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Abstract
Background: Pneumonia is a leading cause of mortality in children aged <5 years. While machine learning (ML) has been
applied to pneumonia diagnostics, few studies have focused on predicting the need for escalation of care in pediatric cases.
This study aims to develop an ML-based clinical decision support tool for predicting the need for escalation of care in
community-acquired pneumonia cases.
Objective: The primary objective was to develop a robust predictive tool to help primary care physicians determine where and
how a case should be managed.
Methods: Data from 437 children with community-acquired pneumonia, collected before the COVID-19 pandemic, were
retrospectively analyzed. Pediatricians encoded key clinical features from unstructured medical records based on Integrated
Management of Childhood Illness guidelines. After preprocessing with Synthetic Minority Oversampling Technique–Tomek to
handle imbalanced data, feature selection was performed using Shapley additive explanations values. The model was optimized
through hyperparameter tuning and ensembling. The primary outcome was the level of care severity, defined as the need for
referral to a tertiary care unit for intensive care or respiratory support.
Results: A total of 437 cases were analyzed, and the optimized models predicted the need for transfer to a higher level of care
with an accuracy of 77% to 88%, achieving an area under the receiver operator characteristic curve of 0.88 and an area under
the precision-recall curve of 0.96. Shapley additive explanations value analysis identified hypoxia, respiratory distress, age,
weight-for-age z score, and complaint duration as the most important clinical predictors independent of laboratory diagnostics.
Conclusions: This study demonstrates the feasibility of applying ML techniques to create a prognostic care decision tool for
childhood pneumonia. It provides early identification of cases requiring escalation of care by combining foundational clinical
skills with data science methods.
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Introduction
Pneumonia is responsible for 14% of all mortality in children
aged <5 years and is included in World Health Organization
(WHO) reports as the cause of death in 740,180 children in
2019 alone [1,2]. The Global Action Plan for the Prevention
and Control of Pneumonia and Diarrhea, which was released
by the WHO and UNICEF, aimed to reduce the mortality rate
from pneumonia and diarrhea in children aged <5 years [2,3].
They have set targets that include vaccination, water and air
sanitation, exclusively breastfeeding in the first 6 months,
and eliminating pediatric HIV cases, along with appropriate
pneumonia and diarrhea care.

It has been demonstrated that timely and accurate
diagnosis of pneumonia and appropriately initiated treat-
ment reduce mortality by up to 28% [4]. Diagnosis can
often be difficult, since the clinical presentation of pneu-
monia in children is variable [5]. For this reason, the
WHO has published the Integrated Management of Child-
hood Illness (IMCI) guidelines, which guide physicians
in diagnosing, treating, and identifying danger signs of
pneumonia [6]. While some cases of pneumonia are treatable
with appropriate interventions, even low-cost or low-tech
options [1], pneumonia remains a leading cause of morbid-
ity and mortality, particularly in resource-limited countries
and regions [2]. Managing high-risk populations continues
to present significant challenges, especially in intensive care
settings where patients often require advanced respiratory
support. In addition, it has been shown that families seeking
health services in resource-limited settings causes delays in
providing appropriate treatment, leading to disease progres-
sion [7]. These highlight the need to improve medical care
decisions, particularly in regions with limited resources, to
reduce pneumonia-related morbidity and mortality.

Early and accurate recognition of patients who may require
escalation of care to tertiary facilities is essential, particu-
larly for those who will require mechanical ventilation or
advanced respiratory support [8]. Predicting which patients
will deteriorate is challenging due to the heterogeneous
presentation of pneumonia, and clinical features such as
hypoxia, respiratory distress, nutritional status, and comorbid-
ities are critical markers that necessitate closer monitoring
or transfer [9,10]. Prolonged duration of illness and failure
to respond to initial treatments are also important as they
may indicate inadequate treatment, misdiagnosis, or incorrect
identification of potential pathogens, which can lead to the
escalation of care [7,11].

Data science can provide actionable evidence for effective
clinical intervention in pediatric diseases in the future [12]
and can reduce inequality in health care [13]. Also, using
big data and machine learning (ML) technologies is prom-
ising for childhood pneumonia in low- and middle-income
countries (LMICs), especially patient-risk stratification for

developing severe disease and mortality [14]. Because of
their flexibility and high accuracy, ML models are used
in medicine in the fields of prediction (prognostics) and
classification (diagnostics) [12]. Additionally, the use of
ML offers great promise for decision support in manag-
ing community-acquired pneumonia (CAP) in children, as
demonstrated in recent studies. These include predicting
intensive care unit needs [15], low-cost and noninvasive
diagnostics for childhood pneumonia in resource-limited
settings [16], supporting pathogen identification at admission
only using basic clinical and laboratory features [11], and
using natural language processing with ML for supporting
clinical decisions on radiology reports [17].

It has been seen that the vast majority of data sci-
ence studies on pneumonia aims to provide diagnostic
support to the physician by processing radiological images
[18]. However, diagnostic utilities are mostly unavaila-
ble in LMICs and primary care units. Therefore, physi-
cians need prognostic support algorithms that distinguish
between serious and nonserious cases without using advanced
diagnostic equipment.

We aimed to develop an ML-based clinical decision
support tool for childhood pneumonia that can be used by
non–intensive care physicians, particularly those working
in LMICs, in predicting the escalation of care and thereby
ensuring the effective diagnosis and treatment of pneumonia,
which is one of the 2025 goals of the WHO [1,3].

Methods
Case Definition and Patient Selection
Our study included pediatric patients who received inpatient
treatment at Hacettepe University Medical School, a large,
urban, tertiary, academic medical center in Ankara, Türkiye,
between January 2014 and April 2020. The center serves
a diverse range of pediatric patients from both urban and
rural areas across the country, including those requiring
advanced multidisciplinary care as well as those with less
severe conditions. All patients were diagnosed with CAP
based on the most recent IMCI guidelines, which provide
a structured clinical framework focused on clinical features
rather than advanced imaging or laboratory results [6,19].
Patients younger than 28 days of age (neonatal age), those
older than 18 years, and those who had been hospitalized
within the last 14 days were excluded.

The medical records of 437 patients were retrospectively
examined by pediatricians, who encoded the candidate
features from unstructured admission notes based on the
IMCI guidelines (Tables 1 and 2). These variables were
chosen based on their clinical value in clinical decision-mak-
ing and their availability in primary care.
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Table 1. Candidate features: clinical variables.
Clinical variables Description
Age Age in months at the time of admission
Weight (z score) Standardized score based on Turkish children reference values [20], indirectly reflecting nutritional status
Gender Biological sex (male or female)
Complaint period Duration (days) from symptom onset to admission
Comorbidity Presence of any significant underlying medical conditions, including congenital disorders, genetic syndromes,

neuromuscular diseases, and chronic respiratory or cardiac issues
Recent antibiotics usage Prescribed oral antibiotic use within the 14 days before admission, suggesting an inadequately treated infection or failure

to respond initial care
Fever Presence of elevated body temperature at admission
Cough A key respiratory symptom at admission
Loss of appetite Sign of systemic illness, reflecting impact on the patient’s well-being
Respiratory distress Presence of shortness of breath, rapid breathing (tachypnea), nasal flaring, or chest wall retractions at initial examination
Abnormal lung sounds Auscultatory findings (eg, crackles or wheezing), indicative of pulmonary pathology at initial examination
Hypoxia SaO2a measured by pulse oximetry; hypoxia is defined as SaO2 below 92% at initial examination
Level of care severity Primary outcome; whether the patient requires pneumonia care at a tertiary care unit, including PICUb admission or

respiratory support (oxygenation or ventilation), at any point during the hospital stay
aSaO2: peripheral blood oxygen saturation.
bPICU: pediatric intensive care unit.

Table 2. Candidate features: laboratory variables.
Laboratory variables Unit
Hemoglobin Grams per deciliter (g/dL)
Leukocytes Cells per liter (×106/L)
Lymphocytes Cells per liter (×106/L)
Neutrophils Cells per liter (×106/L)
Platelets Cells per liter (×109/L)
C-reactive protein Milligrams per liter (mg/L)
Albumin Grams per deciliter (g/dL)
Sodium Milliequivalents per liter (mEq/L)
Aspartate aminotransferase Units per liter (U/L)
Alanine aminotransferase Units per liter (U/L)

The primary outcome was the “level of care severity,” scaled
as severe or nonsevere. This categorization was made by
physician-encoders based on whether the patient required
referral to a tertiary care unit, using medical notes during
the hospital stay. Children classified as severe included those
admitted to the pediatric intensive care unit or those who
required oxygenation or ventilation support at any time during
the hospital stay.
Ethical Considerations
This study’s design and procedures were approved by the
Hacettepe University Clinical Research Ethics Committee
with protocol GO-20/1182. Since this study is a retrospective
analysis using previously collected data, informed consent
was not required as per the ethics committee’s approval. All

data used in this study were deidentified before analysis to
ensure participant privacy and confidentiality. No compensa-
tion was provided to participants, as this study did not involve
direct human participant recruitment.
Study Population
This study included 437 hospitalized patients with CAP,
categorized into nonsevere (n=133, 30.4%) and severe
cases (n=304, 69.6%). Demographic and clinical candidate
variables, along with laboratory indices, were collected.
Group comparisons were made using the Mann-Whitney U
test for continuous variables and the χ2 test for categorical
variables, with significance set at P<.05. A summary of these
characteristics and statistical comparisons are provided in
Table 3.

Table 3. Characteristics of the study population by level of care severity (N=437).
Candidate variables Nonsevere (n=133, 30.4%) Severe (n=304, 69.6%) Test statistic (df) P value
Age (months), median (IQR) 44 (13 to 98) 23 (7 to 64.5) 16,602a .003
Weight (z scores), median (IQR) −0.57 (−1.4 to 0.45) −0.7 (−2.5 to 0.4) 17,784a .045
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Candidate variables Nonsevere (n=133, 30.4%) Severe (n=304, 69.6%) Test statistic (df) P value
Complaint period (days), median (IQR) 4 (2 to 7) 4 (2 to 7) 19,274a .44
Gender, n (%) 0.05a .83
  Male 68 (30.9) 152 (69.1)     
  Female 65 (30) 152 (70)     
Comorbidity, n (%) 85 (28.7) 211 (71.3) 1.28b (1) .26
Recent antibiotic usage, n (%) 40 (26.3) 112 (73.7) 1.87b (1) .17
Fever, n (%) 100 (32.3) 210 (67.7) 1.68b (1) .20
Cough, n (%) 115 (31.3) 253 (68.8) 0.50b (1) .48
Loss of appetite, n (%) 37 (32) 80 (68) 0.11b (1) .74
Respiratory distress, n (%) 43 (17.1) 208 (82.9) 49.30b (1) <.001
Abnormal lung sounds, n (%) 102 (26.9) 277 (73.1) 16.70b (1) <.001
Hypoxia, n (%) 20 (7.7) 240 (92.3) 156.82b (1) <.001
Hemoglobin (g/dL), median (IQR) 11.6 (10.4 to 12.9) 11.6 (10.6 to 12.6) 20,022a .87
Leukocytes (×106/L), median (IQR) 9900 (6800 to 14,600) 10,950 (8050 to 15,850) 17,837a .05
Lymphocytes (×106/L), median (IQR) 2300 (1400 to 3700) 2800 (1900 to 4400) 17,039a .01
Neutrophils (×106/L), median (IQR) 5285 (2700 to 9200) 6500 (3650 to 10,900) 17,645a .045
Platelets (×109/L), median (IQR) 310 (225 to 386) 317.5 (230.5 to 425) 19,399a .50
C-reactive protein (mg/L), median (IQR) 2.06 (0.79 to 7.67) 2.06 (0.83 to 7.35) 19,842a .76
Albumin (g/dL), median (IQR) 3.9 (3.73 to 4.2) 3.9 (3.4 to 4.2) 17,121a .01
Sodium (mEq/L), median (IQR) 136 (135 to 138) 136 (134 to 138) 19,657a .64
Aspartate aminotransferase (U/L), median (IQR) 35 (26 to 42) 35 (28 to 50) 18,382a .13
Alanine aminotransferase (U/L), median (IQR) 17 (12 to 26) 18 (13 to 29) 18,457a .15

aMann-Whitney U test.
bChi-square test.

Data Preprocessing
Data preprocessing, analysis, visualization, and model setup
were conducted using Python (version 3.12; Python Soft-
ware Foundation). We used Python libraries such as Pandas,
NumPy, Matplotlib, Seaborn, and Plotly for exploratory
data analysis. For model development, the PyCaret library
was used, which includes an unsupervised anomaly detec-
tion module to identify and handle anomalous data points.
PyCaret also offers various preprocessing modules to
iteratively handle missing data using the light gradient
boosting machine (LightGBM) algorithm. In this method,
missing values were treated as dependent variables and
predicted based on other available features, minimizing bias.
Individual feature weights were applied during this process.
Specifically, of the 415 cases, the following features had
missing values: C-reactive protein (n=34, 8.2%), albumin
(n=10, 2.4%), sodium (n=8, 1.9%), aspartate aminotransfer-
ase (n=16, 3.9%), and alanine aminotransferase (n=16, 3.9%).
For numerical data, min-max scaling was applied, while
categorical data were processed using one-hot encoding.
These preprocessing steps ensured the dataset was well
prepared for model training and validation.
Handling the Imbalanced Dataset
The balance of the dataset was assessed using Shannon
entropy, yielding a value of 0.7, which indicates an
imbalanced dataset. To address this, we applied Synthetic
Minority Oversampling Technique (SMOTE)–Tomek, a

refined variation of the widely recognized SMOTE. This
approach combines oversampling of the minority class with
the removal of overlapping samples from the majority class
through Tomek links. So, the ratio of samples becomes
1:1. The Imblearn library was used for implementing data
oversampling.

The dataset was split into two sets using the
train_test_split method of the SciKit-Learn library. In the
beginning, we allocated 5% of the general dataset as test data
in order to prevent data leakage. The remaining 95% was split
into training (352/415, 85%) and validation (63/415, 15%)
sets.

Algorithms
PyCaret provides efficient implementations of state-of-the-
art algorithms and is reusable among scientific disciplines.
We used the PyCaret classifier module for classification,
which includes the following models: ridge classifier,
linear discriminant analysis, naïve Bayes, extra tree classi-
fier, extreme gradient boosting (XGBoost), random forest,
gradient boosting classifier, LightGBM, CatBoost classifier,
logistic regression, k-neighbors classifier, decision tree,
AdaBoost classifier, quadratic discriminant analysis, support
vector machine with linear kernel, and dummy classifier.

In our work, we considered 10-fold cross-validation.
While developing our model with PyCaret tools, we
implemented the tuning function using the Tune-Sklearn
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library and the hyper-band optimization algorithm to obtain
a set of best-performing parameters. For ensembling, we
also used PyCaret classifier ensemble, stack, and blender
methods. Ensembling methods have strong evidence that they
can significantly enhance the accuracy of classifications [21].

After the optimization of parameters, in the last phase, we
used the most common ensemble methods provided by the
PyCaret library to further improve our model’s performance
(Figure 1).

Figure 1. The experimental setup: in this figure, we illustrate the experimental process of our models. Initially, we cleaned the data by identifying
5% of cases as abnormal data using unsupervised learning. We then split the data into a train set (85%) and a validation set (15%) using the PyCaret
classifier model. The base model with the highest AUC-ROC value was the RF algorithm. Subsequently, we determined the optimal number of
features as 18 using RFECV and selected the top 18 features based on Shapley values. We then balanced the dataset using the SMOTE-Tomek
method and developed high-performing models. After optimizing the hyperparameters, we selected the best-performing model and created new
models by using ensemble methods. In parallel, we developed a new model using only clinical findings for clinical prediction. AdaBoost: AdaBoost
classifier; AUC-ROC: area under the receiver operator characteristic curve; CatBoost: CatBoost classifier; DT: decision tree; Dummy: dummy
classifier; ET: extra tree classifier; GBC: gradient boosting classifier; KNN: k-neighbors classifier; LDA: linear discriminant analysis; LightGBM:
light gradient boosting machine; LR: logistic regression; NB: naïve Bayes; QDA: quadratic discriminant analysis; RF: random forest; RFECV:
recursive feature elimination with cross-validation; Ridge: ridge classifier; SMOTE: Synthetic Minority Oversampling Technique; SVM: support
vector machine linear kernel classifier; XGBoost: extreme gradient boosting.

Feature Selection and Data-Reducing
Methods
Feature selection is a process of one-by-one evaluation
to determine which features are effective on the results
within the dataset. Irrelevant or partially relevant features
can negatively impact ML model performance and make the
ML model learn based on irrelevant features. These meth-
ods are aimed at eliminating irrelevant features and keeping
the strong features to reduce the dimension of the dataset.
Recursive feature elimination is a feature selection method
that fits a model and removes the irrelevant features until
the specified number of features is reached. Recursive feature
elimination with cross-validation (RFECV) aims to select the
optimal number of features using permutation importance

and recursive feature elimination. In this study, we used
the RFECV module from yellowbrick library for selecting
the optimum feature number. The Shapley additive explana-
tions (SHAP) method is an innovative tool for explaining
ML decision-making processes for datasets. The goal of the
SHAP method is to present and explain the prediction with
respect to the contribution of each feature to the predicted
value. In RFECV, the features are ranked by a permutation
importance measure. The SHAP algorithm was used for
feature selection (Figure 2), as it provides more consistent
and accurate importance values compared to the permutation
approach. Ultimately, RFECV algorithms showed that 18
parameters are sufficient to explain nearly 90% of variances.
Overall, 13 clinical and 5 laboratory variables were selected
according to their SHAP values (Figure 2).
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Figure 2. Feature selection: SHAP values are presented for the random forest classifier model with the highest AUC-ROC score in the dataset before
feature selection, using the SHAP library’s plot_summary module. The y-axis shows the importance of each feature, with the most important feature
at the top and the least important at the bottom. The colors represent the contribution of each feature to the model’s prediction. For example, features
that have a large positive contribution to the prediction are shown in a warm color (eg, red), while features that have a large negative contribution
are shown in a cool color (eg, blue). In this example, hypoxia is the most important attribute in the plot. The presence of hypoxia (hypoxia=1) causes
the model to move closer to the target class, while its absence causes the model to move away from the target class. This predicts that hypoxia
is an aggravating factor, while high levels of albumin have a protective effect for the target class. In summary, hypoxia is an adverse factor, and
high albumin levels are protective. ALT: alanine aminotransferase; AST: aspartate aminotransferase; AUC-ROC: area under the receiver operator
characteristic curve; CRP: C-reactive protein; SHAP: Shapley additive explanations.

Results
Study Population Characteristics
A comparison of the demographic and clinical characteristics
between the nonsevere and severe groups is presented in
Table 3. Of the 437 patients, 304 (69.6%) met the primary
outcome, requiring the escalation of care. Patients in the
severe care group were significantly younger, with a median
age of 23 months compared to 44 months in the nonsevere
level of care group (P=.003). Additionally, the severe group
had lower weight z scores (P=.045).

Key clinical differences included higher rates of respira-
tory distress (208/304, 82.9% vs 43/133, 17.1%; P<.001),
abnormal lung sounds (277/304, 73.1% vs 102/133, 26.9%;
P<.001), and hypoxia (240/304, 92.3% vs 20/133, 7.7%;
P<.001) in the severe group. In terms of laboratory find-
ings, the severe group had higher leukocyte counts (P=.005),

neutrophil counts (P=.045), and lymphocyte counts (P=.001).
Albumin levels were slightly lower in the severe group
(P=.01). No significant differences were observed between
the groups in gender distribution (P=.83), comorbidities
(P=.26), recent antibiotic use (P=.17), or C-reactive protein
levels (P=.76).
Model Performances
In this section, we present a comparison of the performance
of 16 different algorithms for raw and preprocessed data-
sets. We used various evaluation metrics such as accuracy,
area under the receiver operator characteristic curve (AUC-
ROC), recall, precision, F1-score, Cohen κ, and Matthews
correlation coefficient to assess model performance. To
analyze model performance, all prediction experiments
were conducted using 10-fold cross-validation. Subsequently,
the models were optimized, and their performances were
evaluated on a balanced dataset using SMOTE-Tomek and
feature selection. The performances of the three models
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with the highest performance (CatBoost, XGBoost, and
LightGBM) were evaluated by applying hyperparameter
optimization and ensemble methods. Table 4 compares the
results obtained with CatBoost, XGBoost, and LightGBM
among the optimized and nonoptimized results, as well as

the results of the combinations with the highest performance
from the basic ensembling methods (ensembling, blending,
and stacking methods). The highest AUC-ROC value was
achieved by using optimized LightGBM as the meta-model in
the stacking method.

Table 4. Comparative performance of machine learning models for the escalation of care prediction. Italicized values represent the highest scores for
each column.
Model Accuracy AUC-ROCa AUC-PRCb Recall Precision F1-score Cohen κ MCCc

CatBoostd 0.77 0.85 0.94 0.75 0.91 0.82 0.52 0.54
LightGBMe,f 0.80 0.87 0.96 0.79 0.92 0.85 0.58 0.59
XGBoostf,g 0.77 0.83 0.96 0.72 0.94 0.82 0.54 0.57
Ensemblingh 0.77 0.86 0.95 0.72 0.94 0.82 0.54 0.57
Stackingi 0.80 0.88 0.96 0.79 0.92 0.85 0.58 0.59
Blending-1j 0.77 0.86 0.96 0.75 0.91 0.82 0.52 0.57
Blending-2k 0.85 0.84 0.96 0.95 0.85 0.90 0.63 0.64

aAUC-ROC: area under the receiver operating characteristic curve.
bAUC-PRC: area under the precision-recall curve.
cMCC: Matthews correlation coefficient.
dThe performance of unoptimized CatBoost.
eLightGBM: light gradient boosting machine.
fThe performance values obtained after optimization of XGBoost and LightGBM.
gXGBoost: extreme gradient boosting.
hThe performance of the optimized LightGBM ensembling method, which achieved the highest results among CatBoost, XGBoost, and LightGBM
algorithms.
iThe performance of the model with optimized LightGBM as a meta-model in the stacking method, as it showed the highest performance.
jThe combination of optimized LightGBM and XGBoost with higher performance in the blending method.
kUsing the top-5, highest-ranked clinical features, the peak performance was realized by using a method that incorporated the optimized CatBoost,
LightGBM, and XGBoost models.

In addition to the metrics reported in Table 4, we evalu-
ated the performance of the Blending-2 model using the
precision-recall curve metric, which is particularly useful for
imbalanced datasets. The precision-recall curve plot for this
model, using the top-5 ranked clinical features, is provided
in Multimedia Appendix 1. The model achieved a strong
average precision-recall score of 0.96, further highlighting its
robustness in handling imbalanced data.
Feature Importance
The optimized LightGBM in the model, developed with
balanced and feature-selected data, was responsible for the
attainment of the highest performance. Upon evaluation of
clinical features according to SHAP values, a ranking was
established based on their feature importance scores, with the
highest score being garnered by the top-5 clinical features
(hypoxia, respiratory distress, age, z score of weight for age,
and antibiotic usage before admission; Multimedia Appendix
2). The application of a workflow using these 5 features, as
done previously, resulted in the highest accuracy performance
(84%), which was achieved through the use of the ensemble
method, incorporating the blending method of the optimized
CatBoost, LightGBM, and XGBoost models.

Discussion
Pneumonia, the leading cause of childhood mortality, is also
one of the most common causes of hospitalization [3,22].

It remains a significant global health burden, particularly
in children aged <5 years, where timely and accurate
clinical management is crucial for reducing mortality [8].
While prevention strategies are well documented, the clinical
challenge lies in efficiently identifying patients who require
escalated care. In this study, we present a contemporary
approach to building an ML-based, prognostic care referral
decision support tool that assists primary care physicians
in determining where the case should be managed with an
accuracy of more than 80%.

Today, there is widespread knowledge of the prevention,
diagnosis, treatment, and management of complications in
CAP, but due to resource limitations, it is not possible for
all physicians and patients to benefit from this [14]. Recent
advancements in medical informatics have the potential to
reduce health care disparities and empower physicians in
resource-limited settings [11-15], offering new hope for
identifying high-risk populations and preventing mortality
where current methods fall short.

The recent COVID-19 pandemic has impacted several
medical fields, including the disruption of research practices
by shifting researchers’ focus and patient recruitment [23,24]
and significantly reducing the incidence of non–COVID-19
pneumonia by preventing transmission [25-27]. In the current
postpandemic state, non–COVID-19 childhood pneumonia
remains a global health concern, especially in resource-
limited settings according to the most recent reports [2],
with respiratory infections likely to rise again as pandemic
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measures have already been eased [28]. Now, focusing
back to reducing the mortality of CAP is critical to ensure
pediatric pneumonia care benefits from recent advancements
that COVID-19 provided [29,30]. This study, built primarily
on prepandemic cases, provides a foundational context for
future studies on CAP using ML in the postpandemic era.

Since March 2020, a substantial amount of data about
COVID-19 have been published, including COVID-19–
related artificial intelligence studies focused on pneumonia
diagnosis by radiological findings [31]. However, pneumonia
diagnosis is clinical, and routine chest radiographs are not
necessary for the confirmation diagnosis [32] and do not
improve outcomes [33]. In addition, chest radiography can
be used only in inpatient settings to identify complications or
evaluate response to treatment.

Although strong diagnostic support algorithms have been
published in pneumonia-related studies in recent years, there
is still a need for prognostic studies for pneumonia manage-
ment [31]. Determining the severity of a disease or predict-
ing its prognosis answers essential questions of physicians
in medical decision-making, such as “Where should it be
treated? Outpatient? ICU?” “Which therapy should I start?
How long should I give it?” and “When should I discharge
the patient? When should I call for control?” There are
several studies and guidelines in the literature for severity
assessment and prognosis prediction of pneumonia [9,10,34].
For the majority, mortality and the development of complica-
tions were the primary outcomes, and clinical, radiological,
and laboratory variables are the key predictors. Yet, there is
a limited number of studies predicting required referral to
tertiary care based on basic clinical and laboratory features
available in primary care settings [15].

This study reviewed important pneumonia prognostic
predictors of children hospitalized in a major academic
medical center. The primary outcome of interest was the
level of care severity, classified as severe or nonsevere based
on the need for pediatric intensive care unit admission or
oxygen/ventilation support. The main objective of this study
was not only to build the best model but also to answer the
primary care physician’s question: “Where should the case
be managed?” Our model demonstrated promising predictive
accuracy, with an AUC-ROC exceeding 0.85 and an accuracy
of 77% to 88% (Table 4). The key clinical features identi-
fied—hypoxia, respiratory distress, age, z score of weight
for age, and complaint period (Multimedia Appendix 2)—
align with existing clinical guidelines, which emphasize the
importance of respiratory and nutritional status in predicting
disease severity [33-36].

In this study, we used SMOTE-Tomek, a method proven
effective in medical tasks, to address class imbalance

without losing valuable clinical information [37,38], which
was essential given the significantly imbalanced and small
sample–sized dataset. Additionally, we used RFECV and
SHAP, both of which have been established as robust
methods in previous studies [11,39,40], for feature selection.
These techniques not only improved our model’s performance
but also allowed us to isolate the most clinically significant
features (Figure 2, also see Multimedia Appendix 2), enabling
clinicians to decide using their own skills without involving
additional diagnostic tools.

The clinical application of a prognostic care decision
model is particularly relevant in settings where early and
accurate escalation of care is needed. For example, by
focusing on these top-5 clinical features or using a deci-
sion support tool like ours, even less experienced primary
care physicians could assess risk and anticipate tertiary
care referrals without advanced diagnostics. Additionally,
in emergency settings, these tools could assist in triaging
patients to prioritize those needing immediate respiratory
support or mechanical ventilation, allowing earlier interven-
tions and more effective resource allocation—crucial for
LMICs—potentially reducing morbidity and mortality.

One significant limitation of this study is its reliance on
data from a single tertiary hospital (Hacettepe University),
which may limit generalizability. While the dataset includes
patients referred from both urban and rural areas, the focus
on a tertiary center introduces a selection bias, as most cases
represent severe care levels (304/437, 69.6%). This is likely
because less severe CAP cases are managed in primary or
secondary care, not referred to tertiary centers, limiting the
model’s applicability in less severe cases. Additionally, the
relatively small sample size of 437 patients limits the model’s
generalizability, as larger datasets are typically needed to
optimize ML models and ensure robust performance across
diverse populations. Expanding the dataset to include patients
from multiple centers, especially primary and secondary care
institutions, could improve the model’s generalizability and
applicability. Lastly, the retrospective nature of the data and
the missing time frames of tertiary care unit transfers may
not fully capture real-time clinical decision-making or the
urgency of care decisions.

In conclusion, this study demonstrates the feasibility
of developing an ML-based prognostic decision support
tool for childhood pneumonia referral, with an accuracy
of 77% to 88%. Incorporating foundational clinical skills
for key prognostic predictors with advanced data science
methods holds promise for improving pneumonia outcomes
by accurately predicting the need for the escalation of care.
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