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Abstract
Background: Alzheimer disease (AD) is a severe neurological brain disorder. While not curable, earlier detection can help
improve symptoms substantially. Machine learning (ML) models are popular and well suited for medical image processing
tasks such as computer-aided diagnosis. These techniques can improve the process for an accurate diagnosis of AD.
Objective: In this paper, a complete computer-aided diagnosis system for the diagnosis of AD has been presented. We
investigate the performance of some of the most used ML techniques for AD detection and classification using neuroimages
from the Open Access Series of Imaging Studies (OASIS) and Alzheimer’s Disease Neuroimaging Initiative (ADNI) datasets.
Methods: The system uses artificial neural networks (ANNs) and support vector machines (SVMs) as classifiers, and
dimensionality reduction techniques as feature extractors. To retrieve features from the neuroimages, we used principal
component analysis (PCA), linear discriminant analysis, and t-distributed stochastic neighbor embedding. These features are
fed into feedforward neural networks (FFNNs) and SVM-based ML classifiers. Furthermore, we applied the vision transformer
(ViT)–based ANNs in conjunction with data augmentation to distinguish patients with AD from healthy controls.
Results: Experiments were performed on magnetic resonance imaging and positron emission tomography scans. The OASIS
dataset included a total of 300 patients, while the ADNI dataset included 231 patients. For OASIS, 90 (30%) patients were
healthy and 210 (70%) were severely impaired by AD. Likewise for the ADNI database, a total of 149 (64.5%) patients
with AD were detected and 82 (35.5%) patients were used as healthy controls. An important difference was established
between healthy patients and patients with AD (P=.02). We examined the effectiveness of the three feature extractors
and classifiers using 5-fold cross-validation and confusion matrix–based standard classification metrics, namely, accuracy,
sensitivity, specificity, precision, F1-score, and area under the receiver operating characteristic curve (AUROC). Compared
with the state-of-the-art performing methods, the success rate was satisfactory for all the created ML models, but SVM and
FFNN performed best with the PCA extractor, while the ViT classifier performed best with more data. The data augmenta-
tion/ViT approach worked better overall, achieving accuracies of 93.2% (sensitivity=87.2, specificity=90.5, precision=87.6,
F1-score=88.7, and AUROC=92) for OASIS and 90.4% (sensitivity=85.4, specificity=88.6, precision=86.9, F1-score=88, and
AUROC=90) for ADNI.
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Conclusions: Effective ML models using neuroimaging data could help physicians working on AD diagnosis and will assist
them in prescribing timely treatment to patients with AD. Good results were obtained on the OASIS and ADNI datasets with
all the proposed classifiers, namely, SVM, FFNN, and ViTs. However, the results show that the ViT model is much better at
predicting AD than the other models when a sufficient amount of data are available to perform the training. This highlights that
the data augmentation process could impact the overall performance of the ViT model.
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Introduction
Alzheimer disease (AD) is a progressive degenerative brain
disorder that gradually destroys memory, reason, judgment,
language, and ultimately the ability to perform even the
simplest of tasks [1]. An automated AD classification system
is crucial for the early detection of disease. This computer-
aided diagnosis (CAD) system can help expert clinicians
prescribe the proper treatment and prevent brain tissue
damage [1].

In the last decades, researchers have developed sev-
eral CAD systems [1-5]. Rule-based expert systems were
developed from the 1970s to the 1990s and supervised models
from the 1990s [1]. Moreover, several approaches have been
proposed in the literature aiming at providing an automatic
tool that guides the clinician in the AD diagnosis process
[1,5-7]. We can categorize these approaches into two types:
univariate approaches, like statistical parametric mapping
(SPM), and multivariate approaches, like the voxels-as-fea-
tures (VAF) approach.

Due to advances in computing power, machine learning
(ML) has encompassed many health care sectors and has
shown results with organ and substructure segmentation as
well as disease classifications in areas of pathology, brain,
breast, bone, retina, etc. Open-access datasets on AD have
led to the development of CAD systems that use ML to
help scientists and medical staff make early diagnoses.
These systems will ultimately help speed up the treatment
of patients with AD. To make predictions, scientists have
adopted various ML-based classifiers, including support
vector machines (SVMs) [8,9], hidden Markov models
[10,11], k-nearest neighbors classifier [12,13], discriminant
analysis [14,15], random forest [16,17], decision trees [18],
naive Bayes classifier [19,20], and artificial neural networks
(ANNs) [21,22].

Despite the efforts of researchers, there have been few
works on AD detection using ML models that have had
significant performance, and the development of an automa-
ted AD classification model remains a rather challenging task.
Within this framework of distinguishing between healthy
controls (HCs) and people with AD, the main contributions
of this paper can be summarized as follows.

• We developed a CAD system using the best-supervised
learning classifiers, such as SVMs [8,9], feedforward
neural networks (FFNNs) [23], and transformer neural

networks, especially the vision transformer (ViT)
architecture [24], which is becoming more popular in
the field of computer vision due to its effectiveness.

• We designed these models to analyze the two
neuroimages commonly used in AD diagnosis,
namely, structural magnetic resonance imaging (sMRI)
and fluorodeoxyglucose (FDG)–positron emission
tomography (PET) as these modalities are the preemi-
nent sources of information in the CAD process.

• The multimodal CAD system uses principal component
analysis (PCA) [25] in conjunction with SVM and
FFNN, training them on the PCA features extracted
from the neurological images.

• The most challenging datasets, namely the Open
Access Series of Imaging Studies (OASIS) [26] and
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
[27] datasets, underwent rigorous tests using various
experimental settings. These experiments validated the
effectiveness of the chosen models, showcasing their
superiority over state-of-the-art approaches in terms of
accuracy, sensitivity, specificity, precision, F1-score,
and area under the receiver operating characteristic
curve (AUROC).

Methods
Participants
Sometimes we found signs of AD in the brain data of
healthy and older patients, so considerable experience and
knowledge were essential to distinguish the AD data from the
HC patients’ data. In this context, we have experimented the
performance of the proposed CAD system on the OASIS [26]
and ADNI [27] datasets.

OASIS Dataset
The OASIS dataset [26] was prepared by Dr Randy
Buckner from the Howard Hughes Medical Institute at
Harvard University, the Neuroinformatics Research Group
at Washington University School of Medicine, and the
Biomedical Informatics Research Network. OASIS is a
longitudinal multimodal neuroimaging, clinical, cognitive,
and biomarker dataset for normal aging and AD. We selected
the patients with and without dementia from a larger database
and obtained them from the longitudinal pool of the Wash-
ington University Alzheimer Disease Research Center. The
experiment used a dataset that included 90 cognitively
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normal patients and 210 individuals with AD. The AD group
included very mild, mild, moderate, and severe dementia.

ADNI Dataset
The ADNI dataset [27], which is the most commonly
used in machine learning tasks, is an association of med-
ical centers and universities located in the United States
and Canada. ADNI is funded by the National Institute on
Aging and the National Institute of Biomedical Imaging and
Bioengineering, and through generous contributions from
the following: AbbVie; Alzheimer’s Association; Alzheim-
er’s Drug Discovery Foundation; Araclon Biotech; BioClin-
ica, Inc; Biogen; Bristol-Myers Squibb Company; CereSpir,
Inc; Cogstate; Eisai Co., Ltd; Elan Pharmaceuticals, Inc; Eli
Lilly and Company; EUROIMMUN; F. Hoffmann-La Roche
Ltd and its affiliated company Genentech, Inc; Fujirebio;
GE HealthCare; IXICO plc; Janssen Alzheimer Immunother-
apy Research & Development, LLC; Johnson & Johnson
Pharmaceutical Research & Development, LLC; Lumosity;
Lundbeck; Merck & Co., Inc; Meso Scale Diagnostics
LLC; NeuroRx Research; Neurotrack Technologies; Novartis
Pharmaceuticals Corporation; Pfizer Inc; Piramal Imaging;
Servier; Takeda Pharmaceutical Company; and Transition
Therapeutics. The Canadian Institutes of Health Research is
providing funds to support ADNI clinical sites in Canada.
Private sector contributions are facilitated by the Foundation
for the National Institutes of Health. The grantee organiza-
tion is the Northern California Institute for Research and
Education, and the study is coordinated by the Alzheimer’s
Therapeutic Research Institute at the University of Southern
California. ADNI data are disseminated by the Laboratory for
Neuroimaging at the University of Southern California.

The main aim of ADNI is to provide open-source datasets
to discover biomarkers and identify and track the progression
of AD accurately. It developed to become an ideal source of
longitudinal multisite PET and magnetic resonance imaging
(MRI) images of patients with AD and older control patients
(HC). The datasets were formed to make the detection
system powerful by providing baseline information regarding
changes in brain structure and metabolism, as well as clinical,
cognitive, and biochemical data. The ADNI cohort used in
our study included 82 cognitively normal patients and 149
patients with AD. The AD group included patients with mild
cognitive impairment and those with confirmed AD.
Ethical Considerations
This work used two datasets (ADNI and OASIS), which are
available in the public domain. For the benchmark ADNI
dataset, the terms of use are declared on their website [28].
All patients in the ADNI database provided written informed
consent, which was approved by the institutional review
board of each participating institution. Patients were informed
that their information would be kept confidential and their

data would be anonymous and would be part of scientific
publications.

According to local legislation and institutional require-
ments, the study of human participants using the OASIS
dataset does not require ethical review and approval [26].
Written informed consent from the patients’ legal guardi-
ans or next of kin was not required to participate in this
study in accordance with national legislation and institutional
requirements [26]. The data used for the analysis has been
deidentified and made public.
Data Preparation
We performed the following steps on the OASIS and ADNI
neuroimages: normalization, resizing, removing nonbrain
slices, selecting slices with the most information, and
converting 3D images into 2D slices. First, the damaged
original files containing the images were removed. We
selected a larger number of central slices to aid the CAD
system in accurately classifying AD. We used an SPM tool
(SPM8 [29]), which is a major update to SPM software,
originally developed by Karl Friston, to partially correct
spatial intensity inhomogeneities. This software normalized
all the images using a general affine model with 12 param-
eters. The origin of the raw sMRI scans was set man-
ually to anterior commissure before manually registering
them with SPM’s canonical T1 template image. We applied
the nonparametric nonuniform intensity normalization (N3)
technique to solve the tissue intensity nonuniformity problem
[30]. Then the hybrid median filter was used to remove
impulse noise while preserving edges.
ML Approaches

Overview
A generic automated AD detection and classification
framework is summarized in Figure 1. ML classifiers aim
to predict the class of the input data (images of patients with
AD or healthy patients) by looking at a number of learning
examples. The process begins with the preprocessing of sMRI
and FDG-PET images to keep only relevant data. Then each
image is represented by grayscale features and is collapsed
into a new feature space by applying PCA-based feature
extraction to pick the optimal features. After that, to classify
the patients, these selected features are fed to the supervised
learner. In this work, SVMs and FFNNs are learned on the
PCA features extracted from the neuroimages. While for ViT,
we applied the data augmentation strategy [31], since the
training of this network required more data compared to the
other two classifiers. For PCA, a performance comparison
was made with similar techniques, t-distributed stochastic
neighbor embedding (t-SNE) [32] and linear discriminant
analysis (LDA) [14].
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Figure 1. Block diagram of a generic Alzheimer disease computer-aided diagnosis system. ADNI: Alzheimer’s Disease Neuroimaging Initiative; DL:
deep learning; FFNN: feedforward neural network; LDA: linear discriminant analysis; ML: machine learning; MRI: magnetic resonance imaging;
OASIS: Open Access Series of Imaging Studies; PCA: principal component analysis; PET: positron emission tomography; SVM: support vector
machine; t-SNE: t-distributed stochastic neighbor embedding; ViT: vision transformer.

Below is a summary description of the four approaches
proposed for our CAD system, and more details on the
mathematical background of these approaches can be found
in Multimedia Appendix 1 for PCA, Multimedia Appendix 2
for SVM, Multimedia Appendix 3 for FFNN, and Multimedia
Appendix 4 for ViT.

Principal Component Analysis
PCA is a linear dimensionality reduction method used widely
in data preprocessing and exploratory analysis. Different
image classification purposes have successfully used PCA
because its method is nonparametric and easy to apply, and
helps extract useful information from confusing datasets [25].

In this study, we used this technique to extract useful
features for classifiers. PCA allows the production of new
variables that represent linear combinations of the original
variables. Using linear algebra and matrix operations, a
transformation is performed from the original dataset to a new
coordinate system structured by the principal components.
The analysis of this linear transformation is obtained thanks
to the eigenvectors and the eigenvalues of the covariance
matrix. The PCA steps are summarized as follows: (1)
standardize the range of continuous initial variables, (2) find
correlations by computing the covariance matrix, (3) find
the eigenvectors and eigenvalues of the covariance matrix,
(4) choose the principal components, and (5) change the
data to the new coordinate system. More details about the
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PCA computation process with mathematical formulas are
explained in Multimedia Appendix 1.
Support Vector Machines
We used SVMs as classifiers for the classification of
independent and identically distributed data [23]. These
machines are widely used as supervised max-margin models,
along with associated learning algorithms that analyze data.
To distinguish two classes, the principle of SVMs is to seek
the optimal hyperplane that allows for maximizing the margin
between the closest data points of the opposite classes.

The SVM algorithm for linear classification is widely used
in ML. However, in this study, we used SVMs to perform
nonlinear classification due to the data’s nonlinear separa-
bility. We achieved this by applying a kernel function to
represent the data as a set of pairwise similarity comparisons
between the original data points.

This function transforms the original data points into
coordinates in a higher-dimensional feature space, thereby
facilitating linear separation. Multimedia Appendix 2
provides further details about the SVM computation process,
including mathematical formulas.

Feedforward Neural Network
Biological nervous systems, such as the brain, inspire the
information-processing paradigm of FFNN, which is one of
the two main types of ANNs [23]. The distinctive feature
of this network is the unidirectional flow of information,
meaning that the information flow in the model is only in one
direction—forward—without any loops or cycles. Informa-
tion flows from the input nodes through the hidden nodes and
to the output nodes.

This network is static and memoryless. Given a data
input, FFNN provides a single set of output values instead
of a sequence of values. Furthermore, the response produced
for an input is independent of the previous state of the
network. FFNN automatically learns from examples and
uses a backpropagation learning algorithm for determining
weights. More details about the FFNN computation process
with mathematical foundations are explained in Multimedia
Appendix 3.

Transformers
Transformers, which dominate natural language processing,
have acquired a reputation in computer vision owing to
their positive results in many applications such as seman-
tic segmentation, object detection, and image classification.
Transformer architecture entirely relies on an attention
mechanism to produce global dependencies between input
and output, avoiding recurrence. Self-attention assesses the
sequence representation by connecting various positions
within a single sequence.

In this work, we applied a ViT architecture [24] to
neuroimages with very little adjustment, demonstrating
better performance in numerous computer-vision tasks. ViT
uses a multiheaded self-attention mechanism to catch and
learn long-range dependencies between distant positions by

averaging attention-weighted positions. This promotes the
network’s focus on all of the data of the input sequence. This
characteristic encourages us to use ViT for our brain imaging
study owing to its capacity to precisely catch interdependen-
cies between spreaded brain regions. More details about the
ViT computation process with mathematical foundations are
explained in Multimedia Appendix 4.

Nevertheless, the learning dataset is too small, involving
substantial data to learn a ViT from scratch. In this regard, we
used data augmentation to expand the size of the input data by
creating additional data from the original input data. To create
new images, we performed some geometric transformations.
The visual transformation primarily focuses on translating,
flipping random images horizontally, rotating them at 15
angles without cropping, and rescaling the input data to the
range of [0, 1].
Statistical Analysis
We have carried out the performance assessment and the
comparison of the classifiers using typical confusion matrix–
based evaluation metrics. The confusion matrix has the
elements of true positive (TP), false positive (FP), false
negative (FN), and true negative (TN). Each column of the
matrix indicates an instance of the predicted class, and each
row contains a true (correct or actual) class. The following
are the metrics used to evaluate the performance of the CAD
system.

Sensitivity—also known as recall—is used for calculating
the classifier’s ability to correctly predict Alzheimer instances
(AD class). On the other hand, the classifier uses specificity
to accurately predict all non-Alzheimer instances (HC class)
across all inputs.

A classifier should have high sensitivity and specificity.
Therefore, the accuracy metric, which calculates the number
of correctly classified instances relative to the total number
of instances, is the average of these two measures. The
precision metric measures the classifier’s ability to quantify
the number of TPs of the AD class that receive a correct label
in classification.

The combined harmonic mean of both sensitivity and
precision gives the F1-score, which takes a value between
0 and 1. The receiver operating characteristic curve, a method
for visualizing a classifier’s ability to diagnose or predict
correctly, clearly illustrates the trade-off that arises between
the sensitivity and specificity metrics. At various thresholds,
the receiver operating characteristic curve plots the TP rate or
sensitivity against the FP rate (1 – specificity).

We aim to determine the degree of separability, or the
ability to correctly predict class, using the AUROC. The
higher the AUROC, the better; 1 would be perfect, and
0.5 would be random. Accuracy, sensitivity, specificity,
precision, F1-score, and AUROC are the six main metrics
used to assess the efficacy of each classifier. The following
are the mathematical formulas for the first five metrics.
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(1)Accuracy = TP + TNTP + FP + FN + TP
(2)Sensitivity = TPTP + FN
(3)Specificity = TNTN + FP
(4)Precision = TPTP + FP
(5)F1 − score = 2Precision × SensitivityPrecision + Sensitivity

Results
We experimented the performance of the proposed CAD
system on patients’ images from the OASIS [26] and ADNI
[27] datasets. These datasets contain sMRI and FDG-PET
scans along with information about the patients’ demograph-
ics and clinical assessments. There are 300 patients for
OASIS and 231 patients for ADNI whose age was between
18 and 96 years, and each patient had 3 or 4 accessible
PET and T1-weighted MRI scans. Tables 1 and 2 provide
more details on the demographic and clinical characteristics
of participants.

Table 1. The demographic information (gender, race, class, right-handed) of participants.
Variable OASISa patients (n=300), n (%) ADNIb patients (n=231), n (%)
Gender
  Women 80 (26.7) 99 (42.9)
  Men 220 (73.3) 132 (57.1)
Race
  Caucasian 174 (58.0) 159 (68.8)
  African-American 122 (40.7) 70 (30.3)
  Asian 4 (1.3) 2 (0.9)
Class
  Alzheimer 210 (70.0) 149 (64.5)
  Healthy 90 (30.0) 82 (35.5)
Right-handed
  Women 77 (96.3) 93 (93.9)
  Men 219 (99.5) 130 (98.5)

aOASIS: Open Access Series of Imaging Studies.
bADNI: Alzheimer’s Disease Neuroimaging Initiative.

Table 2. The demographic characteristics and clinical assessment data in terms of age, education, mini-mental state examination, and Alzheimer’s
Disease Assessment Scale–Cognitive subscale.
Variable OASISd patients, mean (SD; range) ADNIe patients, mean (SD; range)
Age (years)
  Women 67.78 (43.2‐95.6) 75.3 (5.2)
  Men 70.17 (42.5‐91.7) 75.4 (7.1)
Education
  Women 14.3 (1.6; 9-18) 15.6 (3.2)
  Men 15.2 (2.7; 8-23) 14.9 (3.4)
Mini-mental state examinationf

  Baseline (women) 25.4 (0.4; 22-26) 29.0 (1.2; 19-26)
  2 years (women) —g 29.0 (1.3)
  Baseline (men) 23.8 (1.9; 25-29) 23.8 (1.9; 25–29)
  2 years (men) 19.3 (5.6) 29.0 (1.2; 19-26)
Alzheimer’s Disease Assessment Scale–Cognitive subscaleh

  Baseline (women) — 7.3 (3.3)
  2 years (women) — 6.3 (3.5)
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Variable OASISd patients, mean (SD; range) ADNIe patients, mean (SD; range)
  Baseline (men) — 7.3 (3.3)
  2 years (men) — 27.3 (11.7)

dOASIS: Open Access Series of Imaging Studies.
eADNI: Alzheimer’s Disease Neuroimaging Initiative.
fThe mini-mental state examination has a possible score range of 0-30.
gNot available.
hThe Alzheimer’s Disease Assessment Scale–Cognitive subscale has a possible score range of 0-30.

We used a clinical dementia rating scale to control the
dementia status of the dataset; a score of 0 on the scale
indicates a normal cognitive level, while a score greater than
0 determines the presence of AD. In this context, we divided
the images into 210 (70%) patients with AD and 90 (30%)
HCs for the OASIS dataset and 149 (64.5%) patients with AD
and 82 (35.5%) HCs for the ADNI dataset. The majority of
the samples were identified as men, specifically 220 (73%)
for OASIS and 132 (57%) for ADNI, while the majority
of the samples were Caucasian, specifically 174 (58%) for
OASIS and 159 (69%) for ADNI.

After the preprocessing steps, each slice of sMRI includes
256 × 256 × 176 voxels covering the entire region of the

brain with the following parameters: voxel size is 2 × 2 × 2
mm3 for ADNI and 2 × 3.1 × 2 mm3 for OASIS, isotropic
resolution is 1.0 mm, time of repetition is 5050 milliseconds,
and time of echo is 10 milliseconds. All slices of reconstruc-
ted PET images are resampled to contain 256 × 256 × 207
voxels with a voxel size of 1.2 × 1.2 × 1.2 mm3.

The appropriate hyperparameter values for the classifiers
were chosen by reviewing prior state-of-the-art work and after
doing empirical testing and exploratory analyses. Some of
the hyperparameters used in the experiment are presented in
Table 3.

Table 3. The hyperparameter tuning and classifiers configuration used in the experiment.
Hyperparameter Search range
Support vector machine
  Multiclass method One-vs-one (one-vs-all, one-vs-one)
  Penality parameter of error 0.001 (0.0001, 0.001, 0.01, 0.1)
  Box constraint level 1 (0.001‐1000)
  Kernel function Gaussian (Gaussian, linear, quadratic, cubic)
  Kernel scale 2.8
  Iteration 30
  Standardize data True
Feedforward neural network
  Number of fully connected layers 1
  First layer size 100
  Activation Hyperbolic tangent sigmoid
  Learning function Gradient descent with momentum weight and bias
  Iteration limit 1000
  Regularizarion strength (λ) 0
  Update of weight and bias Levenberg-Marquardt optimization
  Standardize data True
Vision transformer
  Layers 12
  Hidden size D 768
  Multilayer perceptron size 3072
  Heads 12
  Parameters 86 million
  Path resolution 16 × 16

For training and testing, 5-fold cross-validation was achieved
on each dataset. For each fold, 70% of the data was used
for training, 10% for validation, and 20% for testing the
effectiveness of each classifier. We conducted experiments

on SVM and FFNN using four dimensionality reduction
techniques (VAF, LDA, t-SNE, and PCA), as well as on the
ViT classifier, without and with data augmentation. During
the training process, SVM and FFNN achieved the best
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results with PCA for the validation data, while the ViT
classifier achieved the best results with increased data.

For the test data, we obtained for the OASIS dataset
an accuracy of 91.9% (prediction speed ~2000 observa-
tions/second, training time 1.5703 seconds) for SVM, 88.2%
(prediction speed ~6000 observations/second, training time
7.7715 seconds) for FFNN, and 93.2% (prediction speed
~7000 observations/second, training time 102.3529 seconds)
for ViT. The same result was seen for the ADNI data, with

an accuracy of 88.6% for SVM (prediction speed ~1300
observations/second, training time 1.4280 seconds), 80.9%
for FFNN (prediction speed ~5300 observations/second,
training time 8.2319 seconds), and 90.4% for ViT (predic-
tion speed ~7200 observations/second, training time 129.4531
seconds). Tables 4 and 5 provide further details about the
top classification results achieved with the proposed ML
classifiers for the OASIS and ADNI datasets, respectively,
based on six metrics.

Table 4. Five-fold cross-validation performance for the Open Access Series of Imaging Studies test data in terms of accuracy, sensitivity, specificity,
precision, F1-score, and area under the receiver operating characteristic curve (AUROC).
Classifier Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-score (%) AUROC (%)
Support vector machine
  VAFa 66.3 61.3 62.1 65.1 52.4 60
  LDAb 75.6 70.1 69 70.6 68.7 72
  t-SNEc 80.2 74.5 72.4 71.4 70.1 73
  PCAd 91.9e 86.4 90.6 87.2 89 90
Feedforward neural network
  VAF 62.4 54.1 57.2 51.6 53.4 51
  LDA 70.5 66.4 71.4 68.9 72.5 66
  t-SNE 72.6 71.3 70.2 69.4 72.8 73
  PCA 88.2 85.4 84.6 86.2 83.7 82
Vision transformer
  Without data

augmentation
60.8 53.1 54.6 56.8 55.6 61

  With data augmentation 93.2 87.2 90.5 87.6 88.7 92
aVAF: voxels-as-features.
bLDA: linear discriminant analysis.
ct-SNE: t-distributed stochastic neighbor embedding.
dPCA: principal component analysis.
eItalics indicate the best achieved results.

Table 5. Five-fold cross-validation performance for Alzheimer’s Disease Neuroimaging Initiative test data in terms of accuracy, sensitivity,
specificity, precision, F1-score, and area under the receiver operating characteristic curve (AUROC).
Classifier Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-score (%) AUROC (%)
Support vector machine
  VAFa 42.8 59.2 60.4 63.2 50.1 58
  LDAb 72.1 68.4 67.2 68.4 66.2 70
  t-SNEc 79.3 71.1 70.1 69.2 68.3 71
  PCAd 88.6e 84.1 88.4 85.1 87.4 88
Feedforward neural network
  VAF 60.9 51.3 56.4 49.1 51 48
  LDA 69.1 62.3 70 65.4 70.1 63
  t-SNE 70.4 68.1 68.4 67.1 70.4 70
  PCA 80.9 84.1 82.3 84.3 81.4 80
Vision transformer
  Without data

augmentation
59.3 50.2 51.1 54.4 53.4 57

  With data augmentation 90.4 85.4 88.6 86.9 88 90
aVAF: voxels-as-features.
bLDA: linear discriminant analysis.
ct-SNE: t-distributed stochastic neighbor embedding.
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dPCA: principal component analysis.
eItalics indicate the best achieved results.

Discussion
Main Findings
The main finding is that the development of diagnostic tools
applying the ML approach in conjunction with neuroimaging
data could substantially help in automating the classification
and prediction of AD.

In this context, this study proposed a complete CAD
system to successfully classify patients with AD and
discriminate them from HC patients. The purpose was to
examine the association between SVM, FFNN, and ViT ML
classifiers; PCA, LDA, and t-SNE dimensionality reduction
techniques; and sMRI and FDG-PET neuroimaging modali-
ties to detect early signs of AD. Furthermore, we aimed to
clarify the impact of some data preprocessing strategies, such
as noise reduction and data augmentation, on improving the
performance of classifiers.

With regard to the sMRI and FDG-PET modalities, they
can provide large amounts of information; nevertheless,
interpreting all image content is challenging for physicians.
The experimental analysis demonstrates that combining
these neuroimaging modalities with selected ML classifiers
enhances their performance, enabling doctors to provide
precise diagnosis and timely patient care. This confirms the
theory regarding the benefits of these two modalities. Since
sMRI provides high-resolution images of brain anatomical
structures, which confirm structural change in the brain, it
shows shrinkage of brain tissue and abnormalities, while
FDG-PET shows the functionality of the brain.

Regarding the selected dimensional reduction techniques,
all of the chosen dimensional reduction techniques performed
well as feature extractors when combined with the SVM and
FFNN classifiers, but a comparative analysis of the three
techniques reveals that PCA outperforms LDA and t-SNE.
However, it is important to clarify certain findings: PCA
allows the identification of the most significant variables
in the data due to its potential to generate new variables,
which represent linear combinations of the original variables.
Moreover, t-SNE differs from PCA by preserving only small
pairwise distances or local similarities, while PCA aims
to preserve large pairwise distances to maximize variance.
Unlike PCA, LDA is a supervised technique that maximizes
class separability in the reduced dimensionality space, thereby
retaining the most discriminative features.

Preliminary results from evaluating the complete CAD
system using the three classifiers prove that the system
is more effective in separating AD and HC classes. The
results provided by all the experiments carried out reveal an
increase in sensitivity and, consequently, the final accuracy

obtained by the basic VAF-SVM model (66.3% for OASIS
and 42.8% for ADNI). We compared the performance of the
SVM, FFNN, and ViT models using confusion matrix–based
metrics.

All models performed well, providing acceptable
performance for both databases. Data augmentation/ViT
outperformed other models, with accuracies of 93.2% for
OASIS and 90.4% for ADNI (see Tables 4 and 5 for more
details on results obtained from all models tested on both
databases). The second best classifier is PCA/SVM, achieving
an accuracy decrease of 1.3% for OASIS and 1.8% for ADNI,
compared to the rates obtained by ViT, resulting in overall
accuracy rates of 91.9% and 88.6% for OASIS and ADNI,
respectively. Therefore, the data augmentation process and
the PCA dimensionality reduction method have the potential
to impact the overall performance of the ViT and SVM
models, respectively.

Moreover, compared to the performance using a single
MRI modality, all models performed well using a multi-
modal MRI/PET environment. The best results with MRI
were also obtained with ViT and SVM classifiers. Accura-
cies of 83.9% for the OASIS dataset and 81.2% for ADNI
were obtained using the data augmentation/ViT approach.
PCA/SVM achieved accuracies of 82.4% for the OASIS and
80.6% for the ADNI datasets. This draws attention to the
potential of integrating multiple modalities to increase the
performance of the CAD system.
Comparison With Prior Work
To verify the convergence of the proposed CAD system, we
compared the results obtained with some relevant state-of-
the-art ML models. The experimental results show that our
models, particularly SVM and ViT, have good performance
on both the OASIS and ADNI datasets and achieved better
or comparable accuracy to most existing methods in the
literature. For the OASIS dataset, the PCA/SVM method had
a 91.9% accuracy and the ViT model with data augmentation
had a 93.2% accuracy. Nanni et al [33], Khan and Zubair
[16], Sethi et al [2], Basheer et al [34], Saratxaga et al [35],
and Liu et al [36] got 90.2%, 86.8%, 86.2%, 92.3%, 93%, and
82.6% accuracy, respectively.

The same finding was obtained for the ADNI data-
set, where we achieved an accuracy of 88.6% using the
PCA/SVM approach and 90.4% using the ViT model by
increasing the data. In contrast, the accuracy achieved by
Rallabandi et al [37], Jo et al [4], Jo et al [3], Liu et al [36],
and Shojaei et al [38] was 75%, 75.02%, 80.8%, 90%, and
87%, respectively. Table 6 compares our best results obtained
with the prior state-of-the-art models discussed.
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Table 6. Comparative study of performance with state-of-the-art machine learning models using the Open Access Series of Imaging Studies (OASIS)
and Alzheimer’s Disease Neuroimaging Initiative (ADNI) datasets.

Study Approach Dataset Accuracy Sensitivity F1-score
AURO
Ca

Liu et al [36] Monte Carlo sampling/ResNet50-CNNsb/ensemble classifier OASIS 82.6 74.3 —c —
Saratxaga et al
[35]

ResNet18-based CNNs OASIS 93 — — —

Basheer et al
[34]

PCAd/ CapsNet-based CNNs OASIS 92.3 82.3 — —

Nanni et al [33] Ensemble of 5 transfer learning models OASIS 90.2 — — —
Khan and Zubair
[16]

Chi-square statistical test/RFe OASIS 86.8 80 86.4 87.2

Sethi et al [2] CNNs/ SVMf OASIS 86.2 — — —
Our study PCA/SVM OASIS 91.9 86.4 89 90
Our study Data augmentation/ViTg OASIS 93.2h 87.2 88.7 92
Shojaei et al
[38]

Genetic algorithm/3D-CNNs ADNI 87 — — —

Liu et al [36] Monte Carlo sampling/ResNet50-CNNs/ensemble classifier ADNI 90 83.5 — —
Rallabandi et al
[37]

FreeSurfer/SVM ADNI 75 75 72 76

Jo et al [4] Sliding Window Association Test/CNNs ADNI 75 — — 82
Jo et al [3] Weighted gene coexpression network analysis/RF ADNI 80.8 — — 80.8
Our study PCA/SVM ADNI 88.6 84.1 87.4 88
Our study Data augmentation/ViT ADNI 90.4 85.4 88 90

aAUROC: area under the receiver operating characteristic curve.
bCNN: convolutional neural network.
cNot available.
dPCA: principal component analysis.
eRF: random forest.
fSVM: support vector machine.
gViT: vision transformer.
hItalics indicate the best achieved results.

Limitations and Future Directions
There are several improvements possible for the proposed
CAD system. We aim to enhance the system’s perform-
ance by collaborating with more extensive AD datasets and
implementing various types of ANN and ML-based classifi-
ers.

The PCA used for feature extraction looks for the principal
axis direction, which is used to effectively represent the

common features of similar samples. This is very effective
for representing the common features of the same kind of
data samples, but it is not suitable for distinguishing different
sample classes. Therefore, to achieve the purpose of feature
extraction, we need to combine PCA with other feature
dimensionality reduction algorithms like uniform manifold
approximation and projection.
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