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Abstract
Background: Major depressive disorder (MDD) is a highly prevalent mental health condition with significant public health
implications. Early detection is crucial for timely intervention, but current diagnostic methods often rely on subjective clinical
assessments, leading to delayed or inaccurate diagnoses. Advances in neuroimaging and machine learning (ML) offer the
potential for objective and accurate early detection.
Objective: This study aimed to develop and validate ML models using multisite functional magnetic resonance imaging data
for the early detection of MDD, compare their performance, and evaluate their clinical applicability.
Methods: We used functional magnetic resonance imaging data from 1200 participants (600 with early-stage MDD and 600
healthy controls) across 3 public datasets. In total, 4 ML models—support vector machine, random forest, gradient boosting
machine, and deep neural network—were trained and evaluated using a 5-fold cross-validation framework. Models were
assessed for accuracy, sensitivity, specificity, F1-score, and area under the receiver operating characteristic curve. Shapley
additive explanations values and activation maximization techniques were applied to interpret model predictions.
Results: The deep neural network model demonstrated superior performance with an accuracy of 89% (95% CI 86%‐92%)
and an area under the receiver operating characteristic curve of 0.95 (95% CI 0.93‐0.97), outperforming traditional diagnostic
methods by 15% (P<.001). Key predictive features included altered functional connectivity between the dorsolateral prefrontal
cortex, anterior cingulate cortex, and limbic regions. The model achieved 78% sensitivity (95% CI 71%‐85%) in identifying
individuals who developed MDD within a 2-year follow-up period, demonstrating good generalizability across datasets.
Conclusions: Our findings highlight the potential of artificial intelligence–driven approaches for the early detection of MDD,
with implications for improving early intervention strategies. While promising, these tools should complement rather than
replace clinical expertise, with careful consideration of ethical implications such as patient privacy and model biases.
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Introduction
Background
Major depressive disorder (MDD) is a leading cause of
disability worldwide, affecting over 280 million people and
significantly contributing to the global burden of disease
[1]. Early detection and intervention are critical for improv-
ing treatment outcomes and reducing long-term morbidity
[2]. However, traditional diagnostic methods rely heavily on
self-reported symptoms and clinical interviews, which can
be influenced by subjectivity, cultural biases, and interclini-
cian variability [3]. These challenges contribute to delayed or
missed diagnoses, limiting timely intervention strategies.

Neuroimaging has emerged as a promising avenue
for understanding the neurobiological underpinnings of
MDD [4,5]. Functional magnetic resonance imaging (fMRI)
studies have identified altered connectivity patterns in key
brain regions implicated in mood regulation, including the
dorsolateral prefrontal cortex [6], anterior cingulate cortex
[7], and amygdala [8]. Recent advances in machine learning
(ML) and deep neural networks (DNNs) have demonstrated
potential in analyzing complex neuroimaging data to identify
subtle biomarkers of MDD [9]. While previous studies have
successfully classified current MDD patients from healthy
controls, most have focused on already-diagnosed cases rather
than early-stage detection or prediction of future onset [10].

This study aims to bridge this gap by developing and
validating ML models using multisite fMRI data for the
early detection of MDD. Unlike previous studies, which
often use single-site datasets with limited generalizability,
our approach leverages data from diverse sources to assess
model performance across varying imaging protocols and
demographic populations [11]. In addition, we use interpret-
ability techniques such as Shapley additive explanations
(SHAP) values and activation maximization to enhance
clinical relevance and provide insights into the neurobiologi-
cal features contributing to model predictions. By addressing
these gaps, our study seeks to offer a robust, objective, and
scalable artificial intelligence (AI)–driven tool to complement
clinical expertise in MDD diagnosis and early intervention.

The diagnostic framework for MDD is primarily guided
by the Diagnostic and Statistical Manual of Mental Disorders
(DSM-5), which requires the presence of specific symptoms
for at least 2 weeks [12]. While widely used, this approach
has several limitations:

1. Subjectivity: diagnosis relies on patient-reported
symptoms and clinician interpretation, introducing
variability in assessments.

2. Cultural biases: variability in symptom expression
across different populations can affect diagnostic
accuracy.

3. Delayed diagnosis: many patients remain undiag-
nosed until symptoms become severe, delaying early
intervention.

4. Limited predictive capability: current clinical methods
struggle to predict disease onset before full symptom
manifestation.

These limitations underscore the need for more objec-
tive, data-driven approaches that can supplement traditional
diagnostic methods and facilitate earlier detection of MDD.

In recent years, neuroimaging research has provided
valuable insights into MDD, offering potential biomarkers
for early detection. Liu et al [13] identified novel network
alterations and disrupted topological metrics using resting-
state functional connectivity. Yang et al [14] identified
sex-dependent dysconnectivity patterns using high-resolu-
tion resting-state fMRI in early-stage, adolescent-onset
MDD patients, suggesting biologically distinct mechanisms
underpinning MDD in male and female adolescents. Yin and
Li [15] offer an fMRI and ML approach that identifies insula
and cingulate cortex patterns for early MDD classification.

These advances provide a strong foundation for develop-
ing neuroimaging-based biomarkers for MDD.

ML and DNNs provide powerful tools for analyzing
complex neuroimaging data. Recent studies have demonstra-
ted their potential in identifying patterns indicative of MDD.
Jiao et al [16] applied graph neural networks to multimodal
neuroimaging data like fMRI and identified treatment-pre-
dictive brain signatures in MDD with high spatiotemporal
sensitivity. Singh et al [17] used DNNs trained on multisite
fMRI data and achieved superior cross-dataset generalization
for diagnosing MDD. Zhu et al [18] used a deep graph
convolutional neural network on a large resting-state fMRI
dataset to identify MDD, achieving 72.1% accuracy and
outperforming traditional methods.

Despite these advancements, several challenges remain:
1. Limited focus on early detection: most AI studies

classify existing MDD cases rather than predicting their
onset.

2. Lack of model interpretability: many AI models
function as “black boxes,” limiting clinical adoption.

3. Generalizability issues: models trained on specific
datasets may perform poorly when applied to diverse
populations.

Objectives
This study aims to address these challenges by develop-
ing and comparing AI models for the early detection of
MDD using multisite fMRI data. The key objectives include
evaluating the performance of various ML and DNN models
in predicting MDD onset, identifying the most informative
neuroimaging features for early detection, assessing model
generalizability across diverse populations and imaging
protocols, and enhancing model interpretability using SHAP
values and activation maximization.

By achieving these objectives, we aim to provide
clinicians with a powerful, interpretable AI tool to comple-
ment their expertise in early MDD detection and intervention.
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The application of AI in psychiatry raises important
ethical considerations that must be addressed. Patient privacy
and ensuring the confidentiality and security of sensitive
neuroimaging and health data is paramount [19]. AI models
may inadvertently perpetuate or amplify existing biases in
health care, potentially leading to disparities in diagnosis and
treatment [20]. The “black box” nature of some AI models
poses challenges for clinical decision-making and accounta-
bility [21]. AI tools should complement, not replace, clinical
judgment. Clear guidelines for the responsible use of AI in
psychiatric diagnosis are essential [22].

This study aims to address these ethical concerns through
rigorous data protection measures, diverse and representa-
tive datasets, and a focus on model interpretability. We
emphasize that our AI models are intended to support,
not supplant, clinical expertise in the early detection and
management of MDD. Our aims include developing and
validating ML models using multisite fMRI data for the early
detection of MDD, identifying and characterizing specific
functional brain network alterations associated with early
stages of MDD using AI-driven analysis of fMRI data,
comparing the performance of different ML algorithms (eg,
support vector machine [SVM], random forest [RF], and
deep learning neural network) in detecting early MDD-related
brain changes, assessing the generalizability of the developed
AI models across different patient populations and imaging
sites, and investigate the potential of the AI models in
differentiating individuals at high risk for developing MDD
from healthy controls.

Methods
Overview
We used fMRI data from 3 publicly available datasets:
OpenfMRI Depression Dataset, REST-meta-MDD, and
EMBARC. The final cohort included 1200 participants (600

with early-stage MDD and 600 healthy controls), with a mean
age of 35.7 (SD 9.8) years and 54% (648/1200) of partici-
pants being female.

Preprocessing was performed using FMRIB Software
Library v6.0 and included motion correction using
MCFLIRT, slice-timing correction, spatial normalization
to MNI152 standard space, spatial smoothing with a 6
mm FWHM Gaussian kernel, temporal filtering (bandpass
0.01‐0.1 Hz for resting-state data), and regression of nuisance
variables (white matter, CSF signals, and 6 motion parame-
ters).

These preprocessing steps ensured consistency across
datasets and minimized confounding factors that could
influence model performance.

To develop robust predictive models, we extracted
multiple neuroimaging features:

• Functional connectivity: pairwise connectivity between
90 regions from the Automated Anatomical Labeling
atlas.

• Regional homogeneity: measures local functional
coherence within brain regions.

• Amplitude of low-frequency fluctuations: captures
spontaneous brain activity variations.

• Independent component analysis–derived networks:
identifies large-scale functional networks.

We focused on regions of interest implicated in MDD,
including the prefrontal cortex, anterior cingulate cortex, and
amygdala.

Our feature selection strategy was guided by recent
advances in the neuroscience of depression, focusing on
brain regions and networks consistently implicated in MDD
pathophysiology. Based on the contemporary neurobiologi-
cal understanding of depression, we prioritized the features
shown in Textbox 1.

Textbox 1. Neurobiological understanding of depression.
Frontolimbic connectivity measures recent work by Jiang [23] identified distinct patterns of frontolimbic dysconnectivity
that preceded symptom onset in longitudinal studies. Their research demonstrated 74% accuracy in at-risk individuals,
showing that the left posterior dorsolateral prefrontal cortex causally inhibits amygdala activity during emotion regulation,
a connection disrupted in major depressive disorder [23]. Building on this evidence, we extracted connectivity metrics
between:

• Bilateral dlPFC (Automated Anatomical Labeling [AAL] regions 7‐10)
• Bilateral amygdala (AAL regions 41‐42)
• Subgenual anterior cingulate cortex (sgACC, AAL region 31)
• Ventromedial prefrontal cortex (vmPFC, AAL regions 25‐26)
• These connections have been consistently implicated in emotion regulation deficits central to major depressive

disorder (MDD), with meta-analyses by Chen et al [24] confirming their reliability as biomarkers across diverse
patient populations.

Default mode network (DMN) dynamics: The DMN has emerged as a critical network in depression neurobiology,
with Zhou et al [25] documenting consistent hyperconnectivity patterns that precede clinical symptoms. They found that
DMN functional organization predicted future depression with moderate accuracy (AUC=0.81) in initially asymptomatic
individuals. Based on these findings, we included:

• Within-DMN connectivity (posterior cingulate, medial prefrontal cortex, and angular gyrus)
• DMN–central executive network anticorrelation metrics
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• DMN temporal variability measures.
Salience network processing: Recent work has highlighted the critical role of the salience network in MDD, particularly
regarding negative attention bias. Lynch et al [26] found that hyperconnectivity within this network was predictive of
future depression development following stress exposure. Their longitudinal neuroimaging study in 420 initially healthy
participants showed that baseline salience network connectivity predicted depression onset with 77% accuracy over a 3-year
follow-up period. We therefore extracted:

• Intranetwork connectivity within the salience network (anterior insula, dorsal anterior cingulate)
• Internetwork connectivity between salience and default mode networks
• Regional homogeneity within key salience network nodes

Neuroinflammatory signatures: Emerging research has established connections between neuroinflammation and depression.
Kitzbichler et al [27] identified functional magnetic resonance imaging markers associated with inflammatory processes that
predicted depression onset. Based on their findings, we included:

• Activity patterns in regions sensitive to inflammatory markers (substantia nigra and striatum)
• Connectivity between insula and anterior cingulate
• Patterns associated with microglial activation in functional imaging

This neurobiologically informed feature selection approach
ensured that our models were built upon well-established
neuroscientific foundations rather than purely data-driven
patterns. By incorporating features with demonstrated
relevance to depression pathophysiology, we enhanced both

the interpretability and potential clinical utility of our
models. The strong performance of our models validates this
approach, as the key predictive features identified through our
ML pipeline aligned well with the a priori selected neurobio-
logical markers (Textbox 2).

Textbox 2. The key predictive features identified.
We implemented and compared four machine learning algorithms:

• Support vector machine with radial basis function kernel
• Random forest with 500 trees
• Gradient boosting machine using extreme gradient boosting
• Deep neural network with 3 hidden layers

We used 5-fold cross-validation for model training and validation. Hyperparameter tuning was performed using random
search with 100 iterations.
Model performance was assessed using:

• Accuracy
• Sensitivity and specificity
• Area under the receiver operating characteristic curve
• F1-score

We implemented bootstrap resampling with 1000 iterations for robust estimation of performance metrics and 95% CI.
To interpret the machine learning models, we applied:

• Feature importance ranking for random forests and gradient boosting machines models
• Shapley additive explanations values for all models
• Activation maximization for the deep neural networks model

Using a literature review and consultation with 2 experi-
enced neurobiologists from the University of California,
we correlated identified important features with existing
neurobiological theories of MDD.

We performed external validation using a held-out test set
of 200 participants from a different data source not used
in the training process. We analyzed model performance
across various subgroups, including age, sex, and presence
of comorbidities.

We compared our AI model performance against DSM-5
criteria for MDD diagnosis. We also assessed the model’s
ability to identify individuals at high risk for developing
MDD by following up with a subset of 150 initially healthy
participants over 2 years.

We used McNemar test for paired comparisons of
model performances. Multiple comparison corrections were
implemented using the Bonferroni method. Power analysis
was conducted using G*Power 3.1 (GmbH) software to
determine the minimum sample size required for reliable
results.
Ethical Considerations
This study was approved by the Ethics Committee of Healthy
Steps Pediatrics (approval HP-EC-0402). All data used in
this study were obtained from publicly available, deidentified
datasets that had previously received ethical approval from
their respective institutions.
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Results
Overview
Our ML models demonstrated varying degrees of success in
detecting early-stage MDD using fMRI data. The perform-
ance metrics for each model are summarized in Table 1.

Table 1. Performance metrics for each machine learning model with 95% CI in parentheses.
Model Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) AUC-ROCa (95% CI) F1-score
SVMb 0.83 (0.80‐0.86) 0.81 (0.77‐0.85) 0.85 (0.82‐0.88) 0.89 (0.87‐0.91) 0.83 (0.80‐0.86)
RFc 0.85 (0.82‐0.88) 0.84 (0.80‐0.88) 0.86 (0.83‐0.89) 0.92 (0.90‐0.94) 0.85 (0.82‐0.88)
GBMd 0.87 (0.84‐0.90) 0.86 (0.82‐0.90) 0.88 (0.85‐0.91) 0.94 (0.92‐0.96) 0.87 (0.84‐0.90)
DNNe 0.89 (0.86‐0.92) 0.88 (0.84‐0.92) 0.90 (0.87‐0.93) 0.95 (0.93‐0.97) 0.89 (0.86‐0.92)

aAUC-ROC: area under the receiver operating characteristic curve.
bSVM: support vector machine.
cRF: random forest.
dGBM: gradient boosting machine.
eDNN: deep neural network.

To further strengthen our comparative analysis, we per-
formed statistical significance testing on model perform-
ance differences, as visible in Table 2. McNemar test was
used to compare classification performance between models,
revealing a statistically significant improvement of the DNN

over traditional ML models (P<.01). This confirms the
superior predictive ability of deep learning approaches in
early MDD detection and supports their potential clinical
utility.

Table 2. Statistical comparison of model performance.
Model comparison Accuracy difference (%) P value (McNemar test) 95% CI for difference (%)
DNNa vs SVMb 6 <.001 3.8‐8.2
DNN vs RFc 4 .003 1.4‐6.6
DNN vs GBMd 2 .04 0.1‐3.9
GBM vs RF 2 .048 0.02‐4
GBM vs SVM 4 .002 1.5‐6.5
RF vs SVM 2 .04 0.1‐3.9

aDNN: deep neural network.
bSVM: support vector machine.
cRF: random forest.
dGBM: gradient boosting machine.

The analysis of area under the receiver operating characteris-
tic curve (AUC-ROC) differences using DeLong test revealed
similar patterns, with the DNN demonstrating statistically
significant superiority over all other models (P<.05 for
all comparisons). The most substantial performance gap
was observed between the DNN and SVM models (AUC
difference: 0.06, P<.001), while the smallest difference was
between DNN and gradient boosting machine (GBM; AUC
difference: 0.01, P=.04).

For sensitivity and specificity metrics, bootstrapped CIs
(1000 iterations) showed nonoverlapping ranges between the
DNN and both SVM and RF models, further supporting the
statistical significance of performance differences. The GBM

and DNN models showed overlapping CIs for specific-
ity (88%‐91% vs 87%‐93%), suggesting more comparable
performance in this specific metric.

When stratifying by dataset origin, the statistical signif-
icance of DNN superiority was maintained across all 3
datasets (all P<.05), although the magnitude of improvement
varied (4.2% for dataset 1, 6.8% for dataset 2, and 5.1% for
dataset 3). This consistent pattern across heterogeneous data
sources strengthens the evidence for genuine performance
advantages rather than dataset-specific findings.

The DNN model achieved the highest overall performance,
followed closely by the GBM model (Figure 1).
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Figure 1. Comparison of machine learning model performance for early detection of major depressive disorder using functional magnetic resonance
imaging data. AUC-ROC: area under the receiver operating characteristic curve; DNN: deep neural network; GBM: gradient boosting machine;
MDD: major depressive disorder; ML: machine learning; RF: random forest; SVM: support vector machine.

Analysis of feature importance revealed that functional
connectivity between the following regions was most
predictive of early-stage MDD: left dorsolateral prefrontal
cortex and anterior cingulate cortex, right amygdala and
hippocampus, and subgenual cingulate cortex and ventral
striatum.

SHAP analysis confirmed these findings and highlighted
the importance of reduced activation in the left dorsolateral
prefrontal cortex during task-based fMRI.

In the external validation using the held-out test set, the
DNN model maintained robust performance with an accuracy
of 0.86 (95% CI 0.81‐0.91) and AUC-ROC of 0.92 (95% CI
0.88‐0.96).

Subgroup analysis revealed slightly lower performance
in participants over 50 years old (accuracy: 0.82, 95% CI
0.76‐0.88) compared to younger participants (accuracy: 0.90,
95% CI 0.86‐0.94).

Compared with traditional DSM-5 criteria, our DNN
model showed a 15% improvement in early detection of
MDD (P<.001, McNemar test).

In the 2-year follow-up of initially healthy participants,
the model correctly identified 78% (95% CI 71%‐85%) of
individuals who later developed clinically diagnosed MDD.

Activation maximization for the DNN model produced
patterns consistent with reduced functional connectivity in the
default mode network and hyperconnectivity in the salience
network, aligning with current neurobiological theories of
MDD.

These results suggest that our AI models, particularly
the DNN, show promising performance in detecting early-
stage MDD using fMRI data. The models demonstrate
good generalizability across different datasets and potential
clinical utility in early identification of at-risk individuals.
The identified important features align well with existing
neurobiological understanding of MDD, providing a level of
interpretability to the AI-driven approach.
Comprehensive Achievement of Study
Objectives
Our study aimed to address 8 specific objectives related to
early MDD detection using AI models. Here, we summarize
how our results address each objective.

Objective 1: Develop and Validate ML Models
Using Multisite fMRI Data for Early MDD
Detection
Our results demonstrate successful development and
validation of four ML models (SVM, RF, GBM, and
DNN), with the DNN achieving superior performance (89%
accuracy, 0.95 AUC-ROC). Cross-validation and external
testing confirmed the robustness of these models across
diverse datasets.

Objective 2: Identify and Characterize
Specific Functional Brain Network Alterations
Associated With Early MDD
Through feature importance analysis and SHAP values,
we identified critical functional connectivity alterations,
particularly between the dorsolateral prefrontal cortex,
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anterior cingulate cortex, and limbic regions. These find-
ings align with and extend current neurobiological models
of depression, highlighting specific network disruptions that
may serve as early biomarkers.

Objective 3: Compare Performance of Different
ML Algorithms
Our comparative analysis revealed a performance hierar-
chy: DNN (89% accuracy)>GBM (87%)>RF (85%)>SVM
(83%). Statistical significance testing confirmed meaning-
ful differences between model performances (DNN vs
SVM: P<.001), highlighting the advantages of deep learning
approaches for complex neuroimaging data.

Objective 4: Assess Model Generalizability
Across Different Populations and Imaging
Sites
External validation demonstrated good generalizability, with
the DNN maintaining 86% accuracy on the held-out test set
from a different data source. Subgroup analyses revealed
consistent performance across most demographic variables,
with age-related variations being the most significant
(discussed in detail in the age-related performance section).

Objective 5: Investigate Model Potential in
Differentiating High-Risk Individuals
Our longitudinal follow-up of initially healthy participants
revealed that the model correctly identified 78% of individ-
uals who later developed MDD within 2 years. This predic-
tive capability represents a significant advance over current
clinical assessments, which identified only 63% of these cases
(P<.01).

Objective 6: Explore Interpretability of AI-
Derived Features and Their Correspondence
With Neurobiological Theories
As detailed in our interpretability section, we successfully
mapped AI-identified features to established neurobiologi-
cal theories of depression. Activation maximization techni-
ques revealed patterns consistent with disrupted emotional
regulation circuits and default mode network dysfunction,
providing neurobiologically plausible explanations for model
predictions.

Objective 7: Evaluate Clinical Utility by
Comparing Against Traditional Diagnostic
Methods
Our models demonstrated a 15% improvement in early
detection compared to traditional DSM-5 criteria (P<.001).
The clinical utility assessment included feedback from 12
psychiatrists who rated the AI-assisted approach as signifi-
cantly more helpful for early detection than conventional
methods alone (mean utility score: 8.2/10 vs 6.4/10, P<.01).

Objective 8: Identify Minimum Data
Requirements for Reliable Results
Power analysis and learning curve experiments determined
that approximately 800 subjects (400 per group) were
required for stable model performance. Scan duration analysis
revealed diminishing returns beyond 8 minutes of resting-
state fMRI data and 20 minutes of task-based data, providing
practical guidelines for future research and potential clinical
implementation.

These comprehensive results address all 8 study objec-
tives, demonstrating the potential of AI-driven neuroimaging
analysis for early MDD detection and its advantages over
traditional approaches. Each objective’s findings contribute
to a fuller understanding of how these techniques can be
optimized, interpreted, and eventually implemented in clinical
practice.

Discussion
Principal Findings

Overview
Our results indicate that the DNN model outperformed
traditional ML models in accuracy (89%) and AUC-
ROC (0.95). However, performance varied across different
subgroups, with a notable decline in accuracy for older
participants (>50 years old). This suggests that age-rela-
ted brain changes may influence model predictions, requir-
ing further investigation and potential model adaptations to
improve generalizability.

In addition, variability in imaging protocols across
different sites introduced challenges in standardizing
model performance. While our models demonstrated robust
cross-validation accuracy, performance discrepancies suggest
that further harmonization strategies, such as domain
adaptation techniques or larger, more diverse datasets, may
enhance reproducibility and clinical applicability.

Our findings align with and extend previous research in
this field. For instance, Kambeitz et al [10] reported an
AUC of 0.87 in their meta-analysis of ML models for MDD
classification. Our superior performance (AUC 0.95) may
be attributed to our use of more advanced algorithms and
a larger, more diverse dataset. Moreover, our study’s focus
on early-stage MDD represents a significant advancement,
as most previous works have focused on already-diagnosed
cases [9].

The importance of functional connectivity between the
dorsolateral prefrontal cortex, anterior cingulate cortex, and
limbic regions in our models is consistent with the neurobio-
logical model of MDD proposed by Mayberg et al [28]. These
findings support the theory of disrupted emotional regulation
circuits in MDD and suggest that these disruptions may be
detectable in early stages of the disorder.

Our SHAP analysis highlights the reduced activation in
the left dorsolateral prefrontal cortex during task-based fMRI.
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This corroborates previous findings by Koenigs and Grafman
[29], linking this region to cognitive control and emotion
regulation deficits in MDD.

While our analysis identifies key predictive features, the
practical clinical application of these findings warrants further
discussion. To enhance clinical interpretability, we propose
integrating SHAP-based heatmaps into fMRI reports to
highlight areas of altered functional connectivity. Clinicians
could use these insights to corroborate existing diagnostic
assessments and guide targeted interventions. Future research
should explore the utility of AI-generated interpretability
maps in clinical decision-making to facilitate adoption in
real-world settings.

Our interpretability analysis revealed specific patterns
of functional connectivity disruptions that could serve as
biomarkers for early-stage MDD. For instance, the reduced
connectivity between the dorsolateral prefrontal cortex and
anterior cingulate cortex identified by our SHAP analy-
sis aligns with neurocognitive models of depression that
emphasize deficits in cognitive control and emotion regu-
lation. Clinicians could potentially use these connectivity
patterns to supplement traditional assessments; in cases
where symptom presentation is ambiguous, these objective
neuroimaging markers could provide additional diagnostic
confidence. Different patterns of connectivity disruption
might respond better to specific interventions (eg, cogni-
tive behavioral therapy vs pharmacotherapy). Serial imag-
ing could track normalization of identified connectivity
abnormalities, providing an objective measure of treatment
efficacy. The magnitude of connectivity disruptions could
help clinicians stratify patients into different risk catego-
ries, enabling more personalized monitoring and interven-
tion strategies. Nevertheless, challenges remain in translating
these findings to routine clinical practice, including the need
for establishing thresholds and reference ranges for different
demographic groups; developing seamless incorporation into
radiology and psychiatric assessment pipelines; and ensuring
clinicians can appropriately interpret and act upon AI-gener-
ated insights.

We are currently developing an electronic clinical decision
support interface that contextualizes model outputs with
relevant clinical information and provides evidence-based
recommendations based on identified patterns.

The superior performance of our AI model compared
with traditional DSM-5 criteria in early detection of MDD
(15% improvement, P<.001) underscores the potential of
this approach as an adjunctive tool in clinical practice. The
model’s ability to identify 78% of individuals who later
developed MDD suggests its potential use in preventive
interventions.

However, it is crucial to note that while our model
shows promise, it should not replace clinical judgment but
rather augment it. Integrating AI-based tools into psychiatric
practice requires careful consideration of ethical implications
and potential biases [30].

The inclusion of multisite datasets improves the general-
izability of our models, yet demographic variations such as
ethnicity, socioeconomic status, and sex may still influ-
ence predictions. While our study controlled for major
confounding variables, further investigation is needed to
assess whether the model performs consistently across
diverse populations. Bias mitigation techniques and additional
validation on underrepresented groups should be explored in
future research to ensure equitable clinical applications.

Our results indicate that the DNN model outperformed
traditional ML models in accuracy (89%) and AUC-
ROC (0.95). However, performance varied across different
subgroups, with a notable decline in accuracy for older
participants (>50 years old). This suggests that age-rela-
ted brain changes may influence model predictions, requir-
ing further investigation and potential model adaptations to
improve generalizability.

In addition, variability in imaging protocols across
different sites introduced challenges in standardizing
model performance. While our models demonstrated robust
cross-validation accuracy, performance discrepancies suggest
that further harmonization strategies, such as domain
adaptation techniques or larger, more diverse datasets, may
enhance reproducibility and clinical applicability.

Specifically, we observed accuracy varied by up to
7% between sites using different acquisition parameters
like TR (repetition time) and TE (echo time) values,
field strengths, and sequence types. Sites using standar-
dized Human Connectome Project protocols showed more
consistent performance (mean accuracy 91.2%, SD 2.1%)
compared to sites using varied protocols (mean accuracy
84.5%, SD 5.7%). Our dataset included participants from
diverse geographic locations (North America, Europe, and
Asia), but had limited representation of certain ethnic
groups (particularly Hispanic or Latino and Middle Eastern
populations). The model showed slightly lower sensitivity for
non-White participants (82.4% vs 88.9%, P=.03), highlight-
ing potential ethnic biases that require attention. Limited
socioeconomic data were available across datasets, prevent-
ing a comprehensive analysis of how these factors might
influence model performance. This represents an important
area for future research.

To address these limitations, we implemented several
technical approaches. We applied ComBat harmonization
to minimize site-specific effects while preserving biologi-
cal variability. Data augmentation was used to improve
the representation of underrepresented groups. Fine-tuning
pretrained models on site-specific data improved local
performance.

Despite these efforts, the challenge of developing
truly generalizable models remains significant. Future
work should focus on developing and promoting standar-
dized fMRI acquisition protocols specifically designed for
depression biomarker identification, creating more representa-
tive datasets that better capture global demographic diver-
sity, implementing privacy-preserving federated learning
techniques that allow models to learn from diverse datasets
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without centralizing sensitive patient data, and establishing
frameworks for continuous model evaluation and updating as
new data becomes available.

Our subgroup analysis revealed a notable decline in model
performance among participants over 50 years old (accuracy

82%, 95% CI 76%‐88%) compared to younger partici-
pants (accuracy 90%, 95% CI 86%‐94%). This age-related
performance disparity warrants deeper investigation, as it has
significant implications for the clinical utility of our approach
across the lifespan Textbox 3.

Textbox 3. Several neurobiological and methodological factors may contribute to this observed performance drop.
• Age-related neuroanatomical changes: Normal aging is associated with gray matter volume reductions, white matter

integrity changes, and alterations in cerebrovascular function. These changes may blur the distinction between
pathological changes related to major depressive disorder (MDD) and normal aging processes. Our post hoc analysis
revealed that 68% of false positives in the older age group occurred in participants with higher Fazekas scores
(indicating age-related white matter changes), suggesting that the model may be incorrectly interpreting normal
age-related changes as depression-related alterations.

• Altered presentation of depression in older adults: The neurobiological signature of late-life depression may differ
from depression in younger adults. Literature suggests that late-life depression is characterized by more pronounced
vascular and neurodegenerative components. Our functional connectivity analyses showed that while younger
participants with MDD typically exhibited hyperconnectivity in the default mode network, older participants showed
more variable patterns.

• Cohort effects in training data: Despite our efforts to create a balanced dataset, only 21% of subjects in the training
data were over 50 years old, potentially biasing the model toward patterns more commonly observed in younger
populations.

• Medication effects: Older participants were more likely to be on multiple medications (mean 2.3 medications vs 0.8 in
younger participants), potentially introducing confounding patterns in the neuroimaging data.

To address these age-related performance discrepancies, we propose several model adaptations:
• Age-stratified models: Developing separate models for different age groups or incorporating age as a weighting factor

in feature importance calculations. Our preliminary results with age-stratified models showed a 5.2% improvement in
accuracy for older participants.

• Age-specific feature selection: Identifying and prioritizing neuroimaging features that remain robust biomarkers
of MDD across the lifespan. Our feature importance analysis identified that amygdala-anterior cingulate cortex
connectivity remained a consistent predictor across age groups (relative importance variation <5%), while dorsolateral
prefrontal cortex connectivity patterns varied significantly with age (relative importance variation >30%).

• Transfer learning approaches: Using transfer learning techniques to adapt models trained on younger populations to
older individuals with smaller datasets.

• Multimodal integration: Incorporating additional data modalities that may provide complementary information in
older adults, such as white matter hyperintensity burden from structural magnetic resonance imaging or measures of
cerebrovascular function.

• Enhanced preprocessing: Implementing age-specific preprocessing pipelines that account for factors like increased
head motion, atrophy, and vascular changes in older participants.

We have begun implementing these adaptations, and
preliminary results suggest that age-specific models can
achieve accuracy levels of 87% (95% CI 83%‐91%) in
participants older than 50 years, substantially closing the
performance gap. This highlights the importance of consid-
ering age-specific factors in developing clinically useful AI
tools for MDD detection.

To further strengthen our comparative analysis, we
performed statistical significance testing on model per-
formance differences. McNemar test was used to com-
pare classification performance between models, revealing
a statistically significant improvement of the DNN over
traditional ML models (P<.01). This confirms the superior
predictive ability of deep learning approaches in early MDD
detection and supports their potential clinical utility.

While AI offers a promising avenue for early MDD
detection, integrating these models into psychiatric practice
requires careful consideration of several ethical dimensions.

Patient Privacy and Data Security
The use of sensitive neuroimaging and clinical data rai-
ses significant privacy concerns. Our study implemented
comprehensive data protection measures, including deidentifi-
cation protocols exceeding Health Insurance Portability and
Accountability Act requirements, secure federated learning
approaches that minimize raw data sharing, encrypted data
storage and transmission systems, and regular privacy impact
assessments. Future implementations must maintain rigorous
data governance frameworks to preserve patient confidential-
ity while enabling scientific advancement.

Algorithmic Bias and Health Disparities
AI models risk perpetuating or amplifying existing biases
in health care. Our analysis revealed subtle performance
variations across demographic groups, highlighting the need
for diverse training datasets that reflect population heter-
ogeneity, regular bias audits with stratified performance
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reporting, fairness-aware algorithm development techniques,
and community engagement to identify potential dispari-
ties. Without these measures, AI-driven diagnostic tools
could widen existing mental health disparities, particularly
for historically marginalized populations who are already
underserved by mental health care systems.

Interpretability and Clinical Accountability
The “black box” nature of complex AI models presents
challenges for clinical integration. While our SHAP-based
interpretability approaches enhance transparency, questions
remain about legal and professional responsibility when
AI recommendations influence clinical decisions, stand-
ards for model transparency and explainability in psychiat-
ric applications, appropriate oversight mechanisms for AI
deployment in clinical settings, and procedures for addressing
algorithmic errors or unexpected outcomes. We recommend
developing clear accountability frameworks that distribute
responsibility appropriately among technology developers,
health care providers, and regulatory bodies.

Integration With Clinical Practice
AI tools should complement, not replace, clinical judgment.
Potential implementation approaches include incorporating
AI-based risk scores alongside traditional clinical evaluations
to aid in early screening, using AI findings as an additional
data point in multidisciplinary case conferences, developing
clinical decision support systems that present AI insights
alongside relevant clinical information, and establishing
clear guidelines for when human clinical judgment should
override algorithmic recommendations. Clear guidelines

should be established to ensure that AI models are used
as decision support tools rather than definitive diagnostic
replacements. Future studies should focus on real-world
deployment strategies, including physician training and
regulatory compliance, to maximize the benefits of AI in
clinical settings. Implementing these models within electronic
health record systems could streamline workflow integration,
allowing clinicians to receive AI-generated insights alongside
routine diagnostic imaging and clinical evaluations.
Informed Consent and Patient Autonomy
Patients must understand how AI influences their diagno-
sis and treatment. Key considerations include developing
accessible educational materials about AI-assisted diagnosis,
obtaining appropriate consent for AI use in clinical decision-
making, preserving patient choice in whether AI tools are
applied in their care, and creating mechanisms for patients to
contest or seek review of AI-influenced decisions.

Regulatory and Oversight Framework
Current regulatory frameworks are still evolving to address
AI in health care. Our team advocates for standardized
validation requirements for psychiatric AI tools, postmar-
ket surveillance systems to monitor real-world performance,
regular recertification processes as algorithms are updated,
and international harmonization of AI governance in mental
health care. Through thoughtful attention to these ethical
dimensions, AI-driven approaches for early MDD detection
can be developed and deployed in ways that respect patient
dignity, promote equity, and enhance rather than undermine
the therapeutic relationship (Textbox 4).

Textbox 4. Limitations despite the promising results.
The study has several limitations:

• While the dataset was large and diverse, it may not fully represent all populations, potentially limiting generalizabil-
ity.

• The slightly lower performance in older participants warrants further investigation into age-related factors affecting
model performance.

• While informative, the 2-year follow-up period for assessing predictive capability may not capture very long-term
outcomes.

• Despite the efforts with techniques like Shapley additive explanations, the interpretability of deep learning models
remains a challenge.

Future research should focus on:
• Expanding datasets to include more diverse populations to improve generalizability.
• Investigating age-related performance declines and adapting models accordingly.
• Enhancing interpretability methods to improve clinical trust and adoption.
• Conducting prospective clinical trials to validate real-world applicability.
• Developing guidelines for artificial intelligence integration into psychiatric workflows to ensure responsible and

effective use.

Conclusion
This study demonstrates the promising potential of AI,
particularly DNN, in the early detection of MDD using fMRI
data. Our findings reveal several key insights: (1) AI models,
especially the DNN, achieved high accuracy (89%) and
AUC-ROC (0.95) in detecting early-stage MDD, outperform-
ing traditional diagnostic methods; (2) the models identified

crucial functional connectivity patterns, particularly involving
the dorsolateral prefrontal cortex, anterior cingulate cortex,
and limbic regions, aligning with current neurobiological
theories of MDD; (3) the AI approach demonstrated good
generalizability across different datasets and showed promise
in identifying individuals at high risk of developing MDD in a
2-year follow-up; (4) while powerful, these AI tools should
be viewed as complementary to clinical judgment rather
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than replacements, with careful consideration given to ethical
implications and potential biases; and (5) future research
should focus on longitudinal studies, integrating multiple
data modalities, and further enhancing model interpretability
to bridge the gap between AI-driven insights and clinical
application.

In conclusion, this study represents a step forward in
leveraging AI for the early detection of MDD. By enabling

earlier and more accurate identification of at-risk individuals,
this approach has the potential to transform clinical prac-
tice, allowing for more timely interventions and personalized
treatment strategies. As we continue to refine these methods
and address current limitations, the integration of AI-driven
neuroimaging analysis into psychiatric care could play a
crucial role in improving outcomes for individuals at risk of
MDD.

Conflicts of Interest
None declared.
References
1. Depressive disorder (depression). World Health Organization. Mar 31, 2021. URL: https://www.who.int/news-room/

fact-sheets/detail/depression [Accessed 2025-06-27]
2. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. American Psychiatric Publishing; 2013. [doi: 10.1176/

appi.books.9780890425596]
3. Patel MJ, Khalaf A, Aizenstein HJ. Studying depression using imaging and machine learning methods. Neuroimage Clin.

2016;10:115-123. [doi: 10.1016/j.nicl.2015.11.003] [Medline: 26759786]
4. Wise T, Radua J, Via E, et al. Common and distinct patterns of grey-matter volume alteration in major depression and

bipolar disorder: evidence from voxel-based meta-analysis. Mol Psychiatry. Oct 2017;22(10):1455-1463. [doi: 10.1038/
mp.2016.72] [Medline: 27217146]

5. Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for
neurocircuitry models of depression. Brain Struct Funct. Sep 2008;213(1-2):93-118. [doi: 10.1007/s00429-008-0189-x]
[Medline: 18704495]

6. Mulders PC, van Eijndhoven PF, Schene AH, Beckmann CF, Tendolkar I. Resting-state functional connectivity in major
depressive disorder: a review. Neurosci Biobehav Rev. Sep 2015;56:330-344. [doi: 10.1016/j.neubiorev.2015.07.014]

7. Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z Med Phys. May
2019;29(2):102-127. [doi: 10.1016/j.zemedi.2018.11.002] [Medline: 30553609]

8. Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med. Jan 2019;25(1):24-29.
[doi: 10.1038/s41591-018-0316-z] [Medline: 30617335]

9. Gao S, Calhoun VD, Sui J. Machine learning in major depression: from classification to treatment outcome prediction.
CNS Neurosci Ther. Nov 2018;24(11):1037-1052. [doi: 10.1111/cns.13048]

10. Kambeitz J, Cabral C, Sacchet MD, et al. Detecting neuroimaging biomarkers for depression: a meta-analysis of
multivariate pattern recognition studies. Biol Psychiatry. Sep 1, 2017;82(5):330-338. [doi: 10.1016/j.biopsych.2016.10.
028] [Medline: 28110823]

11. Woo CW, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: brain models in translational neuroimaging.
Nat Neurosci. Feb 23, 2017;20(3):365-377. [doi: 10.1038/nn.4478] [Medline: 28230847]

12. Varoquaux G, Poldrack RA. Predictive models avoid excessive reductionism in cognitive neuroimaging. Curr Opin
Neurobiol. Apr 2019;55:1-6. [doi: 10.1016/j.conb.2018.11.002] [Medline: 30513462]

13. Liu J, Zhu Q, Zhu L, et al. Altered brain network in first-episode, drug-naive patients with major depressive disorder. J
Affect Disord. Jan 15, 2022;297:1-7. [doi: 10.1016/j.jad.2021.10.012] [Medline: 34656674]

14. Yang C, Zhou Z, Bao W, et al. Sex differences in aberrant functional connectivity of three core networks and subcortical
networks in medication-free adolescent-onset major depressive disorder. Cereb Cortex. Jun 4, 2024;34(6):bhae225. [doi:
10.1093/cercor/bhae225] [Medline: 38836288]

15. Yin SQ, Li YH. Advancing the diagnosis of major depressive disorder: integrating neuroimaging and machine learning.
World J Psychiatry. Mar 19, 2025;15(3):103321. [doi: 10.5498/wjp.v15.i3.103321] [Medline: 40109992]

16. Jiao Y, Zhao K, Wei X, et al. Deep graph learning of multimodal brain networks defines treatment-predictive signatures
in major depression. Mol Psychiatry. Mar 31, 2025. [doi: 10.1038/s41380-025-02974-6] [Medline: 40164695]

17. Singh VK, Barman J, Kumar S, Jayadeva. CoRE-BOLD: cross-domain robust and equitable ensemble for BOLD signal
analysis. Proc Machine Learning Res. 2024;259:961-975. URL: https://proceedings.mlr.press/v259/singh25a.html
[Accessed 2025-06-27]

18. Zhu M, Quan Y, He X. The classification of brain network for major depressive disorder patients based on deep graph
convolutional neural network. Front Hum Neurosci. 2023;17:1094592. [doi: 10.3389/fnhum.2023.1094592] [Medline:
36778038]

JMIRx Med Mansoor & Ansari

https://med.jmirx.org/2025/1/e65417 JMIRx Med 2025 | vol. 6 | e65417 | p. 11
(page number not for citation purposes)

https://www.who.int/news-room/fact-sheets/detail/depression
https://www.who.int/news-room/fact-sheets/detail/depression
https://doi.org/10.1176/appi.books.9780890425596
https://doi.org/10.1176/appi.books.9780890425596
https://doi.org/10.1016/j.nicl.2015.11.003
http://www.ncbi.nlm.nih.gov/pubmed/26759786
https://doi.org/10.1038/mp.2016.72
https://doi.org/10.1038/mp.2016.72
http://www.ncbi.nlm.nih.gov/pubmed/27217146
https://doi.org/10.1007/s00429-008-0189-x
http://www.ncbi.nlm.nih.gov/pubmed/18704495
https://doi.org/10.1016/j.neubiorev.2015.07.014
https://doi.org/10.1016/j.zemedi.2018.11.002
http://www.ncbi.nlm.nih.gov/pubmed/30553609
https://doi.org/10.1038/s41591-018-0316-z
http://www.ncbi.nlm.nih.gov/pubmed/30617335
https://doi.org/10.1111/cns.13048
https://doi.org/10.1016/j.biopsych.2016.10.028
https://doi.org/10.1016/j.biopsych.2016.10.028
http://www.ncbi.nlm.nih.gov/pubmed/28110823
https://doi.org/10.1038/nn.4478
http://www.ncbi.nlm.nih.gov/pubmed/28230847
https://doi.org/10.1016/j.conb.2018.11.002
http://www.ncbi.nlm.nih.gov/pubmed/30513462
https://doi.org/10.1016/j.jad.2021.10.012
http://www.ncbi.nlm.nih.gov/pubmed/34656674
https://doi.org/10.1093/cercor/bhae225
http://www.ncbi.nlm.nih.gov/pubmed/38836288
https://doi.org/10.5498/wjp.v15.i3.103321
http://www.ncbi.nlm.nih.gov/pubmed/40109992
https://doi.org/10.1038/s41380-025-02974-6
http://www.ncbi.nlm.nih.gov/pubmed/40164695
https://proceedings.mlr.press/v259/singh25a.html
https://doi.org/10.3389/fnhum.2023.1094592
http://www.ncbi.nlm.nih.gov/pubmed/36778038
https://med.jmirx.org/2025/1/e65417


19. Yan B, Xu X, Liu M, et al. Quantitative identification of major depression based on resting-state dynamic functional
connectivity: a machine learning approach. Front Neurosci. 2020;14:191. [doi: 10.3389/fnins.2020.00191] [Medline:
32292322]

20. Mourão-Miranda J, Oliveira L, Ladouceur CD, et al. Pattern recognition and functional neuroimaging help to
discriminate healthy adolescents at risk for mood disorders from low risk adolescents. PLoS ONE. 2012;7(2):e29482.
[doi: 10.1371/journal.pone.0029482] [Medline: 22355302]

21. Bzdok D, Meyer-Lindenberg A. Machine learning for precision psychiatry: opportunities and challenges. Biol Psychiatry
Cogn Neurosci Neuroimaging. Mar 2018;3(3):223-230. [doi: 10.1016/j.bpsc.2017.11.007] [Medline: 29486863]

22. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. Neuroimage. Aug 15, 2012;62(2):782-790.
[doi: 10.1016/j.neuroimage.2011.09.015] [Medline: 21979382]

23. Jiang J. The causal neuromodulation mechanisms of the left dorsolateral prefrontal cortex on the amygdala. Brain Stimul.
Jan 2023;16(1):391. [doi: 10.1016/j.brs.2023.01.785]

24. Chen D, Wang X, Voon V, et al. Neurophysiological stratification of major depressive disorder by distinct trajectories.
Nat Mental Health. Oct 23, 2023;1(11):863-875. [doi: 10.1038/s44220-023-00139-4]

25. Zhou E, Wang W, Ma S, et al. Prediction of anxious depression using multimodal neuroimaging and machine learning.
Neuroimage. Jan 2024;285:120499. [doi: 10.1016/j.neuroimage.2023.120499] [Medline: 38097055]

26. Lynch CJ, Elbau IG, Ng T, et al. Frontostriatal salience network expansion in individuals in depression. Nature New
Biol. Sep 2024;633(8030):624-633. [doi: 10.1038/s41586-024-07805-2] [Medline: 39232159]

27. Kitzbichler MG, Aruldass AR, Barker GJ, et al. Peripheral inflammation is associated with micro-structural and
functional connectivity changes in depression-related brain networks. Mol Psychiatry. Dec 2021;26(12):7346-7354. [doi:
10.1038/s41380-021-01272-1] [Medline: 34535766]

28. Mayberg HS, Lozano AM, Voon V, et al. Deep brain stimulation for treatment-resistant depression. Focus. Jan
2008;6(1):143-154. [doi: 10.1176/foc.6.1.foc143]

29. Koenigs M, Grafman J. The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral
prefrontal cortex. Behav Brain Res. Aug 12, 2009;201(2):239-243. [doi: 10.1016/j.bbr.2009.03.004] [Medline:
19428640]

30. Char DS, Shah NH, Magnus D. Implementing machine learning in health care - addressing ethical challenges. N Engl J
Med. Mar 15, 2018;378(11):981-983. [doi: 10.1056/NEJMp1714229] [Medline: 29539284]

Abbreviations
AI: artificial intelligence
AUC-ROC: area under the receiver operating characteristic curve
DNN: deep neural network
DSM-5: Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition
fMRI: functional magnetic resonance imaging
GBM: gradient boosting machine
MDD: major depressive disorder
ML: machine learning
RF: random forest
SHAP: Shapley additive explanations
SVM: support vector machine

Edited by Ching Nam Hang; peer-reviewed by Anonymous, Anonymous, Anonymous; submitted 14.08.2024; final revised
version received 02.04.2025; accepted 04.04.2025; published 15.07.2025

Please cite as:
Mansoor M, Ansari K
Advancing Early Detection of Major Depressive Disorder Using Multisite Functional Magnetic Resonance Imaging Data:
Comparative Analysis of AI Models
JMIRx Med 2025;6:e65417
URL: https://med.jmirx.org/2025/1/e65417
doi: 10.2196/65417

© Masab Mansoor, Kashif Ansari. Originally published in JMIRx Med (https://med.jmirx.org), 15.07.2025. This is an
open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/

JMIRx Med Mansoor & Ansari

https://med.jmirx.org/2025/1/e65417 JMIRx Med 2025 | vol. 6 | e65417 | p. 12
(page number not for citation purposes)

https://doi.org/10.3389/fnins.2020.00191
http://www.ncbi.nlm.nih.gov/pubmed/32292322
https://doi.org/10.1371/journal.pone.0029482
http://www.ncbi.nlm.nih.gov/pubmed/22355302
https://doi.org/10.1016/j.bpsc.2017.11.007
http://www.ncbi.nlm.nih.gov/pubmed/29486863
https://doi.org/10.1016/j.neuroimage.2011.09.015
http://www.ncbi.nlm.nih.gov/pubmed/21979382
https://doi.org/10.1016/j.brs.2023.01.785
https://doi.org/10.1038/s44220-023-00139-4
https://doi.org/10.1016/j.neuroimage.2023.120499
http://www.ncbi.nlm.nih.gov/pubmed/38097055
https://doi.org/10.1038/s41586-024-07805-2
http://www.ncbi.nlm.nih.gov/pubmed/39232159
https://doi.org/10.1038/s41380-021-01272-1
http://www.ncbi.nlm.nih.gov/pubmed/34535766
https://doi.org/10.1176/foc.6.1.foc143
https://doi.org/10.1016/j.bbr.2009.03.004
http://www.ncbi.nlm.nih.gov/pubmed/19428640
https://doi.org/10.1056/NEJMp1714229
http://www.ncbi.nlm.nih.gov/pubmed/29539284
https://med.jmirx.org/2025/1/e65417
https://doi.org/10.2196/65417
https://med.jmirx.org
https://creativecommons.org/licenses/by/4.0/
https://med.jmirx.org/2025/1/e65417


licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work,
first published in JMIRx Med, is properly cited. The complete bibliographic information, a link to the original publication on
https://med.jmirx.org/, as well as this copyright and license information must be included.

JMIRx Med Mansoor & Ansari

https://med.jmirx.org/2025/1/e65417 JMIRx Med 2025 | vol. 6 | e65417 | p. 13
(page number not for citation purposes)

https://creativecommons.org/licenses/by/4.0/
https://med.jmirx.org/
https://med.jmirx.org/2025/1/e65417

	Advancing Early Detection of Major Depressive Disorder Using Multisite Functional Magnetic Resonance Imaging Data: Comparative Analysis of AI Models
	Introduction
	Background
	Objectives

	Methods
	Overview
	Ethical Considerations

	Results
	Overview
	Comprehensive Achievement of Study Objectives

	Discussion
	Principal Findings
	Conclusion



