Peer-Review Report

Peer Review of "Machine Learning–Based Hyperglycemia Prediction: Enhancing Risk Assessment in a Cohort of Undiagnosed Individuals"

Fakhare Alam

Oakland University, Rochester, MI, United States

Related Articles:

Preprint (medRxiv): <u>https://www.medrxiv.org/content/10.1101/2023.11.22.23298939v1</u> Preprint (JMIR Preprints): <u>http://preprints.jmir.org/preprint/56993</u> Authors' Response to Peer-Review Reports: <u>https://med.jmirx.org/2024/1/e60174</u> Published Article: https://med.jmirx.org/2024/1/e56993

JMIRx Med 2024;5:e60389; doi: 10.2196/60389

Keywords: hyperglycemia; diabetes; machine learning; hypertension; random forest

This is the peer-review report for "Machine Learning–Based Hyperglycemia Prediction: Enhancing Risk Assessment in a Cohort of Undiagnosed Individuals."

Round 1 Review

General Comments

This paper [1] introduces a machine learning (ML) methodology for predicting hyperglycemia in one of the cohorts taken from a suburban Nigerian region. The authors present the details of the methodology for participant recruitment and screening, data analysis, and selection of ML models.

Specific Comments

Major Comments

1. The introduction and motivation behind the work are well written. However, there is not enough literature

Conflicts of Interest

None declared.

References

done on the ML aspect of noncommunicable disease prediction; please also cite some of the recent work where ML-based methods are used for noncommunicable disease prediction.

- 2. Before selecting the features, was there any domain expert consulted? If yes, please provide reasoning on some aspect of feature selection.
- 3. How were the different ML models selected for the experiment? Please elaborate on some selection criteria such as the combination of tree-based models with other ensemble approaches such as random forest.

Minor Comments

- In Table 2, please reduce the decimal precision up to 2 digits.
- 2. Figure 1 could be improved with a flow diagram to provide better readability and details of each step.

1. Oyebola K, Ligali F, Owoloye A, et al. Machine learning-based hyperglycemia prediction: enhancing risk assessment in a cohort of undiagnosed individuals. JMIRx Med. 2024;5:e56993. [doi: 10.2196/56993]

Abbreviations

ML: machine learning

Edited by Edward Meinert; This is a non-peer-reviewed article; submitted 09.05.2024; accepted 09.05.2024; published 11.09.2024

Please cite as:

JMIRx Med

Alam F Peer Review of "Machine Learning–Based Hyperglycemia Prediction: Enhancing Risk Assessment in a Cohort of Undiagnosed Individuals" JMIRx Med 2024;5:e60389 URL: https://med.jmirx.org/2024/1/e60389 doi: 10.2196/60389

© Fakhare Alam. Originally published in JMIRx Med (<u>https://med.jmirx.org</u>), 11.09.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (<u>https://creativecommons.org/licenses/by/4.0/</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIRx Med, is properly cited. The complete bibliographic information, a link to the original publication on <u>https://med.jmirx.org/</u>, as well as this copyright and license information must be included.