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Abstract
Background: Tuberculosis (TB) remains a significant global health challenge, as current diagnostic methods are often
resource-intensive, time-consuming, and inaccessible in many high-burden communities, necessitating more efficient and
accurate diagnostic methods to improve early detection and treatment outcomes.
Objective: This study aimed to evaluate the performance of 6 convolutional neural network architectures—Visual Geome-
try Group-16 (VGG16), VGG19, Residual Network-50 (ResNet50), ResNet101, ResNet152, and Inception-ResNet-V2—in
classifying chest x-ray (CXR) images as either normal or TB-positive. The impact of data augmentation on model perform-
ance, training times, and parameter counts was also assessed.
Methods: The dataset of 4200 CXR images, comprising 700 labeled as TB-positive and 3500 as normal cases, was used
to train and test the models. Evaluation metrics included accuracy, precision, recall, F1-score, and area under the receiver
operating characteristic curve. The computational efficiency of each model was analyzed by comparing training times and
parameter counts.
Results: VGG16 outperformed the other architectures, achieving an accuracy of 99.4%, precision of 97.9%, recall of 98.6%,
F1-score of 98.3%, and area under the receiver operating characteristic curve of 98.25%. This superior performance is
significant because it demonstrates that a simpler model can deliver exceptional diagnostic accuracy while requiring fewer
computational resources. Surprisingly, data augmentation did not improve performance, suggesting that the original dataset’s
diversity was sufficient. Models with large numbers of parameters, such as ResNet152 and Inception-ResNet-V2, required
longer training times without yielding proportionally better performance.
Conclusions: Simpler models like VGG16 offer a favorable balance between diagnostic accuracy and computational
efficiency for TB detection in CXR images. These findings highlight the need to tailor model selection to task-specific
requirements, providing valuable insights for future research and clinical implementations in medical image classification.
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Introduction
Background
Tuberculosis (TB) remains one of the leading infectious
diseases worldwide, affecting an estimated one-third to
one-fourth of the global population with the bacillus
Mycobacterium tuberculosis, the causative agent of TB [1].
In 2019, it was estimated that over 10 million individu-
als globally contracted TB; yet, only 71% were detected,
diagnosed, and reported through various countries’ national
TB programs, leaving approximately 29% of cases unre-
ported [2]. According to the World Health Organization’s
(WHO’s) 2023 TB report, TB was identified as the second
most common cause of death among infectious diseases
[3]. Furthermore, the global incidence rate of TB remains
alarmingly high at approximately 133 new cases per 100,000
people annually. This situation underscores the need for
prompt, effective, and affordable screening and treatment
strategies to meet the WHO’s ambitious goals of reducing
TB incidence by 80%, decreasing TB mortality by 90%,
and eliminating catastrophic financial burdens on families
affected by TB by 2030 [4].

The WHO advised member countries to proactively
conduct TB screening and detection, especially within the
high-risk groups, taking into account their unique epidemic
scenarios and financial levels [5]. While bacteriological tests,
including sputum cultures, sputum smears, and molecular
diagnostics, are considered the gold standard for identify-
ing active TB cases, their applicability on a large scale,
particularly among high-risk populations, is not feasible [6].
This limitation is due to the methods being resource-inten-
sive, logistically challenging, and associated with prolonged
turnaround times [7]. As a result, chest radiography has
become the most prevalent method for early TB detection [8].
However, in countries with limited resources, which also bear
the highest TB burden, the availability of chest radiography
screenings remains inadequate, primarily due to a shortage of
radiologists [6].

In recent years, significant advancements have been made
in leveraging artificial intelligence (AI), particularly through
machine learning and deep learning techniques, for ana-
lyzing chest x-ray (CXR) images to differentiate between
TB-positive and TB-negative images [9-15]. This innova-
tion has enabled individuals without radiology expertise to
conduct TB screening tests, presenting a significant shift
in diagnostic approaches. These technologies have shown
promising results, to the extent of outperforming radiolog-
ists in the interpretation of CXR images [14,15]. Despite
this progress, the adoption of AI-based TB detection in
low-income countries faces limitations, including a lack of
computational resources, inconsistent data quality, and the
need for models tailored to diverse clinical and demographic
contexts. Addressing these challenges is critical to ensuring

the scalability and utility of AI-driven diagnostic tools in
these settings.

This research investigates the effectiveness of differ-
ent convolutional neural network (CNN) architectures in
classifying TB in CXR images. We compare and evaluate
the performance of popular CNN models, including Residual
Network (ResNet), Inception, and Visual Geometry Group
(VGG), and examine the impact of different hyperparameters
on classification accuracy. The choice of these architectures is
motivated by gaps in existing literature, where limited studies
compare the performance of advanced CNN models on larger,
diverse datasets. Additionally, we explore the impact of
transfer learning and data augmentation techniques, providing
insights into their role in optimizing model performance.

To the best of our knowledge, this study is the first
to use a larger and more diverse dataset and conduct a
comprehensive comparison of the latest CNN architectures,
including ResNet101, ResNet152, and Inception-V2, assessed
across different parameters. The research aims to address
the following questions: (1) How does the choice of CNN
architecture affect the classification performance? (2) What
is the optimal hyperparameter configuration for each CNN
architecture? (3) Can transfer learning be leveraged to
improve classification accuracy? (4) How does incorporating
data augmentation techniques impact the model’s perform-
ance compared to training solely on real images?

The rest of the paper is organized as follows. In the
Related Work section, we present the literature review, which
provides an overview of the current state of research in
the field. This is followed by the Methods section, where
we describe the deep learning models used in this research
along with the techniques for improving training time, such
as transfer learning. We also describe the data and analysis
procedures used in our study, such as data augmentation to
mitigate against imbalance. Next, we present the results of
our analysis, including any findings. Finally, we discuss the
implications of our results, conclude with a summary of our
main findings, and suggest areas for future research.
Related Work
Research in the field of medical imaging, particularly in
automating the screening and identification of TB from
CXR images, has progressed significantly. Initial investi-
gations explored traditional machine learning techniques,
including support vector machines [16,17], decision trees
[18,19], random forests [20,21], and extreme gradient
boosting [22,23], among others. However, recent advance-
ments have shifted focus toward deep learning methods,
such as CNNs, which have demonstrated promising results
in image classification comparable to those of radiologists
[13-15,24]. Below, we review some of the recent studies that
have used deep learning approaches for detecting TB in CXR
images.
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Hooda et al [13] proposed a 19-layer CNN architecture
for detecting TB, consisting of 7 convolutional layers, 7
rectified linear unit (ReLU) layers, 3 fully connected layers,
and 2 dropouts layers. The model was trained on a dataset
of 800 CXR images, each resized to 224×224 pixels. Using
the Adam optimizer, the study achieved notable results, with
an overall accuracy of 94.73% and a validation accuracy of
82.09%. Although these results are impressive, the authors
identified potential areas for further improvements. They
suggested investigating the impacts of data augmentation
and transfer learning on the model’s performance, highlight-
ing avenues for future research enhancements and potential
increases in accuracy.

Ojasvi et al [25] developed a classification algorithm for
CXR images of potential patients with TB, aiming to improve
upon existing models [26]. To mitigate against dataset
imbalances and improve model reliability, they combined
the NIH Chest X-ray Dataset, China-Shenzhen Chest X-ray
Database, and Montgomery County Chest X-ray Database
to train and fine-tune their model. By implementing coarse-
to-fine transfer learning and extensive data augmentation
techniques, they achieved a remarkable accuracy of 94.89%
compared to the accuracy of 89.6% achieved by Cao et
al [26]. However, the study acknowledges the challenge of
maintaining equivalent precision across CXR images obtained
in varied settings, as the model was specifically trained for
the Chinese dataset.

Panicker et al [27] introduced a novel 2-stage detection
method for TB bacilli, using image binarization and CNN
classification to analyze microscopic sputum smear images.
The method was evaluated on a diverse dataset of 22 images,
and the model demonstrated high effectiveness, achieving a
recall rate of 97.13%, a precision of 78.4%, and an F1-score
of 86.76%. However, the study noted that the model’s ability
to accurately detect overlapping bacilli was limited. In the
same year, Stirenko et al [28] explored the application of
lung segmentation in CXR images and data augmentation
to enhance TB detection from CXR images. Their study
highlights the critical role of preprocessing, including lung
segmentation and data augmentation, in addressing overfitting
issues and improving the effectiveness of computer-aided
diagnosis systems in TB identification, particularly when
working with limited datasets.

The study by Kazemzadeh et al [15] developed a deep
learning algorithm for detecting active pulmonary TB from
CXR images. The algorithm was trained and validated on
a dataset comprising 165,754 images from 22,284 patients
from 10 different countries. The algorithm’s performance
was compared to that of 14 radiologists on datasets from 4
countries, including a cohort from a South African mining

population. It achieved an area under the receiver operat-
ing characteristic curve (AUC-ROC) of 0.89, with superior
sensitivity (88% vs 75%; P=.05) and comparable specificity
(79% vs 84%) to radiologists, demonstrating its potential for
TB screening in resource-limited settings. Another study by
Nijiati et al [29] used a 3D ResNet-50 CNN architecture
to differentiate active from nonactive pulmonary TB using
computed tomography images. This study, similar to that of
Kazemzadeh et al [15], reported high diagnostic accuracy and
efficiency, outperforming conventional radiological methods
in terms of speed and precision.

In their 2019 study, Meraj et al [30] used CNN architec-
tures such as VGG16, VGG19, ResNet50, and GoogLeNet to
automate the detection of TB manifestations in CXRs using
2 public TB image datasets [31]. Their findings showed that
the VGG16 model outperformed other architectures in terms
of accuracy and AUC-ROC. However, the study was limited
by its reliance on small and unbalanced datasets, raising
questions about the generalizability of the results. In contrast,
our research builds upon and extends the work of Meraj et
al [30] by incorporating a larger and more diverse dataset.
We also explore the diagnostic capabilities of more advanced
CNN architectures, including ResNet101, ResNet152, and
Inception-V2, to assess their effectiveness in TB detection.
This approach aims to provide a more comprehensive
understanding of how recent deep learning advancements
can be leveraged for more accurate TB diagnosis in varied
clinical settings. The Methods section details the methodolog-
ical framework to achieve these objectives.

Methods
In this section, we provide a comprehensive overview of
the methodologies used in our study, including the dataset
and preprocessing, data normalization, data augmentation, the
application of transfer learning methods, the architecture of
CNNs used, and the evaluation metrics adopted to assess the
performance of the models.
Implementation Overview
The implementation framework illustrated in Figure 1 starts
with the acquisition of a well-defined dataset, followed
by comprehensive data preprocessing, which includes data
augmentation, resizing, normalization, and partitioning into
training, validation, and test sets. Subsequently, we embark
on the development of various deep learning models. These
models undergo extensive training and evaluation against
different hyperparameters and evaluation metrics to accu-
rately predict and classify CXR images into positive or
negative cases of TB.
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Figure 1. The implementation flow of the deep learning classification methodology. ResNet: Residual Network; VGG: Visual Geometry Group.

Dataset
The dataset used in this research comprises 4200 CXR
images sourced from a public Kaggle data repository. The
dataset was compiled through a collaborative effort between
researchers from Qatar University (Doha, Qatar) and the
University of Dhaka (Bangladesh) and collaborators from
Malaysia. They worked closely with medical professionals
from the Hamad Medical Corporation (Doha, Qatar) and

various health care institutions in Bangladesh. The dataset
consists of 700 CXR images indicative of TB and 3500
CXR images classified as normal, with all images having a
resolution of 512×512 pixels [32]. This composition provides
a substantial foundation for evaluating the effectiveness of
CNN models in the detection of TB from CXR images.
Figure 2 presents some of the images from the dataset.

Figure 2. The chest x-ray sample images. (A) Tuberculosis-negative and (B) tuberculosis-positive.

Preprocessing
To optimize the performance and efficiency of our models,
we implemented key preprocessing techniques, specifically

data normalization and augmentation, before training the
models.
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Data Normalization
In the preprocessing stage of image analysis, normalization
is a critical step to standardize the input data, facilitating the
model’s learning process. This study applies normalization to
CXR images, which initially possess pixel intensity values in
the range of 0 to 255, common for grayscale images [33].
The goal of normalization is to adjust these intensity values to
a standardized scale that improves computational efficiency
and model convergence during training. The normalization
process is mathematically represented as follows:

(1)I′ = I − IminImax − Imin
where I represents the original pixel intensity of the image,
Imin and Imax are the minimum and maximum possible
intensity values in the original image, respectively, and I is
the normalized pixel intensity.

For grayscale images, Imin=0 and Imax=255. This equation
effectively rescales the pixel intensity values to the range
(0-1), making the input data more suitable for processing
by the neural network layers. This normalization technique
is advantageous because it ensures that each input parame-
ter (pixel, in this case) contributes equally to the analysis,
preventing features with initially larger ranges from domi-
nating the learning process [34]. It also helps to stabilize
the gradient descent optimization algorithm by maintaining a
consistent scale for all gradients [35]. Previous studies have
shown that normalization significantly improves convergence
rates and ensures model stability, particularly in image
classification tasks involving deep learning [34,35].

Data Augmentation
Data augmentation represents a powerful regularization
strategy designed to artificially increase the dataset through

label-preserving transformations, thereby incorporating more
invariant examples into the training set [36]. This approach,
characterized by its computational efficiency, has been
previously used to reduce overfitting when training CNNs,
such as in the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC), where it contributed to achieving
state-of-the-art results [37]. This method enhances the
robustness and generalizability of deep learning models by
exposing them to a wider array of variations, simulating
real-world variability.

In our study, to address the imbalance between TB-pos-
itive and TB-negative images and to introduce different
variations, we randomly augmented 210 (30%) TB-posi-
tive images and 175 (5%) TB-negative images. The data
augmentation techniques applied included random rotation
within a range of 0 to 60 degrees, random width and height
shifts of up to 0.2 times the image size, and random zoom-
ing of up to 0.2 times the original size, alongside hori-
zontal and vertical flipping. To manage the newly created
pixels from such transformations, a “fill mode” strategy was
used, ensuring integrity and consistency in the augmented
images. These augmentations were performed using Keras’s
ImageDataGenerator, a comprehensive data augmentation
suite [38].

While data augmentation techniques are widely adop-
ted in deep learning research, our implementation aligns
with prior studies that highlight their utility in addressing
dataset imbalance and improving model generalization in
medical imaging tasks [36,37]. Additionally, the augmenta-
tion strategy in this study was tailored to reflect the variability
commonly observed in real-world CXR data, enhancing the
robustness of our models. Figure 3 shows a sample of real
images and their corresponding augmented outputs.
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Figure 3. Sample of real and corresponding augmented images.

Transfer Learning
Transfer learning is a machine learning technique where a
model developed for a specific task is repurposed as the
starting point for a model on a second, related task [39]. This
technique leverages the knowledge gained during the initial
training phase in one domain to enhance learning in another
potentially unrelated domain. It operates under the principle
that information learned in one context can be exploited to
accelerate or improve the optimization process in another,
essentially allowing for the transfer of learned features and
patterns across different but related problems [39].

In this study, we propose an implementation that capital-
izes on the transfer learning paradigm by using pretrained
models such as Inception-V3, ResNet (50, 101, and 152),
and VGG (16 and 19), which were initially trained on the
ImageNet dataset [37]. This adaptation involves fine-tuning
and customizing the models’ last layers to suit our clas-
sification task, effectively tailoring the robust, prelearned
representations of the ImageNet dataset to recognize and
interpret the specific patterns and anomalies associated with
TB in CXR images.

We opted for transfer learning over training models
from scratch due to its significant advantages, particularly
in the context of medical imaging. Training deep learn-
ing models from scratch requires large datasets, extensive
computational resources, and longer training times. These
requirements often pose challenges in health care–related
research, especially when working with relatively small
or domain-specific datasets like CXRs. Transfer learning
allows us to leverage the rich feature representations of
pretrained models while reducing training time and com-
putational demands. Furthermore, studies have shown that
transfer learning enhances model performance in medical

imaging tasks by effectively repurposing features learned
from general image datasets like ImageNet to domain-specific
tasks [37,39].
CNN Architectures
In the next subsections, we provide a brief description of the
VGG and ResNet families of CNN architectures as well as the
Inception ResNet architecture that is considered in this study.

VGGNet
Introduced by Simonyan and Zisserman from the University
of Oxford’s Visual Geometry Group in 2014, the VGGNet
architecture marked a significant milestone in the field of
deep learning [40]. Known for its outstanding performance
in the ILSVRC of that year, VGGNet is characterized by its
use of 3×3 filters in all convolutional layers, simulating the
effects of larger receptive fields. This architecture is available
in 2 variants, VGG16 and VGG19, differing in depth and the
number of layers, with VGG19 being the deeper model.

In our research, we used both the VGG16 and VGG19
architectures to train models on datasets consisting of solely
real CXR images and a combination of augmented and
real images. This approach aimed to assess the impact of
incorporating augmented images on the performance of these
2 architectures. Images were resized to 256×256 pixels before
being input into the networks. We extended the architectures
by adding a flattening layer, followed by a dense layer of
512 neurons with a ReLU activation function and a dropout
layer with a dropout rate of 0.2 to mitigate overfitting. A
softmax activation function was used in the output layer
for binary classification. We used the Adam optimizer with
the binary cross-entropy loss function for optimization. The
training was conducted over 15 epochs with a batch size
of 32 for both models. This rigorous approach ensured that
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both architectures could classify between TB-positive and
TB-negative CXR images accurately.

ResNet
He et al [41] introduced the deep residual network (ResNet)
architecture in their 2016 seminal paper. This architecture
greatly improved the performance of deep neural networks
and went on to win the Common Objects in Context object
detection challenge and the 2015 ILSVRC. To date, several
variants of the ResNet architecture exist, including ResNet50,
ResNet101, and ResNet152, which vary in depth and number
of layers. ResNet architectures are very deep models [41,42].
The core idea behind ResNet is the use of residual connec-
tions, also known as shortcuts, which bypass 1 or more layers.
By resolving the vanishing gradient issue, these shortcuts
maintain the gradient flow across the network and facilitate
the training of much deeper networks [41].

The CXR images in this study were classified using
the ResNet50, ResNet101, and ResNet152 architectures. We
added 3 more layers to the ResNet50 model, 2, each with
256 units and 1 with 512 units, using batch normalization
and ReLU activation in each layer. To reduce overfitting,

dropout layers were added with dropout rates of 0.3, 0.25, and
0.2, respectively. The binary cross-entropy loss function was
used to compile the model, while the Adam optimizer was
used to optimize the model at a learning rate of 0.001. Two
units with a softmax activation function made up the output
layer, which classified the images as either TB-positive or
TB-negative. Training for this model involved 16 batch sizes
and 100 epochs.

ResNet101 was trained using the same settings as
ResNet50, as preliminary training showed that the same
parameter values used for ResNet50 also yielded optimal
results for the ResNet101 architecture. For ResNet152, a
selective fine-tuning approach was adopted, where only the
last 10 layers of the network were trainable, enhancing the
model’s focus on more feature-specific adjustments in the
later stages of the network. This model shared the augmenta-
tion layers of ResNet50 but was trained for only 50 epochs,
incorporating a learning rate scheduler, ReduceLROnPlateau,
which adjusted the rate based on the validation loss with a
factor of 0.1, patience of 5, and a minimum learning rate of
1×10−6, thereby optimizing the training dynamics. The details
of the models’ configuration are shown in Table 1.

Table 1. Training hyperparameters of ResNeta models.
Hyperparameter ResNet50 ResNet101 ResNet152
Layers, n 53 (50 base +3 extra) 104 (101 base +3 extra) 155 (152 base +3 extra)
Units per layer 256, 256, 512 256, 256, 512 256, 256, 512
Activation ReLUb ReLU ReLU
Batch normalization Yes Yes Yes
Dropout rate 0.3, 0.25, 0.2 0.3, 0.25, 0.2 0.3, 0.25, 0.2
Optimizer Adam Adam Adam
Learning rate 0.001 0.001 Variable (ReduceLROnPlateau)
Loss function Binary cross-entropy Binary cross-entropy Binary cross-entropy
Training epochs 100 100 50
Batch size 16 16 16

aResNet: Residual Network.
bReLU: rectified linear unit.

Inception-ResNet
The Inception networks, introduced by Szegedy et al
[43], have greatly advanced the field of CNN, as they
have achieved state-of-the-art performance in a number of
computer vision problems [43-45]. The original Inception-V1,
also known as GoogLeNet, was first introduced in 2014 and
won the ILSVRC of that year. The architecture introduced
a novel approach of using multiple convolutional filter sizes
in parallel, allowing the network to capture various spatial
features of different scales with improved use of computing
resources [43].

In this study, we used Inception-ResNet-V2 architecture, a
hybrid model that combines the benefits of both the Incep-
tion and residual networks. This hybrid approach enables the
architecture to learn more complex features with improved
training stability and faster convergence [43]. The Incep-
tion-ResNet-V2 also leverages residual connections to skip

certain layers during training, which helps it improve gradient
flow, accelerate training times, and reduce the likelihood
of vanishing gradient problems in deep networks [46].
We selected Inception-ResNet-V2 due to its demonstrated
state-of-the-art results in several medical imaging tasks [45].

For our implementation, the Inception-ResNet-V2
architecture was initialized with weights pretrained on
the ImageNet dataset. Similar to our approach with the
ResNet152 model, all layers except the last 10 were frozen
to retain the pretrained features from ImageNet. The last 10
layers were set to be trainable, enabling the model to learn
specific features from the CXR images. We added 3 new
layers: 2 with 256 units each and 1 with 512 units, all using
ReLU activations and batch normalization. Each of these
layers was followed by dropout layers with rates of 0.4, 0.35,
and 0.3, respectively, to introduce nonlinearity and reduce
overfitting. The final output layer consisted of 2 units with
a softmax activation function for binary classification. The
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model was then compiled using binary cross-entropy as the
loss function and the Adam optimizer with a learning rate of
0.0001. Training was conducted for 50 epochs with a batch
size of 16.

The parameters used in the training of all these CNN
architectures, including dropout rates, learning rates, batch
sizes, and the number of epochs, were determined through a
rigorous iterative process of experimentation. This approach
involved fine-tuning each parameter to optimize model
performance while avoiding overfitting. The configurations
presented reflect the parameter values that consistently
yielded good performance across the different architectures.

Evaluation Metrics
The performance of the CNN architectures in classifying
CXR images into TB-positive and TB-negative categories
was assessed using several standard performance metrics,
including accuracy, precision, recall, F1-score, and the
AUC-ROC. Each metric provides unique insights into the
model’s classification abilities, considering both the true and
false predictions.

Accuracy
This metric measures the proportion of true positive (TP) and
true negative (TN) results among the total number of cases
examined:

(2)Accuracy = TP + TNTP + TN + FP + FN
where TP is the number of TB-positive images that are
correctly identified as TB-positive by the model, TN is the
number of TB-negative images that are correctly identified
as TB-negative by the model, FP (false positives) is the
number of TB-negative images that are incorrectly identified
as TB-positive by the model, and FN (false negatives) is the
number of TB-positive images that are incorrectly identified
as TB-negative by the model.

Precision
Also known as positive predictive value, precision is the
ratio of correctly identified TB cases to all cases that were
diagnosed as TB by the model. It measures the model’s
accuracy in diagnosing a patient with TB when the model
predicts the disease. High precision indicates a low rate of
false TB diagnoses. Mathematically, it is defined as:

(3)Precision = TPTP + FP
Recall
Recall, or sensitivity, is especially critical in medical
diagnostics, as it quantifies the model’s ability to correctly
identify all actual TB cases. It represents the proportion of
actual TB cases that were correctly identified by the model
and aims to minimize the risk of missing a true TB case. It is
computed as:

(4)Recall =   TPTP + FN
F1-Score
The F1-score is the harmonic mean of precision and recall,
providing a single measure that balances both the FP and FN.
In TB diagnosis, it is particularly useful because it creates
a balance between precision (minimizing false TB diagno-
ses) and recall (minimizing missed TB diagnoses), which is
crucial for medical screening tests. It is defined as:

(5)F1 = 2  × Precision  × RecallPrecision + Recall
AUC-ROC
The AUC-ROC measures a model’s ability to discern
between positive and negative classes. In the context of our
problem, that specifically refers to distinguishing between
TB-positive and TB-negative CXR images. The AUC-ROC is
a plot of the true positive rate (TPR) against the false positive
rate (FPR) at various threshold settings. The AUC-ROC
provides an aggregated measure of the model’s perform-
ance across all classification thresholds, with a value of 1
representing a perfect model and a value of 0.5 represent-
ing a model with no discriminatory power. The approximate
AUC-ROC is calculated by using the following formula:

(6)AUC  ≈ i = 1
n FPRi − FPRi − 1 × TPRi +  TPRI − 12

where i is the current data point or threshold, FPRi and
TPRi are the false positive and true positive rates at the ith
threshold, respectively, and n is the number of data points or
thresholds used to calculate the AUC-ROC. Each term in the
sum represents the area of a trapezoid, where (FPRi−FPRi−1)
is the base of the trapezoid and (TPRi +TPRi−1)/2 is the
average height of the trapezoid. The formula calculates the
AUC-ROC by summing the areas of trapezoids formed by
connecting consecutive points on the AUC-ROC.
Computational Environment
The implementation and findings of this study were based
on using the Keras 3.3.3 and TensorFlow 2.16.1 frameworks.
The experiments were conducted on a single GPU MSI GL75
Leopard 10SFR laptop with 32 GB of RAM and an 8 GB
NVIDIA GEFORCE RTX 2070 GDDR6 card. The system
was operated using the CUDA 12.1 and cuDNN SDK 8.7.0
platforms to ensure efficient GPU acceleration and deep
learning model training.

These methodological choices, including dataset selection,
preprocessing techniques, CNN architectures, and model
evaluation techniques, were designed to ensure a rigorous
and comprehensive analysis of CNN performance for TB
detection. The results of these analyses are presented in the
following section.
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Ethical Considerations
This study used a publicly available, deidentified dataset
from Kaggle. As such, it did not require institutional review
board approval. The dataset does not contain any person-
ally identifiable information, and informed consent was not
applicable. No participants were directly involved in this
study, and no compensation was provided.

Results
Overview
The study aimed to analyze and compare the performance
of various CNN architectures, including VGG16, VGG19,
ResNet50, ResNet101, ResNet152, and Inception-ResNet-
V2, in classifying CXR images as either TB-positive or
TB-negative. Additionally, we also investigated whether
data augmentation could further improve the classification
performance of these models by comparing the performance
of models trained on only real images versus those trained
on a combination of real and augmented data. We went

further to examine the training time and the number of
parameters for each architecture to understand the computa-
tional efficiency and resource demands for each model. This
analysis is important for practical implementation, particu-
larly in resource-constrained settings where training time
and computational costs are significant considerations. By
evaluating these parameters, we aimed to identify models that
not only perform well but also offer a balanced trade-off
between accuracy and efficiency, making them suitable for
real-world applications in diverse health care environments.

Table 2 summarizes the performance of CNN architectures
across accuracy, precision, recall, and F1-score, highlighting
the impact of training on real images versus a combination
of real and augmented data. Table 3 shows the performance
of these models when evaluated using the AUC-ROC score
metric. It was observed that the VGG16 outperformed all
other architectures across all metrics, with an accuracy of
99.4%, precision of 97.9%, recall of 98.6%, F1-score of
98.3%, and area under the curve of 98.25%. Its performance
was superior consistently, irrespective of whether the models
were trained with or without data augmentation.

Table 2. Evaluation of convolutional neural network (CNN) architectures across key evaluation metricsa.
Architecture Accuracy (%) Precision (%) Recall (%) F1-score (%)
VGG16b 99.4 97.9 98.6 98.3
VGG16c 99.3 96.6 99.3 97.9
VGG19 99.2 96.6 98.6 97.6
VGG19c 99.2 96.6 98.6 97.6
ResNet50d 96.1 81.3 96.9 88.4
ResNet50c 89 97.5 30 45.9
ResNet101 96.9 94.8 84.6 89.3
ResNet101c 97.3 92.1 90 91.1
ResNet152 97.9 93.6 93.6 93.6
ResNet152c 97.5 87.6 96.6 92.1
Inception ResNet-v2 99 95.9 98.6 97.2
Inception ResNet-v2c 99.2 97.2 97.9 97.5

aThis table summarizes the performance of various CNN architectures according to precision, recall, and F1-score.
bVGG: Visual Geometry Group.
cModels were trained using a combination of real and augmented data, showcasing the impact of data augmentation on model performance.
dResNet: Residual Network.

Table 3. The models’ area under the curve (AUC) scores.
Model AUC (without data augmentation) AUC (with data augmentation)
VGG16a 98.25 97.95
VGG19 97.6 97.6
ResNet50b 85.65 63.75
ResNet101 89.6 91.05
ResNet152 93.45 89.85
Inception ResNet-v2 92.75 97.55

aVGG: Visual Geometry Group.
bResNet: Residual Network.

Surprisingly, increasing the dataset size through data
augmentation did not correspond with an increase in the

performance of the models across all architectures, as seen
in Table 2. This was also observed in other models, such
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as ResNet50, where when augmented data were included,
the AUC-ROC score dropped significantly from 85.65% to
63.75%, as shown in Table 3. This suggests that the intro-
duction of augmented data may have introduced noise or
overcomplicated the training process for certain architectures,
negatively impacting their ability to generalize effectively.
Training Time
We also tracked each model’s training time with a combina-
tion of data augmentation and real images versus training

with only real images, as shown in Table 4. As expected,
training with data augmentation requires more time due
to the increased size of the dataset. For example, training
the ResNet152 with data augmentation took 356.6 minutes,
whereas training without augmentation took 345.7 minutes.
This observation highlights the trade-off between longer
training times and the potential benefits of data augmentation.
However, data augmentation did not improve performance in
our case, indicating that the additional training time did not
translate into better model generalization.

Table 4. Training time for the models.
Model AUCa (real images) AUC (real and augmented data)
VGG16b 98.25 97.95
VGG19 97.6 97.6
ResNet50c 85.65 63.75
ResNet101 89.6 91.05
ResNet152 93.45 89.85
Inception ResNet-v2 92.75 97.55

aAUC: area under the curve.
bVGG: Visual Geometry Group.
cResNet: Residual Network.

Model Parameters
In addition to our analysis, we provide a detailed break-
down of the parameter count for each model used in our
study, as shown in Table 5. The number of parameters in a

model reflects its complexity and capacity to learn from data.
Consequently, it has a direct impact on both training time and
the computational resources required, influencing the model’s
overall efficiency and scalability.

Table 5. Parameters of each model.
Model Parameters, n
Inception-ResNet-V2 54,336,736
ResNet152a 58,370,944
ResNet101 42,658,176
ResNet50 23,587,712
VGG19b 20,024,384
VGG16 14,714,688

aResNet: Residual Network.
bVGG: Visual Geometry Group.

The results highlight the superior performance of VGG16
in terms of diagnostic accuracy and computational effi-
ciency, challenging the hypothesis that more complex models
always yield better results. These findings and their broader
implications for TB diagnostics are explored in the Discus-
sion section.

Discussion
Principal Findings
The findings from this study provide significant insights into
the performance and efficiency of several CNN architectures
in the classification of CXR images for TB detection. The
architectures evaluated included VGG16, VGG19, ResNet50,
ResNet101, ResNet152, and Inception-ResNet-V2. Of these,

the VGG16 consistently achieved the highest performance
across all metrics, such as accuracy, precision, recall, and
F1-score. This consistent performance suggests that VGG16
effectively captures the necessary features for distinguish-
ing between TB-positive and TB-negative CXR images,
even with fewer parameters compared to the deeper mod-
els. VGG16’s superior performance is significant, as it
demonstrates that a simpler model can achieve exceptional
diagnostic accuracy while requiring minimal computational
resources. This makes it a practical and scalable solution
for deployment in resource-constrained settings with limited
access to high-performance hardware.

The computational time observed across models has
implications for clinical settings, particularly in resource-
limited environments. Longer training times, as seen with
complex architectures like ResNet152, increase resource
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demands, potentially impacting cost-effectiveness. Impor-
tantly, since data augmentation did not improve model
performance in this study, the additional computational
burden may not be justifiable in such settings. Simpler
models, like VGG16 or ResNet50, may offer a more feasible
balance between efficiency and diagnostic accuracy, making
them better suited for practical implementation.
Comparison to Prior Work
The findings also highlight the fact that while data augmen-
tation is often used to improve the performance of CNN
models by expanding the dataset and introducing variability,
it does not necessarily lead to performance improvements
if the base dataset already provides sufficient diversity for
training. In our study, the original dataset appeared robust
enough, and the addition of augmented data did not enhance
model performance. This aligns with findings from previous
studies, such as the study by Shorten and Khoshgoftaar [47],
which emphasize that the effectiveness of data augmentation
is highly dependent on the initial dataset’s characteristics,
particularly its size and variability. When the base dataset
is sufficiently diverse, as in our case, augmentation may
introduce unnecessary redundancy or even noise, potentially
disrupting the model’s ability to generalize effectively.

However, our findings also contrast with studies in
domains where datasets are inherently limited or imbalanced,
such as biomedical imaging, where augmentation has been
shown to significantly improve performance by addressing
underrepresented classes and introducing variability. For
instance, a study by Perez and Wang [48] demonstrated that
data augmentation improved model generalization for small
datasets by simulating real-world variability. The discrepancy
between our results and these studies highlights the context-
dependent nature of augmentation’s effectiveness and the
need for tailoring augmentation strategies to specific datasets
and tasks.

It is commonly observed in several studies that models
with a higher number of parameters, such as ResNet152 and
Inception-ResNet-V2, are capable of capturing more deep
patterns in the data [41,43]. However, this comes at the
cost of requiring more computational resources and longer
training times. Interestingly, in our study, despite having
fewer parameters, VGG16 outperformed the more complex
models. This suggests that for our specific task of classifying
CXR images into TB-positive and TB-negative categories,
VGG16 efficiently captured the relevant features without
necessitating excessive complexity. This finding highlights
the importance of selecting the appropriate model architecture
based on the specific characteristics and requirements of the
task at hand rather than simply opting for the model with the
most parameters. This result also aligns with the principle that
simpler models can often perform competitively when they
are well-matched to the data and the problem domain [40].

Strengths and Limitations
The findings from this study show that a simpler model
like VGG16 can deliver strong performance while keeping
computational requirements low. This makes it suitable for

use in low-resource environments. The study also measured
training time across different architectures, which helps
evaluate practical efficiency.

The study used a publicly available dataset from
Kaggle. While the dataset is extensive, it may not reflect
the full range of clinical variability found in real-world
populations. Only one data augmentation approach was
applied, and results might vary with other techniques or
combinations.

Conclusions
This study presents a comprehensive evaluation of several
CNN architectures—VGG16, VGG19, ResNet50, ResNet101,
ResNet152, and Inception-ResNet-V2—in classifying CXR
images as either TB-positive or TB-negative. The findings
showed that the VGG16 architecture consistently outper-
formed the other models across all the evaluation met-
rics, achieving superior performance despite having fewer
parameters compared to the more complex architectures such
as ResNet152 and Inception-ResNet-V2. These results align
with previous studies, such as those by Meraj et al [30] and
Lakhani and Sundaram [12], which also highlighted the high
diagnostic accuracy and efficiency of simpler architectures
like VGG16 for TB detection in CXR images. However, our
study extends these findings by demonstrating that VGG16
performs robustly even on larger, more diverse datasets,
further validating its applicability to real-world scenarios.

Our results also showed limited benefits of data aug-
mentation in this context, suggesting that the original
dataset provided sufficient diversity for effective training.
This finding is consistent with previous research empha-
sizing that the utility of data augmentation is highly con-
text-dependent and may not always lead to performance
improvements, particularly when the dataset already exhibits
sufficient variability. However, it contrasts with studies
where augmentation proved essential for improving perform-
ance in smaller, imbalanced datasets, highlighting the need
for task-specific augmentation strategies. Furthermore, the
study demonstrated significant trade-offs between model
complexity, training time, and performance. Models with
higher parameters, such as ResNet152 and Inception-ResNet-
V2, required longer training times and more computational
resources without corresponding improvements in classifica-
tion performance across all evaluation metrics. This empha-
sizes the importance of selecting model architectures based
on task requirements rather than defaulting to more com-
plex models. Simpler models like VGG16 not only ach-
ieved higher accuracy but also demonstrated computational
efficiency, making them particularly suitable for resource-
constrained environments. The practical implications of
this finding are significant: VGG16’s lower computational
requirements and superior performance enable its deployment
in low-resource health care settings, where access to high-
performance hardware and technical expertise may be limited.

Overall, our research contributes to the growing body of
evidence supporting the effectiveness of deep learning models
in medical image classification and provides actionable
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insights into optimizing these models for TB detection
in CXR images. By addressing key considerations such
as dataset diversity, model complexity, and computational

efficiency, this study offers practical guidance for implement-
ing AI-driven TB diagnostic tools in real-world clinical
environments.
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