was not statistically
significant (P=.058), the trend supports the utility of RAG
for these types of diagnoses. It is important to note, however,
that it may not be technically feasible for the RAG system
to identify all possible diagnoses in every case. One reason
is that the LLM in the RAG architecture only receives the
10 most relevant chunks of the reference document (based
on cosine similarity) out of a total of 32 chunks. As a result,
depending on the patient data, some relevant reference ranges,
such as those for sodium or osmolality, may not be included
in the information passed to the LLM for a given case.
LLM Evaluation
Regarding the evaluation of diagnostic predictions, other
researchers have used ICD chapters [13], as well as 515
Clinical Classifications Software Refined (CCSR) catego-
ries and 22 CCSR bodies [73], to compare the diagnostic
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predictions to the ground truth and have reported accuracies
at these different levels. While this method is very helpful for
creating a fast and objective evaluation framework, it does not
consider whether the data available are enough to arrive at the
ground truth diagnosis (or to a similar one within the same
CCSR category), resulting in a more conservative reported
diagnostic accuracy. In other words, by using this method,
one assumes that the information in the data used (MIMIC-III
in the study by Shah-Mohammadi and Finkelstein [73]) is
sufficient to make the reported ICD diagnoses. In addition,
a major drawback of attempting to predict ICD chapters
and CCSR categories is that 2 physiologically very different
diseases may end up in the same category. For example,
“Type 1 diabetes mellitus without complications” (ICD-10
code: E109) and “Type 2 diabetes mellitus without compli-
cations” (ICD-10 code: E119) belong to the same CCSR
category 1 of END002. This means that if the LLM predic-
ted type 1 diabetes, but the patient had type 2 diabetes, the
prediction would be deemed correct, even though in practice
this would be a serious misdiagnosis. Ironically, closely
related conditions may end up in different CCSR categories:
“chronic kidney disease, stage 1” (ICD-10 code: N181) is in
the GEN003 CCSR category, whereas “hypertensive chronic
kidney disease with stage 1 through stage 4 chronic kidney
disease, or unspecified chronic kidney disease” (ICD-10 code:
I129) is in the CIR008 CCSR category. This means that we
would penalize the LLM if it does not know that the chronic
kidney disease is of hypertensive origin, even if it does not
have access to the patient history proving so (note that patient
blood pressure may appear normal in hypertensive kidney
disease due to medication).

Our method uses a more subjective assessment, where we
let the LLM agent conducting the evaluation decide whether
the prediction is acceptable based on its similarity to the
ground truth and given the available data. For example,
mixing up type 1 and type 2 diabetes would be considered
a miss if there is relevant antibody and C-peptide data. At
the very least, the model should suggest a further C-peptide
test (as instructed via the prompt in Sarvari et al [24]) if
not already in the data, to confirm the diagnosis. Another
advantage of our approach is that it makes the reported hit
rate less data dependent by removing noninferable diagnoses.
However, in an ideal case, complete and detailed patient
electronic health record data are available from multiple
hospitals, locations, and demographics to test the diagnostic
ability of LLMs. While the hit rate of these LLMs on such
datasets might be different, we would expect the relative
rankings of these models to stay the same.
Performance Interpretation
While the architectural details and training data of proprietary
models, such as GPT-4 series and Claude Sonnet models,
are not publicly disclosed, several factors may plausibly
account for their superior diagnostic performance observed
in our study. These models likely leverage more advanced
architectures, employ larger parameter counts (eg, GPT-4 is
estimated at 1.8T parameters according to industry reports),
use more diverse training corpora, and benefit from sophis-
ticated instruction tuning and reinforcement learning from

human feedback [74]. Such attributes can enhance their
ability to extract subtle clinical patterns, synthesize complex
information from comorbid patient records, and generalize
across diverse diagnostic categories. For example, larger
model sizes and broader training data could result in a
more robust internal medical knowledge base and improved
reasoning capabilities, particularly when faced with ambig-
uous or incomplete clinical data. Additionally, ongoing
improvements in prompt handling and context window size
may enable these latest-generation LLMs to process longer,
more complex patient summaries without losing track of key
details, further supporting accurate diagnosis in comorbid
cases. The observed differences may also reflect disparities
in how LLMs were exposed to medical literature, clinical
guidelines, and case data during training. If certain models
receive more exposure to up-to-date or highly curated medical
information, they may be better positioned to infer diagno-
ses based on subtle findings or atypical presentations. While
OpenAI and Anthropic have not disclosed this information,
Google has publicly stated that Gemini uses MoE (Mixture of
Experts). In Gemini’s MoE architecture, the model dynami-
cally routes each portion of the text input to a small set
of specialized submodels (“experts”), each of which has
developed unique capabilities during training. This speciali-
zation emerges naturally as the model learns to distribute
different types of inputs, such as complex narratives, factual
queries, and long-context reasoning, across the experts best
suited to process them. As a result, the MoE approach enables
Gemini to efficiently focus computational resources on the
most relevant parts of the input, improving both quality
and speed. This design boosts performance on large-scale
language tasks, allowing the model to generalize better,
follow prompts, and reason more deeply [75].

The top hits and misses (Table 5) show a similar pattern
to information from the study by Sarvari et al [24]: highly
prevalent and routinely documented conditions like diabetes,
heart failure, or kidney disease are more likely to appear
in clinical datasets and may thus be more reliably recog-
nized by LLMs. At the same time, conditions like dehydra-
tion, hypotension, and hypoxemia often coexist with or are
secondary to other critical illnesses. If not clearly distin-
guished in the record, an LLM may attribute findings to the
primary diagnosis, missing the specific secondary issue. This
challenge is particularly pronounced for electrolyte imbal-
ances (eg, hypokalemia, hypernatremia, and hyponatremia)
and disorders of osmolality, which often arise as secondary
phenomena in critically ill or comorbid patients. In com-
plex cases, both clinicians and LLMs may prioritize primary
diagnoses (such as kidney failure and heart failure), while
abnormalities in sodium, potassium, or osmolality are either
not explicitly highlighted in the record or simply treated as
laboratory abnormalities rather than standalone diagnoses.
When these findings are not clearly distinguished, the model
is more likely to miss them, either attributing the abnormal-
ity to the underlying primary disease or failing to identify
the abnormality altogether due to a lack of explicit mention
or reference range context. This ties back to the value of
providing up-to-date reference range information to LLMs.
One might provide only the most relevant sections of a
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guideline using RAG or input the entire guideline into the
LLM’s context. Some of the latest models, such as Gemini
2.5 and GPT-4.1, now feature a 1 million token context
window (roughly 1500 pages), and LLaMa 4 Scout provides
an industry-leading 10 million context window [45], making
it technically feasible to process entire medical guidelines as
context. However, the use of RAG remains beneficial for
reducing cost and focusing the model’s attention, thereby
supporting more efficient and targeted diagnostic reasoning.
Limitations
We would like to draw attention to the shortcomings of
this study. First, we only considered a single dataset from
a single hospital. Second, this dataset did not contain all the
information that doctors normally use for diagnosing patients,
resulting in the exclusion of some important diagnoses from
the analysis as they were deemed noninferable. In fact, in
practice, decision-making goes beyond text-based data from
the electronic patient record, and without an AI system taking
multimodal inputs sitting alongside a doctor as part of a
proper hospital pilot, it will be very difficult to truly compare
the diagnostic ability of LLMs to that of doctors. Third, in
this study, we allowed LLMs to make many predictions;
however, in practice, doctors may need to rely on a single
diagnosis and treatment plan, which is their current best
estimate. Fourth, this study did not consider images and only
took natural language as an input; this is a crucial limita-
tion, especially as the aforementioned studies indicated the
shortcomings of GPT-4o in medical image analysis [28-30].
Fifth, this study did not assess biases in the predictions made
by the different models, which would be an essential first
step toward hospital deployment of LLMs. Readers looking to
learn more about this topic are directed to the study by Zack
et al [27]. Sixth, in this study, we only tested the performance
of LLMs in the English language. While English is widely

accepted as the international language of medicine [76],
LLMs undoubtedly would need to speak multiple languages
to truly help doctors around the world. Recent research
suggests consistent diagnostic performance of GPT-4o across
9 different languages [77].

Lastly, it is important to keep in mind that the evaluation
was done by an LLM and was not reviewed manually by
a human, let alone a clinician. GPT-4 Turbo can be con-
sidered a lenient grader, and it classified multiple ground
truth diagnoses as hits when noninferable would have been
a better option (as pointed out by GPT-4.1; some examples
are shown in Table 6). Additionally, GPT-4 Turbo occa-
sionally misunderstood prompt terms such as “related.” For
example, in admission ID 22780338, it incorrectly concluded
that “chronic pulmonary disease” was not a new diagnosis
because it was “related” to “chronic diastolic (congestive)
heart failure,” failing to recognize that chronic obstructive
pulmonary disease does not directly cause congestive heart
failure. We also observed instances where GPT-4 Turbo
misclassified historical diagnoses as “not new,” even when
they were not predicted correctly. Furthermore, in some
cases, the model did not follow the one-shot learning example
provided in the evaluation prompt. Instead of offering a
full rationale, it returned a 1-word answer to question 1.
Since our automated evaluation relied on parsing model
reasoning to distinguish between hits and ICD codes that
are not true medical diagnoses, the behavior caused some
nonmedical ICD codes (eg, unemployment) to be incor-
rectly marked as hits. All of these issues likely inflated
the model’s hit rate. Future studies should consider using
GPT-4.1 or similarly more accurate and conservative models
for automated evaluation or should ideally include human
expert review to validate the grading process [27,35].

Data Availability
The Medical Information Mart for Intensive Care-IV (MIMIC-IV) data are available to approved researchers on PhysioNet,
and the SQL code used to transform this dataset is available on GitHub [78].
All of the large language model diagnostic benchmarking experiments and statistical testing calculations discussed in this study
are available on GitHub [79]. Individual results are provided on GitHub [52-72].
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