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Abstract
Background: Rural health care providers face unique challenges such as limited specialist access and high patient volumes,
making accurate diagnostic support tools essential. Large language models like GPT-3 have demonstrated potential in clinical
decision support but remain understudied in pediatric differential diagnosis.
Objective: This study aims to evaluate the diagnostic accuracy and reliability of a fine-tuned GPT-3 model compared to
board-certified pediatricians in rural health care settings.
Methods: This multicenter retrospective cohort study analyzed 500 pediatric encounters (ages 0‐18 years; n=261, 52.2%
female) from rural health care organizations in Central Louisiana between January 2020 and December 2021. The GPT-3
model (DaVinci version) was fine-tuned using the OpenAI application programming interface and trained on 350 encounters,
with 150 reserved for testing. Five board-certified pediatricians (mean experience: 12, SD 5.8 years) provided reference
standard diagnoses. Model performance was assessed using accuracy, sensitivity, specificity, and subgroup analyses.
Results: The GPT-3 model achieved an accuracy of 87.3% (131/150 cases), sensitivity of 85% (95% CI 82%‐88%), and
specificity of 90% (95% CI 87%‐93%), comparable to pediatricians’ accuracy of 91.3% (137/150 cases; P=.47). Performance
was consistent across age groups (0‐5 years: 54/62, 87%; 6‐12 years: 47/53, 89%; 13‐18 years: 30/35, 86%) and common
complaints (fever: 36/39, 92%; abdominal pain: 20/23, 87%). For rare diagnoses (n=20), accuracy was slightly lower (16/20,
80%) but comparable to pediatricians (17/20, 85%; P=.62).
Conclusions: This study demonstrates that a fine-tuned GPT-3 model can provide diagnostic support comparable to pediatri-
cians, particularly for common presentations, in rural health care. Further validation in diverse populations is necessary before
clinical implementation.
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Introduction
The rapid advancement of artificial intelligence (AI) has
led to the development of large language models (LLMs)
that demonstrate sophisticated capabilities in understanding
and analyzing human language [1]. Recent studies have
shown promising applications of LLMs in health care,
particularly in clinical decision support, medical knowledge
synthesis, and diagnostic assistance [2-4]. However, their
reliability and accuracy in specialized medical domains,
especially pediatric care in resource-constrained settings,
require thorough evaluation.

Differential diagnosis in pediatrics presents unique
challenges that distinguish it from adult medicine. Young
patients often cannot articulate their symptoms clearly,
presentations can be atypical, and the range of potential
diagnoses varies significantly with age. Recent systematic
reviews have shown that diagnostic errors occur in “appreci-
able amounts” of pediatric encounters, with higher rates in
rural and underserved areas [5]. These errors can lead to
delayed treatment, inappropriate interventions, and potentially
adverse outcomes.

The application of LLMs in clinical decision support
has shown initial promise. Studies using GPT-3 and similar
models have reported accuracies ranging from 75% to 85% in
generating differential diagnoses for adult cases [6]. Notably,
Steinberg et al [7] demonstrated that LLMs could achieve
82% accuracy in analyzing electronic health record (EHR)
data for diagnostic support. However, pediatric applica-
tions remain underexplored, with limited studies specifically
examining LLM performance in child and adolescent cases.

Rural health care settings face particular challenges
that could benefit from LLM-based support tools. These
areas often experience physician shortages, with provid-
ers managing high patient volumes and limited access
to specialist consultation [8]. A survey of rural pedia-
tric practices found that 52% of rural pediatricians report
difficulty obtaining timely specialist input for complex cases
[9]. Additionally, rural providers often work in isolation,
managing a broad spectrum of conditions with fewer
diagnostic resources compared to urban centers [10].

Previous evaluations of AI in pediatric diagnosis have
largely focused on specific conditions or imaging-based
applications rather than broad differential diagnosis. For
instance, Wu et al [11] achieved 97.45% accuracy in pediatric
otitis media interpretation using deep learning models,
while other studies have demonstrated AI’s effectiveness in
detecting pediatric pneumonia from chest x-rays or identi-
fying developmental disorders through automated screening
tools. However, these models are often constrained by narrow
diagnostic scopes, lack interpretability, and are not readily
adaptable to general pediatric clinical reasoning.

Recent studies have begun to explore the application of
LLMs in pediatric clinical settings. For example, Nian et
al [12] found that ChatGPT and Google Gemini performed
inadequately in providing recommendations for managing
developmental dysplasia of the hip compared to expert
guidelines, raising concerns about reliability in pediatric
decision-making. Similarly, Wang et al [13] developed
an LLM-based framework for pediatric obstructive sleep
apnea management, highlighting the potential for special-
ized fine-tuning to improve diagnostic accuracy in specific
pediatric conditions. Miyake et al [14] explored the role of
AI-driven LLMs in pediatric surgery, emphasizing challenges
related to real-time intraoperative decision support. Further-
more, Raza et al [15] investigated LLM applications in
analyzing parental transcripts for children with congenital
heart disease, demonstrating their potential role in augment-
ing thematic analysis in pediatric health care.

Despite these developments, comprehensive evaluations
of LLMs in general pediatric differential diagnosis remain
scarce. Many existing studies focus on narrow applications,
lack real-world clinical validation, or fail to address age-spe-
cific nuances in pediatric presentations. Additionally, research
on LLM utility in rural settings, where pediatricians may have
limited access to specialist support, is particularly lacking.
This study aims to bridge these gaps by systematically
evaluating LLM performance in general pediatric differential
diagnosis, with a focus on rural applicability and real-world
clinical decision support.

The emergence of newer LLM architectures and their
potential application in health care necessitates rigorous
evaluation in real-world clinical settings [16]. While
preliminary studies suggest promise, questions remain about
their reliability, safety, and integration into clinical work-
flows [17]. Furthermore, the unique aspects of pediatric care
—including age-specific disease presentations, developmen-
tal considerations, and the critical nature of early accu-
rate diagnosis—require specific validation of these tools in
pediatric populations [18].

This study addresses these knowledge gaps by evaluating
the performance of a fine-tuned GPT-3 model in generat-
ing pediatric differential diagnoses within rural health care
settings. By comparing the model’s performance with that
of experienced pediatricians across various age groups and
presenting complaints, we aim to assess its potential as a
clinical decision support tool. The findings could inform
the development of AI-assisted diagnostic tools specifically
tailored to the needs of rural pediatric health care providers.

Methods
Study Design and Setting
This multicenter retrospective cohort study was conducted in
collaboration with a rural pediatric health care organization in
Central Louisiana. The organization provides primary care to
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approximately 15,000 pediatric patients. The study analyzed
patient data collected between January 2020 and December
2021. The overall workflow of the study is illustrated

in Figure 1, encompassing data collection through model
evaluation.

Figure 1. Workflow schematic showing the process of data collection, preprocessing, model training, and evaluation. The pipeline includes data
splitting (70% training, 30% testing), GPT-3 fine-tuning, and comprehensive performance evaluation including subgroup analyses.

Ethical Considerations
Ethics approval was obtained from the Mansoor Pediatrics
Ethics Committee (approval MP-2023‐017), and the study
adhered to the principles of the Declaration of Helsinki.
The study used retrospective, deidentified patient data and
was exempt from informed consent requirements. Data were
anonymized to ensure compliance with Health Insurance
Portability and Accountability Act (HIPAA) regulations. No
identifying information was accessible to researchers. No

compensation was provided to participants as the study relied
on existing retrospective data. For secondary analyses using
deidentified data, the original consent obtained at the time of
patient care covered the use of the data for research purposes.
Participants and Data Collection
A total of 500 pediatric patient encounters were included
based on the following criteria:
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• Inclusion criteria: Patients aged 0‐18 years with a
documented chief complaint and pediatrician-generated
differential diagnosis

• Exclusion criteria: Encounters with incomplete or
inconsistent data

Anonymized data, including patient age, sex, chief complaint,
presenting symptoms, medical history, and pediatrician-gen-
erated differential diagnoses, were extracted from the EHR
system. Two independent researchers manually reviewed the
data to ensure accuracy and consistency. No missing data
were present in the final dataset. Demographic information,
including racial and ethnic background, was not collected
as part of this dataset. This omission limits the ability to
assess potential biases in model performance across racial or
ethnic groups, which is an important consideration for future
research.

Five board-certified pediatricians (mean experience: 12,
SD 5.8, range 5‐20 years) participated in the study as
reference standard providers. Pediatricians were recruited
from the participating health care organization based on their
availability and experience in rural pediatrics.
Data Preprocessing
For each patient encounter, the chief complaint, presenting
symptoms, and relevant medical history were concatenated
into a single text string. Identifying information was removed
to ensure privacy. Medical terms were standardized using a
medical dictionary, and data were formatted for compatibility
with the GPT-3 model.
Model Training and Fine-Tuning
The GPT-3 model (DaVinci version) was fine-tuned using
the OpenAI application programming interface. The dataset
was randomly split into a training set (n=350, 70%) and a
testing set (n=150, 30%). The model was trained to generate
up to five differential diagnoses for each input case. The

study used retrospective data that included pediatrician-gener-
ated differential diagnoses documented during actual clinical
encounters. No pediatricians were prospectively instructed to
generate differential diagnoses specifically for this study. The
same format of up to 5 differential diagnoses was used for
standardization when processing both the historical physician
documentation and the GPT-3 outputs. Fine-tuning parame-
ters included 10 epochs, a batch size of 4, and a learning
rate of 1e-5. The fine-tuning process aimed to optimize the
model’s ability to generate accurate and relevant differential
diagnoses based on the input data. These details are visible in
Multimedia Appendix 1.

GPT-3 (DaVinci version) was selected for this study
because it was the most advanced version of the GPT model
available at the time of data collection and model fine-tun-
ing. Subsequent versions, such as GPT-3.5 and GPT-4,
were released after the study period and were therefore not
considered. Future work could explore the performance of
these newer models in similar settings to assess potential
improvements in diagnostic accuracy.
Evaluation Metrics
The model’s performance was evaluated using the following
metrics (Table 1):

• Accuracy: Proportion of correct predictions (true
positives and true negatives) relative to total cases

• Sensitivity (recall): Proportion of actual positive
diagnoses correctly identified by the model

• Specificity: Proportion of actual negative diagnoses
correctly excluded by the model

• Precision: Proportion of positive predictions that were
correct

• F1-score: Harmonic mean of precision and sensitivity
In addition to these metrics, subgroup analyses were
conducted by age group (0‐5, 6‐12, and 13‐18 years) and
chief complaints (eg, fever, abdominal pain).

Table 1. Testing set evaluation metrics for analysis of the fine-tuned GPT-3 model, including formulas and values of the evaluation metrics for the
GPT-3 model.
Metric Formula Description
Sensitivity (recall) TPa,b/(TP + FNc,d) The proportion of actual positive diagnoses that were correctly

identified by the model
Specificity TNe,f/(TN + FPg,h) 0.90 The proportion of actual negative diagnoses that were correctly

identified by the model
Precision TP/(TP + FP) The proportion of the model’s positive predictions that were

actual positive diagnoses
F1-score 2 * (precision * sensitivity)/(precision +

sensitivity)
The harmonic mean of precision and sensitivity, providing a
balanced measure of the model’s performance

Accuracy (TP + TN)/(TP + TN + FP + FN) The overall proportion of correct predictions made by the model
aTP: true positive.
bCases where the model correctly predicted a positive diagnosis.
cFN: false negative.
dCases where the model incorrectly predicted a negative diagnosis.
eTN: true negative.
fCases where the model correctly predicted a negative diagnosis.
gFP: false positive.
hCases where the model incorrectly predicted a positive diagnosis.
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Statistical Analysis
Descriptive statistics were used to summarize patient
demographics and model performance. χ2 tests were used for
categorical variables, and independent 2-tailed t tests were
used for continuous variables. Statistical significance was
set at P<.05. Data normality was assessed using the Kolmo-
gorov-Smirnov test before statistical analysis. Our outcome
metrics (accuracy, sensitivity, specificity) were found to
follow a normal distribution (P>.05), supporting our use of
parametric statistical methods including t tests for compar-
isons between groups. For nonnormally distributed varia-
bles, nonparametric alternatives (Mann-Whitney U test) were
applied.

χ2 tests were chosen for categorical variables due to their
robustness in comparing proportions across groups. Inde-
pendent t tests were selected for continuous variables after
confirming normality of distribution. The choice of met-
rics (accuracy, sensitivity, specificity) aligns with standard
diagnostic evaluation frameworks in health care AI validation
studies. Subgroup analyses were performed to assess model
performance consistency across demographics and clinical
presentations, which is essential for evaluating potential
biases in model predictions.

Power analysis indicated that a sample size of 500 would
provide 80% power to detect a 10% difference in accuracy
between the GPT-3 model and pediatricians, assuming a
pediatrician accuracy of 90%. This calculation accounted

for the expected distribution of common and rare diagnoses
in our pediatric population, with consideration for potential
subgroup analyses across different age groups and chief
complaints.

Software and Tools
The statistical analysis was conducted using Python 3.8
(Python Software Foundation) [19] with the scikit-learn
library [20] for model evaluation and SPSS Statistics version
29 (IBM Corp) for additional analysis [21]. The OpenAI
application programming interface was used for model
fine-tuning and prediction generation [22]. Software and
scripts used in this study are available upon request for
reproducibility.

Results
Dataset Characteristics
A total of 500 pediatric patient encounters were included,
with 350 (70%) cases in the training set and 150 (30%) cases
in the testing set. The mean age of patients was 7.5 (SD 5.2)
years, and 52.2% (n=261) of participants were female. The
most common chief complaints were fever (n=130, 26%),
cough (n=98, 19.6%), abdominal pain (n=73, 14.6%), and
rash (n=49, 9.8%). The distribution of age, sex, and chief
complaint was similar between the training and testing sets
(Table 2).

Table 2. Demographics and dataset characteristics.
Characteristic Total (N=500) Training set (n=350) Testing set (n=150) P value
Age (years), mean (SD) 7.5 (5.2) 7.4 (5.1) 7.7 (5.3) .56a

Sex, n (%) .82b

  Female 261 (52.2) 184 (52.6) 77 (51.3)
  Male 239 (47.8) 166 (47.4) 73 (48.7)
Chief complaint, n (%) .93b

  Fever 130 (26.0) 91 (26.0) 39 (26.0)
  Cough 98 (19.6) 70 (20.0) 28 (18.7)
  Abdominal pain 73 (14.6) 50 (14.3) 23 (15.3)
  Rash 49 (9.8) 34 (9.7) 15 (10.0)
  Other 150 (30.0) 105 (30.0) 45 (30.0)
Rare diagnoses, n (%) 20 (4.0) 14 (4.0) 6 (4.0) >.99

aP value calculated using independent 2-tailed t test.
bP value calculated using χ2 test.

Model Performance
The fine-tuned GPT-3 model achieved high accuracy in
generating differential diagnoses on the testing set. Key
performance metrics are as follows:

• Accuracy: 87.3% (131/150 cases)
• Sensitivity (recall): 85% (95% CI 82%‐88%)
• Specificity: 90% (95% CI 87%‐93%)
• Precision: 89% (95% CI 86%‐92%)
• F1-score: 0.87

The model correctly identified 128 positive diagnoses and
excluded 334 negative diagnoses, with 16 false positives and
22 false negatives.
Subgroup Analysis
Performance across age groups and common chief complaints
are summarized in Tables 2 and 3. The model’s accuracy was
consistent across age groups:

• 0‐5 years: 87% (54/62 cases)
• 6‐12 years: 89% (47/53 cases)
• 13‐18 years: 86% (30/35 cases)
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Table 3. Model performance by common chief complaints.
Chief complaint Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) Precision (95% CI) F1-score (95% CI)
Fever (n=39) 0.92 (0.88-0.96) 0.90 (0.85-0.95) 0.93 (0.90-0.96) 0.92 (0.87-0.97) 0.91 (0.86-0.96)
Cough (n=28) 0.89 (0.82-0.94) 0.85 (0.79-0.91) 0.90 (0.84-0.92) 0.89 (0.83-0.95) 0.87 (0.81-0.93)
Abdominal pain (n=23) 0.87 (0.78-0.92) 0.82 (0.75-0.89) 0.87 (0.83-0.90) 0.86 (0.79-0.93) 0.84 (0.77-0.91)
Rash (n=15) 0.93 (0.83-0.97) 0.88 (0.80-0.96) 0.91(0.88-0.94) 0.90 (0.92-0.98) 0.89 (81-0.97)

Similarly, the model demonstrated robust performance for
common chief complaints:

• Fever: 92% (36/39 cases) accuracy
• Cough: 89% (25/28) accuracy
• Abdominal pain: 87% (20/23) accuracy
• Rash: 93% (14/15) accuracy

Subgroup analyses by age group and chief complaints
revealed consistent performance, indicating the model’s
ability to generalize across varying pediatric presentations.
However, the slight performance drop in complex and rare
cases underscores the importance of targeted training datasets
for improving diagnostic accuracy in these subgroups. For
rare or complex diagnoses (n=20), the model achieved an
accuracy of 80% (16/20 cases), slightly lower than the overall
accuracy but comparable to pediatricians (17/20, 85% of
cases; P=.62).
Comparison With Pediatricians
The model’s performance was comparable to that of the
5 participating board-certified pediatricians. Pediatricians

achieved an accuracy of 91.3% (137/150 cases), with a
sensitivity of 92% (95% CI 91%-94%) and specificity of 88%
(95% CI 84%-90%). Differences in sensitivity (P=.08) and
specificity (P=.57) between the model and pediatricians were
not statistically significant.
Statistical Analysis
χ2 tests indicated no significant differences between the
GPT-3 model and pediatricians for accuracy, sensitivity,
or specificity. Subgroup analyses confirmed consistent
performance across age groups and common chief com-
plaints, with no significant performance disparities.
Tables
Table 1 provides a detailed breakdown of the evaluation
metrics. Table 4 shows the performance of the model by
age group, while Table 3 summarizes performance by chief
complaints.

Table 4. Model performance by age group.

Age group (years) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) Precision (95% CI)
F1-score (95%
CI)

Overall (n=150) 0.85 (0.81-0.89) 0.90 (0.87-0.93) 0.89 (0.86-0.92) 0.87 (0.83-0.91) 0.88 (0.85-0.91)
0‐5 (n=62) 0.87 (0.82-0.92) 0.84 (0.79-0.89) 0.89 (0.85-0.93) 0.88 (0.83-0.93) 0.86 (0.81-0.91)
6‐12 (n=53) 0.89 (0.84-0.94) 0.86 (0.81-0.91) 0.91 (0.87-0.95) 0.90 (0.85-0.95) 0.88 (0.83-0.93)
13‐18 (n=35) 0.86 (0.80-0.92) 0.83 (0.77-0.89) 0.88 (0.83-0.93) 0.87 (0.81-0.93) 0.85 (0.79-0.91)

Discussion
Principal Findings
This study evaluated the diagnostic performance of a
fine-tuned GPT-3 model in generating pediatric differential
diagnoses in rural health care settings. The model achieved
an accuracy of 87%, which was comparable to board-certified
pediatricians’ accuracy of 91%. Performance was consistent
across age groups and common chief complaints, underscor-
ing the model’s potential as a reliable clinical decision
support tool. While the model demonstrated lower accuracy
for rare or complex cases (80%), its performance remained
comparable to that of pediatricians (85%). These findings
suggest that LLMs could enhance diagnostic accuracy and
support providers in underserved regions, particularly for
routine presentations.
Comparison to Prior Work
Our findings align with prior studies demonstrating the
potential of LLMs in clinical decision support. For example,

Steinberg et al [7] reported 82% accuracy in adult diag-
nostic support using LLMs, while Wu et al [11] achieved
97.45% accuracy in pediatric otitis media interpretation with
deep learning models. This study extends these findings by
focusing on general pediatric differential diagnosis, an area
with limited prior research. Unlike previous studies that
primarily examined urban or hospital-based datasets, our
work highlights the utility of LLMs in resource-constrained
rural environments, addressing a critical gap in the literature.
Strengths and Limitations
This study has several strengths. First, the use of real-
world data from rural health care settings enhances the
generalizability of findings to similar environments. Second,
the inclusion of subgroup analyses provides insights into
the model’s performance across diverse age groups and
chief complaints. Third, the comparative evaluation with
experienced pediatricians underscores the model’s clinical
relevance.
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Another of the key strengths of this study lies in its
real-world applicability, particularly for rural health care
settings where resources are limited and access to special-
ists is often constrained. By leveraging existing EHR data
and evaluating the model’s performance on common and
rare pediatric conditions, this research provides a practi-
cal framework for integrating AI tools into primary care
workflows. The consistent accuracy demonstrated across age
groups and chief complaints highlights the potential of GPT-3
to serve as a valuable diagnostic support system for providers
in underserved areas. However, implementing such tools in
real-world clinical settings will require addressing infrastruc-
ture challenges, including internet connectivity and provider
training. Despite these challenges, the findings underscore
the feasibility of deploying AI systems to enhance diagnos-
tic accuracy and reduce disparities in health care delivery,
particularly in environments with high patient volumes and
limited specialist availability.

However, there are notable limitations:
• Sample size and diversity: The sample size of 500

encounters, while informative, may not fully capture
the diversity of the broader pediatric population. This
limitation is particularly relevant in diverse health care
settings, where factors such as demographic varia-
bility, socioeconomic status, and health care access
can influence diagnostic patterns. Prior studies have
demonstrated that models trained on limited datasets
often fail to generalize across different populations,
highlighting the need for larger, multi-institutional
datasets to improve validity and applicability [17].
Additionally, our study used data from a single
rural health care organization, which may limit the
external validity of our findings. Similar studies
have shown that AI-based diagnostic models exhibit
performance degradation when applied to new patient
populations due to variations in disease prevalence,
clinical workflows, and physician documentation styles
[18]. For instance, Steinberg et al [7] found that an
LLM trained on one hospital’s EHRs experienced
a 15% drop in accuracy when tested on data from
a different institution. These findings emphasize the
need for external validation. Future research should
prioritize expanding the sample size through multicen-
ter collaborations, incorporating data from health care
centers with diverse patient demographics to enhance
generalizability and robustness. Similar initiatives have
demonstrated improved AI model performance when
trained on heterogeneous datasets, such as the multi-
institutional validation study by Rajkomar et al [2],
which improved diagnostic accuracy across multiple
health care networks.

• Retrospective design: The use of retrospective data
limits the ability to assess the model’s impact on
clinical workflows or patient outcomes. Prospective
clinical trials are needed to evaluate these aspects.

• Cross-validation: A key limitation of this study is
the lack of cross-validation across different health
care organizations. Evidence suggests that AI-based
diagnostic models frequently underperform when tested

on external datasets due to variations in clinical
documentation, patient demographics, and institutional
practices. For example, a systematic review of AI
applications in health care found that models trained
on single-center data exhibited an average 12%‐20%
decrease in performance when applied to external
datasets [17]. Steinberg et al [7] also demonstrated that
LLMs trained on EHRs from one hospital struggled
to maintain accuracy when exposed to unseen patient
populations, emphasizing the importance of cross-vali-
dation. Furthermore, ChatGPT-based diagnostic models
have shown variability in reliability across different
patient demographics, particularly when applied to
pediatric populations with rare conditions [12]. To
ensure reproducibility, future studies should incorpo-
rate external validation using data from multiple
institutions, including urban, suburban, and rural
health care settings. By validating performance across
diverse patient populations, we can assess the mod-
el’s reliability in real-world clinical environments and
mitigate the risks associated with dataset bias. This
approach aligns with recommendations from previ-
ous research advocating for multicenter validation to
improve AI model robustness [18].

• Rare diagnoses: The model’s lower accuracy for rare or
complex cases highlights the need for further fine-tun-
ing and testing in these areas. Future fine-tuning efforts
could incorporate domain-specific datasets, such as
rare pediatric conditions or uncommon presentations,
to enhance the model’s diagnostic accuracy for less
frequently encountered cases. For example, fine-tun-
ing could focus on rare pediatric conditions such as
Kawasaki disease or metabolic disorders, which often
present atypically and are prone to diagnostic errors.
Collaborations with specialist clinics could help build
robust datasets for such conditions.

• GPT-3 versus newer models: Another limitation is
the use of GPT-3 instead of its newer iterations,
such as GPT-3.5 or GPT-4, which were released after
the completion of this study. While GPT-3 demon-
strated strong diagnostic performance, future studies
should evaluate whether these more advanced mod-
els can further enhance accuracy, particularly for rare
or complex cases. Specifically, GPT-3.5 and GPT-4
feature enhanced contextual understanding and larger
training corpora [23], which may improve their ability
to identify nuanced patterns in rare pediatric diagnoses.
Additionally, these models may mitigate hallucination
risks and offer better attribution of sources, which are
critical for clinical applications. Comparative evalua-
tions in similar rural health care settings would provide
insights into their incremental benefits over GPT-3.

Practical Implications
Integrating LLMs like GPT-3 into rural health care set-
tings could address critical challenges such as physician
shortages, high patient volumes, and limited specialist
access. These tools can provide rapid accurate diagnostic
support, reducing diagnostic errors and improving patient
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outcomes [24]. However, practical barriers to implemen-
tation, including infrastructure requirements (eg, reliable
internet and electricity) and provider training, must be
addressed [25].

Reliance on AI systems poses risks, including overreliance
by less experienced providers and challenges in managing
incomplete or inconsistent input data [26]. Training pro-
grams should ensure health care providers understand the
limitations of AI tools and develop strategies for validating
AI-generated outputs. Establishing clear guidelines for AI
use in clinical settings will further ensure patient safety
and ethical application. To address concerns about halluci-
nations—instances where the model generates inaccurate or
fabricated information—health care providers must verify
AI-generated outputs against clinical guidelines and existing
evidence. Integrating feedback mechanisms, where physicians
can flag inaccuracies, may also help refine model behavior
over time [27].

Additionally, fostering trust in AI tools among providers
and patients will be essential for successful adoption [28].
Additionally, parental concerns regarding deferring diagnostic
decisions to AI systems must be addressed to build trust and
acceptance. Efforts to educate families about AI’s role as
a supplementary decision-making tool rather than a replace-
ment for physician judgment are essential. Furthermore, rural
health care facilities may face challenges in implementing AI
solutions due to limited infrastructure, such as inconsistent
internet access, power supply, and provider training [29].
These challenges may also include the cost of deploying and
maintaining AI systems, as well as the need for ongoing
technical support. Policy makers and health care administra-
tors should explore subsidized programs or partnerships with
technology providers to ensure equitable access to AI tools
in resource-limited settings. Addressing these barriers will be
crucial for ensuring successful adoption and integration into
clinical workflows.
Future Directions
Future research should focus on the following:

• The findings should be validated in larger, more diverse
populations across multiple health care settings.

• The diagnostic capabilities of more advanced models,
such as GPT-3.5 or GPT-4, should be assessed to
determine whether recent improvements in language
model architecture further enhance diagnostic accuracy.

• The impact of LLM integration on patient outcomes,
provider satisfaction, and workflow efficiency in
prospective clinical trials should be assessed.

• User-friendly interfaces should be developed to
facilitate adoption by providers with varying levels of
technological expertise, and training programs tailored
to rural health care providers should be developed
to familiarize them with AI tools and address poten-
tial apprehensions about using such systems. These
programs should emphasize the complementary nature
of AI in clinical workflows rather than its replacement
of human judgment.

• Ethical concerns, including data privacy, informed
consent, and model transparency, should be addressed
to ensure responsible use in clinical practice.

• In addition to traditional evaluation metrics, future
studies should assess language generation issues such
as hallucinations—instances where the model produces
false or unsupported information—and attribution of
responses to reliable sources.

These factors are critical for ensuring the safety and reliability
of AI applications in clinical decision-making. Natural
language processing metrics like Recall-Oriented Understudy
for Gisting Evaluation (ROUGE) and bilingual evaluation
understudy (BLEU) may be used to evaluate output quality,
while further human review of generated responses could
assess alignment with established clinical guidelines.
Conclusions
This study highlights the potential of GPT-3, a fine-tuned
LLM, as a clinical decision support tool for pediatric
differential diagnosis in rural health care settings. The model
achieved diagnostic accuracy comparable to that of board-
certified pediatricians, demonstrating robust performance
across age groups and common presenting complaints. These
findings suggest that LLMs could serve as valuable tools
for addressing the unique challenges faced by rural health
care providers, such as limited access to specialists and high
patient volumes.

However, this work also underscores the need for further
validation. Future research should focus on evaluating the
model’s performance in larger, diverse populations and
real-world clinical settings. Ethical considerations, including
data privacy and model transparency, must be prioritized to
ensure responsible implementation. Another ethical consider-
ation is the potential for AI models to exacerbate existing
health disparities if their development does not account for
diverse populations. Rigorous testing in underrepresented
groups and ongoing audits for bias are critical steps to ensure
fairness and equity in AI-driven health care applications.
By addressing these challenges, LLMs like GPT-3 have the
potential to enhance diagnostic accuracy, reduce disparities in
access to care, and improve outcomes for pediatric patients in
underserved regions.

While this study represents a step toward integrating AI
into rural health care, its findings underscore the need for
iterative improvements and cross-disciplinary collaboration
to refine these tools. Partnerships between AI developers,
clinicians, and health care administrators will be crucial in
ensuring that AI solutions are both effective and accessible.

This study serves as a step in bridging the gap between
AI innovation and practical health care applications, paving
the way for future advancements in clinical decision support
systems tailored to the needs of rural health care environ-
ments.
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