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This is the authors’ response to peer-review reports for
“Performance Drift in Machine Learning Models for Cardiac
Surgery Risk Prediction: Retrospective Analysis.”

Round 1 Review
Anonymous [1]

General Comments
Overall, I think this is a really interesting paper [2]. It is
a concept I had never heard of, and I can see very clearly
how this is an important consideration. I also think the
authors have done excellently to consider a host of different
aspects, including feature importance change, beyond the
most obvious measurements.

Specific Comments
Abstract
1. “It has been suggested that using Machine Learning
(ML) techniques, a branch of Artificial intelligence (AI),
may improve the accuracy of risk prediction.” Improve them
over what? Specify what the status quo is with regard to
first principles and data-driven modeling. This statement is
also repeated in the first line of the introduction—what is
“conventional” about these models?

Response: Please note that all line numbers refer to the
marked version of the manuscript with tracked changes,
uploaded as a supplementary file.

Thank you for this helpful suggestion. This has now been
modified in the abstract as follows:
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It has been suggested that using Machine Learning
(ML) techniques, a branch of Artificial intelligence
(AI), may improve the accuracy of risk prediction over
traditional mortality risk stratification models.
These traditional scoring methods are generally based
on logistic regression with risk factors determined
through a consensus across experts within leading
cardiac surgery organisations in the United States
(STS) or Europe (ES II).

The above important points have been incorporated in
lines 31, 103, and 106-108.

2. “five ML mortality prediction models”—it should be
highlighted that these are novel models that you have
developed for this paper.

Response: Thank you for this suggestion. This has now
been modified as “Five novel ML mortality prediction
models were developed and assessed with EuroSCORE II for
relationships…” in lines 39-40.

3. “geometric average results of all metrics”—it is not all
metrics, just the 5 that you have calculated. It is better to just
say here “a novel metric called the CEM” or something.

Response: Thank you for the helpful suggestion. This
has been changed to “Performance was assessed using a
consensus metric.” in lines 41-44.

Introduction
Why is data set drift a problem? I think you could do
more here to highlight how important this is to an audience
who might not be dealing with the data themselves and,
thus, might not naturally think of examples: for example,
changes in treatment guidelines, demographics, new risk
factors emerging, or changes in coding practices. You could
mention “new” comorbidities such as long COVID.

Response: Thank you for this interesting comment. We
have now included a more extensive explanation of data set
drift and its importance in the Introduction section.

Introduction
Changes in treatment regimens, demography, new risk
factors, adjustments to clinical coding procedures, or
the addition of new variables such as the identification
of previously unknown conditions such long Covid can
all contribute to this phenomenon. The issue of dataset
drift is serious, particularly for individuals who depend
on the quality or insights of the data but may not
analyse it directly. Below are some reasons why this
is important:
1. Impact on Decision-Making: Decision-makers may
base their choices on erroneous or obsolete informa-
tion if they rely on drifted or outdated datasets. In
the healthcare industry, for example, if changes in
treatment recommendations rely solely on historical
data, this could result in less-than-ideal patient care
because the analysis would not account for newer, more
effective therapies.

2. Reduced Model Performance: When dataset drift
occurs, machine learning models and predictive
algorithms that were trained on historical data may
become less accurate or dependable. For instance, a
financial prediction model based on antiquated market
tendencies may not be able to predict novel market
behaviours, which could result in losses.
3. Biased or Inaccurate Insights: Datasets that have
drifted may contain biases or errors. Model general-
izability may be impacted by changes in demograph-
ics, such as adjustments in the age distributions
of the population. The prevalence of post-cardiac
surgery outcomes may be impacted by newly identified
risk factors or circumstances (such as long Covid),
necessitating modifications to predictive models in
order to preserve accuracy.
4. Challenges in Generalization: Models developed
with dated data could have trouble extrapolating
to novel scenarios. For instance, Euroscore I was
developed in 1999 using 19,030 patients collected over
three months (September–December 1995) from 132
cardiac centres in eight countries [13]. Modifications
to risk factors over time may have an resulted in its
lack of discrimination and calibration compared to
its successor score EuroSCORE (ES) II, developed in
2011.
5. Ethical and Fairness Concerns: Drift in the dataset
may exacerbate problems with ethics or fairness. A
system may reinforce preexisting biases and unfairly
target particular groups if it was trained on biased or
out-of-date data.
6. Regulatory Compliance: Using historical or drifted
data could result in non-compliance with changing
standards that need accurate, current information in
regulated industries like healthcare.

The above important points have been incorporated in
lines 148-181.

Methods
1. Could the same individuals be in both the training and
validation set and holdout set, if they had multiple surgeries?
If so, this may have introduced some bias into the perform-
ance estimates. I do not think you need to redo the analyses,
but if you can highlight the degree of overlap, then that would
be good. Otherwise, say it was not possible and list it as a
limitation.

Response: Thank you. As National Adult Cardiac Surgery
Audit (NACSA) patient identifiers and the Hospital Episode
Statistics data set were not available for linkage, it was not
possible to determine whether there were any patients in
both the training and validation set and holdout set, where
they had multiple surgeries. Clinical judgment suggests that
the proportion with multiple surgeries would be very low.
Nonetheless, future work should consider the collection of
such information to minimize any potential bias.

The above important points have been incorporated in
lines 644-649.
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2. “As a sensitivity analysis, we excluded the True
Negative Rate from the performance evaluation, by calculat-
ing the F1 score.” This sentence does not quite make sense
to me. The F1-score is based on the sensitivity (true negative
rate) and the precision (positive predictive value), right? It
does not exclude the true negative rate per se; it just does not
use it.

Response: Thank you. As a sensitivity analysis, we
calculated the F1-score, which combines precision and recall
without explicitly considering the true negative rate in the
performance evaluation.

The above important points have been incorporated in
lines 274-277.

Thank you for your expert and invaluable review; this
has been really thought provoking and had made significant
contributions to improving the journal’s quality of output.
Thanks.

We hope this now addresses your queries. Thank you.
Reviewer CL [3]

General Comments
This manuscript presents an interesting study that explores
temporal trends in various performance metrics for different
types of prediction models used in the prediction of in-hospi-
tal mortality after cardiac surgery in the United Kingdom
from 2012 to 2019. The data set was divided into 2 peri-
ods: from 2012 to 2016 for model training and internal
validation and from 2017 to 2019 for external validation.
The study evaluated 5 prediction models: logistic regres-
sion, support vector machine (SVM), random forest, extreme
gradient boosting (XGBoost), neural network, and European
System for Cardiac Operative Risk Evaluation (EuroSCORE)
II. The authors aimed to assess the model performance on 5
metrics (1 – expected calibration error [ECE], area under the
curve [AUC], 1 – Brier score, F1-score, and net benefit) and
proposed a composite metric, the clinical effectiveness metric
(CEM), calculated as the geometric mean of the 5 mentioned
metrics, as the primary metric.

The study began with a nontemporal baseline evaluation
of different models in the 2017-2019 temporal validation
and then conducted a series of drift analyses, including an
examination of overall trends from 2012 to 2019, within-
period trends in the first 3 months of 2017 and 2019, and
between-period trends between the first 3 months of 2017 and
2019. The authors also analyzed drift in variable importance
and variable distribution, defined by the temporal change in
the ratio of several top-importance features within the data
set, to profile data set drift.

The authors demonstrated that XGBoost and random
forest were the best-performing models, both in nontempo-
ral and temporal evaluations, whereas the EuroSCORE II
model exhibited a significant drop in performance. Tempo-
ral declines in model performance were observed across all
models and were consistent with data set drift.

Overall, the question of the generalizability of prediction
models, whether temporal or spatial, has long been a topic of
discussion in clinical research. This study takes a commenda-
ble approach to addressing this question. However, there are
some issues that require clarification and revision, including
(1) methodological concerns related to the justification of the
main metric (CEM) using averaging, and the appropriateness
of some statistical tests; (2) the clinical significance of the
identified performance drift; and (3) the overall clarity of the
study’s design and presentation.

Specific Comments
Major Comments
1. The statement of the study’s objectives should be improved
for more clarity, particularly regarding the phrase “verify
suspected dataset drift by assessing the relationship between
and within performance drift, variable importance drift, and
dataset drift across ML and ES II approaches.” It is unclear
what is meant by the “relationship between and within.”
Does this refer to the analysis of performance drift within
and between different periods? The overall study design is
quite challenging to grasp initially, even with the graphical
overview provided in Figure 1. To enhance clarity, additional
details and explanations should be added to the aims, overall
design, graphical overview, and text the Methods and Results
sections.

Response: Please note that all line numbers refer to the
marked version of the manuscript with tracked changes,
uploaded as a supplementary file.

Thank you for this helpful suggestion. We have now
improved the Introduction and Methods sections in terms of
making the design and aims easier to comprehend across a
wider range of readers.

Introduction
Performance drift in ML is when the performance of
the ML models deteriorate over time due to various
changes that may reduce the validity of the model’s
assumptions at the time of training. The following are
the primary reasons for performance drift: (i) Dataset
Drift happens when the distribution of the data between
the training set and the dataset used for evaluation or
prediction varies. For example, if a model is trained
on data from one time period but evaluated or used
in another time period where the data distribution
has changed dramatically, performance may suffer; (ii)
Concept Drift occurs when the fundamental relation-
ship between the input features and the target vari-
able shifts over time. The assumptions upon which
the model was developed may no longer be valid.
In a predictive maintenance model, for example, the
behavior of the machinery may alter subtly over time
due to numerous causes (such as wear and tear),
causing the model to become less accurate as time
passes; (iii) Variable Importance Drift: Changes in
the significance or importance of various variables/fea-
tures used by the model to make predictions. Variables
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that were essential during the model’s training phase
may become less important, while other variables may
become more influential when the environment or the
problem itself evolves. Calibration Drift: Calibration
refers to the agreement between expected and actual
probabilities of an event; (iv) Calibration drift occurs
when the estimated probability of the model grow less
dependable over time. This could happen if the model
was calibrated based on assumptions about the data
distribution that no longer hold true. These different
types of drift may also have an interplay effect, and this
was shown through a non-cardiac surgery study that
used actual dataset drift to verify variable importance
detected dataset drift [54].
Changes in treatment regimens, demography, new risk
factors, adjustments to clinical coding procedures, or
the addition of new variables such as the identifica-
tion of previously unknown conditions such long Covid
can all contribute to this dataset drift phenomenon.
The issue of dataset drift is serious, particularly for
individuals who depend on the quality or insights of the
data but may not analyse it directly. Below are some
reasons why this is important:
1. Impact on Decision-Making: Decision-makers may
base their choices on erroneous or obsolete informa-
tion if they rely on drifted or outdated datasets. In
the healthcare industry, for example, if changes in
treatment recommendations rely solely on historical
data, this could result in less-than-ideal patient care
because the analysis would not account for newer, more
effective therapies.
2. Reduced Model Performance: When dataset drift
occurs, machine learning models and predictive
algorithms that were trained on historical data may
become less accurate or dependable. For instance, a
financial prediction model based on antiquated market
tendencies may not be able to predict novel market
behaviours, which could result in losses.
3. Biased or Inaccurate Insights: Datasets that have
drifted may contain biases or errors. Model general-
izability may be impacted by changes in demograph-
ics, such as adjustments in the age distributions
of the population. The prevalence of post-cardiac
surgery outcomes may be impacted by newly identified
risk factors or circumstances (such as long Covid),
necessitating modifications to predictive models in
order to preserve accuracy.
4. Challenges in Generalization: Models developed
with dated data could have trouble extrapolating
to novel scenarios. For instance, Euroscore I was
developed in 1999 using 19,030 patients collected over
three months (September–December 1995) from 132
cardiac centres in eight countries [13]. Modifications
to risk factors over time may have an resulted in its
lack of discrimination and calibration compared to
its successor score EuroSCORE (ES) II, developed in
2011.
5. Ethical and Fairness Concerns: Drift in the dataset
may exacerbate problems with ethics or fairness. A

system may reinforce preexisting biases and unfairly
target particular groups if it was trained on biased or
out-of-date data.
6. Regulatory Compliance: Using historical or drifted
data could result in non-compliance with changing
standards that need accurate, current information in
regulated industries like healthcare.
The aim of this study was to investigate performance
drift in existing ML models that have been used in prior
cardiac surgery risk prediction research. The objectives
were to (i) rank and assess the extent of performance
drift in such cardiac surgery risk ML models over time;
(ii) investigate any potential influence of dataset drift
and variable importance drift on performance drift.

We have also added an extensive Related Work section in
the Introduction section.

Future Work
Future studies shall also delve deeper into the
relationships of the studied drift types with concept drift
in cardiac surgery risk prediction.

The above important points have been incorporated in
lines 123-186, 194-217, and 667-668.

2. The rationale for introducing CEM as the primary
performance metric, calculated as the geometric mean of
5 distinct individual metrics, is debatable and lacks strong
justification. Although the geometric mean is less sensitive
to outliers compared to the arithmetic mean, it raises the
fundamental question of why these metrics need to be
summarized. Is it merely to obtain a single quantitative
measure for analysis, or does it aim to provide a more
comprehensive understanding of overall model performance?
It appears to serve primarily the former purpose, which may
not be an appropriate practice given that the 5 metrics assess
entirely different aspects of model performance: 1 – ECE
for calibration, AUC for discrimination, 1 – Brier score
(which already encompasses calibration and discrimination
components), F1-score for threshold-specific discrimination,
and net benefit index for cost-effectiveness. Consequently,
interpreting the exact meaning of CEM becomes challenging,
as it reduces these diverse aspects to a single numerical
value. Therefore, I suggest just reporting and examining all 5
metrics individually, with or without highlighting certain ones
as primary areas of interest.

Response: Thank you for your comment. In our previous
study, we found that combining the metrics covering all 4
aspects of discrimination, calibration, clinical usefulness, and
overall accuracy into a single CEM improved the efficiency
of cognitive decision-making (according to the Miller Law
[4]) for selecting the optimal ensemble models [5,6]. This
approach is useful for providing a consensus metric that
enables models to be ranked in scenarios where, for exam-
ple, 1 model could outperform another using 1 metric but
underperform under a different metric. Furthermore, we
demonstrated that such a consensus metric could be combined
with drill-down analysis to further interpret the models using
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individual metrics [5]. Although AUC evaluates the diagnos-
tic or predictive performance of the model, it does not directly
reflect patient benefit. This is why we included a suit of other
metrics, including the decision curve analysis net benefit
index, that were found to be clinically pertinent from our
prior study [7].

The above important points have been incorporated in
lines 195-205.

3. The manuscript used several statistical tests, and some
of them are relatively less commonly used. Please provide
a more detailed description of the objectives and specific
statistical situations for each test used. Additionally, for
the baseline nontemporal performance comparison, a more
conventional approach for comparing AUC would be the use
of the DeLong method (you could choose the best model as
the reference), and bootstrapping can be used to assess the
statistical significance when comparing other metrics.

Response: Thank you. A list of statistical methods used for
analyzing drift has been provided in Table 1 (please see the
manuscript for the formatted version, thanks).

Objective Statistical Tests General Statistical Situations
Rationale for Choosing Test Assumptions Checked
Non-temporal comparison of models Repeated
measures One-Way ANOVA Comparison of multiple
groups for differences Used for comparing means
across multiple models Outliers (ANOVA assumptions),
Normality (Shapiro-Wilk test)
Paired t-tests (Bonferroni Corrected) Comparison
of paired observations between models To compare
specific model pairs
Dunnett’s Correction Control for multiple comparisons
Controls Type I error rate in comparing multiple
treatments to a control group in one-way ANOVA
Analysis within specific time frames Kruskal-Wallis
Test Comparison of multiple groups for differen-
ces (non-parametric) Non-parametric alternative for
ANOVA in specific time frames Outliers (ANOVA
assumptions), Normality (Shapiro-Wilk test)
Bonferroni Corrected Paired samples Wilcoxon test
(Wilcoxon signed-rank test) Comparison of paired
observations within time frames Non-parametric
comparison of paired samples within time frames with
control for Type I error rate in comparing multiple
treatments
Dunn’s test Multiple pairwise comparisons within
non-parametric groups Post hoc test for pairwise
comparisons after Kruskal-Wallis test; Determines the
magnitude of difference effects within time frames
Analysis between first 3 months of 2017 and 2019
Kruskal-Wallis Test Comparison of multiple groups for
differences (non-parametric) Non-parametric compar-
ison between time frames Outliers (ANOVA assump-
tions), Normality (Kolmogorov-Smirnov Test)
Paired samples Wilcoxon test (Wilcoxon signed-rank
test) Comparison of paired observations between time
frames Non-parametric comparison of paired samples
between time frames

Bonferroni adjusted Dunn’s test Multiple pairwise
comparisons between time frames Post hoc test for
pairwise comparisons after significant Kruskal-Wallis
results; Determines the magnitude of difference effects
between time frames; with control for Type I error rate
in comparing multiple treatments
Normality (Kolmogorov-Smirnov Test)
Analysis of discrimination, calibration, clinical
utility, and overall accuracy drift Linear regression
(with residual analysis) Assessing relationships and
regression parameters To analyze linear relationships
and model residuals Normality through histograms and
QQ plots,
Seasonal Kendall Test (Non-parametric alternative if
assumptions not met) Assessing association or trends
when assumptions are not met Non-parametric test for
assessing associations without assumptions Homosce-
dasticity through scale-location plots
We appreciate the suggestion regarding DeLong’s
method for assessing AUC comparison. Future study
could investigate the utility of DeLong’s method in
measuring AUC differences, particularly in stud-
ies focusing on pairwise model comparisons. The
computational demands of this strategy, which can be
burdensome on large datasets, impacted our decision
not to use it in the current study. However, given its
proven importance in AUC comparisons, future studies
with a focus on AUC evaluation and resource availabil-
ity for controlling computational demands may explore
using DeLong’s method. This method could aid in
the refinement of comparison analyses in predictive
modelling research by allowing for a more complete
knowledge of AUC differences between models.
We wanted to analyse model performance across
multiple metrics across time in this study. Although
DeLong’s approach is often used for pairwise
comparisons of the area under the curve (AUC),
we chose not to utilise it due to its high computa-
tional demands [58], particularly on the large datasets
present in this study. We chose a more comprehensive
approach to capture the dynamics of model perform-
ance since this study included a broad examina-
tion across various performance metrics rather than
focusing solely on AUC.

The above important points have been incorporated in
lines 308-309, 580-586, and 659-665.

4. During the training and internal validation phase
with 5-fold cross-validation, additional details are needed
to understand how the final model for each model type
was selected for subsequent temporal validation, including
whether hyperparameter tuning was carried out and whether
there was a final refitting process on the entire training data
set following the cross-validation, etc.

Response: Thank you. Internal validation was performed
using 5-fold cross-validation on the training and validation
data set (2012-2016) to select model parameters. The final
models were determined by retraining the models on the

JMIRx Med Dong et al

https://med.jmirx.org/2024/1/e60384 JMIRx Med 2024 | vol. 5 | e60384 | p. 5
(page number not for citation purposes)

https://med.jmirx.org/2024/1/e60384


combined training and validation data set using the selected
model parameters. Temporal validation was performed using
the final models on the holdout data set (2017-2019) [8].
Further details on model development can be found in the
Model Specification section in Multimedia Appendix 1.

Supplementary Section 2: Model Specification
Neural Network (Neuronetwork) was trained using
1000 epochs, with batch size of 20,000. The 2012-2016
dataset was split 70:30, with 70% used as training
data and 30% as validation data for early stopping
to reduce likelihood of overfitting [1]. The best model
was saved using early stopping to prevent overfitting
[2]. Binary cross-entropy loss was used as the loss
function, with Adam as the optimizer [3], monitoring on
accuracy as the metric. The final model configuration
used for evaluation was the optimal set derived from the
NACSA Bristol cohort from our previous study: input
layer n=18 nodes, hidden layer one n=90 nodes, hidden
layer two n=36 nodes and output layer one node [4].
3-fold Grid Search Cross Validation was applied for
Weighted SVM and Xgboost using 2012-2016 dataset
to determine the optimal hyperparameters to apply
to 2017-2019 test dataset [5]. For Random Forest,
we manually tuned parameters in response to model
discrimination (AUC) evaluated with cross-validation
(estimators n=700, maximum depth n=10, minimum
samples split n=5, minimum samples leaf n=20) [4].
The ES II risk factors were fitted with an LR (retrained
LR) model with Inverse of regularization strength (C)
set to 1 [4].

The above important points have been incorporated in
lines 258-261.

5. The Introduction section should incorporate more
background information on previous studies reporting or
relating to performance variation in prediction models for
cardiac surgery outcomes. In the Discussion section, it is also
important to discuss how this work contributes to existing
evidence in the context of these previous studies. Some
relevant studies, based on my preliminary search, include
Benedetto et al [9], Zeng et al [10], Mori et al [11], and
potentially more.

Response: Thank you. We have now included a Related
Works section to enhance the Introduction section.

Related Work
In our previous study, we found that combining the
metrics covering all four aspects of discrimination,
calibration, clinical usefulness and overall accuracy
into a single CEM improved the efficiency of cognitive
decision-making (according to Miller’s Law [16] for
selecting the optimal ensemble models [13,17]. This
approach is useful for providing a consensus metric
that enables models to be ranked in scenarios where
for example one model could outperform another using
one metric, but underperform under a different metric.
Furthermore, we demonstrated that such a consensus

metric could be combined with drill-down analysis to
further interpret the models using individual metrics
[13]. While AUC does evaluate diagnostic or predictive
performance of the model, it does not directly reflect
patient benefit. This is why we had included a suit of
other metrics including the Decision Curve net benefit
index that were found to be clinically pertinent from our
prior study [18].
In our previous work [19], we had studied the
calibration changes across two different time intervals
using the calibration belt (overall external calibration)
and Hosmer–Lemeshow goodness of fit χ2 statistics
(calibration drift) approach within a single United
Kingdom based hospital. A recent study extended our
work to a Chinese national registry, Sino (Chinese)
System for Coronary artery bypass grafting (CABG)
Operative Risk Evaluation II (SinoSCORE II), using an
set of ML models included lightGBM, CatBoost and a
combination of variable selection approaches includ-
ing Optuna for stepwise regression (SWR), Boruta-
SHAP (BS), and feature importance (FI) ranking [20].
Another study in the United States (U.S) had also
investigated the calibration performance difference
between Xgboost and Logistic Regression models built
for the CABG patient cohort through pre-operative,
intra-operative and combined variable sets from the
Society of Thoracic Surgeons (STS) Adult Cardiac
Surgery Database (ACSD) [21].

We have discussed these in the Discussion section where
appropriate.

Discussion
Our previous study [19], while not involving the
assessment of xgboost had also shown that calibra-
tion drift of Logistic Regression was less than that
of Random Forest, while EuroSCORE I, Naïve Bayes
and Neural Network performed poorly in terms of
calibration. A recent study extending upon our work
had shown that temporal and spatial calibration drift
(comparison across regions and hosptials) to be severe
across a range of ML models using a national Chinese
registry [20]. In accordance with our view, the study
highlighted that “future efforts may need to shift more
towards enhancing model calibration robustness or
recalibration for greater practical value” and that
inclusion of intra-operative variables may be impor-
tant to enhancing model performance. This Society
of Thoracic Surgeons (STS) Adult Cardiac Surgery
Database (ACSD) study [21], had shown that the
inclusion of intra-operative variables improved both the
discrimination and calibration performance of Xgboost
and Logistic Regression models in CABG patients from
the U.S.

The above important points have been incorporated in
lines 195-217 and 560-572.

6. Although the authors observed numerical declines in
CEM and other metrics, the magnitude of these declines
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appears to be relatively small, particularly when consider-
ing metrics such as AUC. As a result, it is essential to
discuss how to interpret this magnitude of drift in the context
of clinical practice. In other words, what is the clinical
significance of this variation in performance, and how does
it justify the necessity of actively monitoring model drift in
terms of cost-effectiveness? Please discuss.

Response: Thank you for this interesting suggestion. We
have now expanded the Discussion section to further discuss
this suggested topic.

Discussion
Although the reported decreases in measures such as
CEM and AUC may appear small, such changes are
likely to impact the potential usage of ML models
within clinical scenarios. If such models are to be
used clinically for making decisions about the patient,
even small changes in these metrics (which have been
previously discussed[18] to be important in the cardiac
surgery ML performance) can have an influence on
risk assessment and patient outcomes, necessitating
constant model drift monitoring. Prior research has
shown that improving model calibration robustness
or recalibration is necessary for practical value and
that the “the significant decline in performance of
previously established models in this study calls for
continuing model updates”[20]. It is envisaged that
collaboration between physicians and ML scientists is
critical. Before mandating model updates, it is critical
to establish metric-specific thresholds for acceptable
reductions. A consensus approach, extensive experience
in this area or a meta-analysis of current literature
may be required for this collaborative decision-making
process.

The above important points have been incorporated in
lines 612-624.

7. The conclusion should only focus on the primary
findings outlined in the aims of the Introduction section.
Avoid incorporating less central findings and speculative
elements. Additionally, it may not be fair to suggest replac-
ing the EuroSCORE II model simply based on the inferior
performance in this study, since it was already established
and this study essentially conducted an external validation
for it, whereas the other machine learning models were
developed using these data sets.

Response: Thank you for this valuable suggestion. We
have now revised the Conclusion section to make this more
coherent and focused.

Conclusion
This study found that performance drift of ML and
ES II over time could be explained through dataset
drift patterns in cardiac surgery risk prediction. It
was also found that variable importance drift could
help to explain performance drift and support detec-
tion of dataset drift in the assessed models. The strong
evidence of all models showing a decrease in at least 3

of the 5 individual metrics within CEM demonstrates
the potential need to update the models over time
but future work are required to determine suitable
thresholds for mandating an update. Future work will
be required to determine the interplay between Xgboost
and RF, which have demonstrated less drift over
time, and whether combining these through additional
ensemble modelling could take advantage of their
respective performance advantages.

The above important points have been incorporated in
lines 671-690 and 534-535.

Minor Comments
1. More detailed definitions and explanations should be
provided for each performance metric.

Response: Thank you for this helpful comment. This has
now been included as part of the Related Work section.

Related Work
In our previous study, we found that combining the
metrics covering all four aspects of discrimination,
calibration, clinical usefulness and overall accuracy
into a single CEM improved the efficiency of cognitive
decision-making (according to Miller’s Law[16]) for
selecting the optimal ensemble models [13,17]. This
approach is useful for providing a consensus metric
that enables models to be ranked in scenarios where
for example one model could outperform another using
one metric, but underperform under a different metric.
Furthermore, we demonstrated that such a consensus
metric could be combined with drill-down analysis to
further interpret the models using individual metrics
[13]. While AUC does evaluate diagnostic or predictive
performance of the model, it does not directly reflect
patient benefit. This is why we had included a suit of
other metrics including the Decision Curve net benefit
index that were found to be clinically pertinent from our
prior study [18].

The above important points have been incorporated in
lines 195-205.

2. In the Methods section, please provide a clear outline
of the inclusion and exclusion criteria. Additionally, consider
including a flowchart that illustrates the data set development
process, outlining how these criteria were applied.

Response: Thank you. We have now updated the Methods
section and Multimedia Appendix 1.

Methods
227,087 adults patients undergoing cardiac surgery
between January 1, 2012 and March 31, 2019
were included. Congenital, transplant and mechani-
cal support device insertion cases were excluded. A
patient flow consort diagram is shown in Supplemental
materials, Figure S1.
Supplementary Materials
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Consort Diagram
Figure S1.1 Consort diagram showing flow of
participants through the study.

The above important points have been incorporated in
lines 224-227 and Figure S1 in Multimedia Appendix 1.

3. I had difficulty understanding what “outliers” and
“distribution” meant in the Results section for the baseline
nontemporal performance of each model. I thought that each
metric of each model should be just a numerical value and a
95% CI from bootstrapping.

Response: Thank you for this helpful suggestion. We have
now improved clarity of the Results section (see underlined
parts below).

Baseline non-temporal performance
No extreme outliers were found when testing for
ANOVA assumptions. The CEM scores from 1000
bootstraps were normally distributed for all three
models except Xgboost,

The above important points have been incorporated in
lines 368-369.

4. The title of the manuscript should be an objective
reflection of the overall study design and aim, rather than
drawing conclusions from the findings.

Response: Thank you for the valuable suggestion. We
have now amended the title to “An assessment of perform-
ance drift in Machine Learning models for cardiac surgery
risk prediction.”

The above important points have been incorporated in
lines 2-4.

5. I did not find the supplementary materials in the review
system. I am not sure whether this issue is on my end or not.

Response: Thank you. We have now reuploaded the
latest changes in the supplementary materials to the journal
upload page. We have also included updated figures within
the supplementary materials with our responses wherever
possible.

Thank you for your expert and invaluable review; this
has been really thought provoking and had made significant
contributions to improving the journal’s quality of output. We
hope our changes will be met with your approval.

Round 2 Review
Reviewer CL

General Comments
I appreciate the opportunity to rereview this manuscript. The
authors’ efforts in revising their manuscript in response to
previous concerns are commendable. This manuscript has
been improved and is now in principle publishable. It could

potentially be accepted upon reasonable response to a few
follow-up minor comments, outlined below.

Specific Comments
1. About my previous major comment 1, the authors
meticulously elaborated on (1) the reasons for performance
drift and (2) its importance, which are both valid points.
However, the current Introduction (lines 121-179) is quite
lengthy. I recommend consolidating these 2 parts into a single
paragraph, listing each point without the need for detailed
individual explanations. Additionally, my query about the
exact meaning of “the relationship between and within
variable importance drift, performance drift, and actual
dataset drift” remains unaddressed. Even though it was
removed from the Introduction, it still appears in the abstract.
I suggest the authors explicitly explain it to readers and
incorporate it into the manuscript when first mentioned.

Response: Please note that all line numbers refer to the
marked version of the manuscript with tracked changes,
uploaded as a supplementary file.

Thank you for this helpful suggestion. We have now
improved the Introduction section by making it more concise
and explaining the meaning of “the relationship between and
within variable importance drift, performance drift, and actual
dataset drift” as per your recommendations:

Introduction
In machine learning (ML), performance drift refers
to the gradual loss in model performance caused by
changes that call into question the model’s training
assumptions. Key causes of performance drift include
dataset drift, which refers to changes in the distribu-
tion of data between training and evaluation sets;
variable importance drift, which involves changes in
the significance of model variables; and calibration
drift, which is characterised by decreased reliability in
estimated probabilities. These factors can interact, as
seen in a study of non-cardiac surgery [54]. Under-
standing the complex relationship between variable
importance drift, performance drift, and dataset drift
is important. This relationship explains how changes
in the importance of specific variables, combined with
changes in the actual data distribution, collectively
influence the model’s overall accuracy and reliability
as it performs over time. The wider implications are
also significant, influencing decision-making, insight
accuracy, generalisation [13], ethical considerations,
and regulatory compliance across industries.

The above important points have been incorporated in
lines 121-192.

2. Regarding the justification for the CEM, the authors
have added more explanation and supporting literature for
its use. However, it would strengthen their case if they could
provide examples from external studies or use cases where
a similar practice (averaging different aspects of metrics for
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model performance evaluation) was used, beyond their own
studies.

Response: Thank you for your comment. We have now
strengthened the case by providing examples of additional
external studies where a similar practice have been applied:

Methods
The consensus approach for combining different
metrics has previously been applied in a study on
Covid-19 prediction [33]. In addition, this approach
is similar to the simple additive weighting (SAW)
multi-criteria evaluation approach for making a
decision through the ranking of a set of competing
criterions [34].

The above important points have been incorporated in
lines 294-298.

3. About the statistical tests for comparing AUC with the
DeLong method, I believe that performing the DeLong test for
AUC comparison is not overly computationally demanding,
even on a relatively large data set. I recommend the authors
explore commonly used R packages (eg, “pROC”) that
facilitate AUC calculation and comparison with the DeLong
method. The DeLong comparison typically requires paired
variables of the label and 2 models’ predicted probabilities,
and the 95% CI and P value are automatically calculated
by bootstrapping these paired samples, which is relatively
efficient.

Response: Thank you for further explaining. We have
know included the DeLong test in the baseline nontemporal
comparison as you advised.

Baseline non-temporal performance (methods)
The Delong’s test was applied for determining whether
there was a statistically significant difference across the
AUCs of ROC curves for the top two best performing
models.
Baseline non-temporal performance (results)
AUC performance was best for Xgboost (0.834) and RF
(0.835), with the Delong’s test showing no statistically
significant difference (P>.05).
Table below has been updated to include the Delong’s
test:
Table 1a. Summary of statistical methods used for
assessing drift.
Objective Statistical Tests General Statistical Situations
Rationale for Choosing Test Assumptions Checked
Non-temporal comparison of models Repeated
measures One-Way ANOVA Comparison of multiple
groups for differences Used for comparing means
across multiple models Outliers (ANOVA assumptions),
Normality (Shapiro-Wilk test)
Paired t-tests (Bonferroni Corrected) Comparison
of paired observations between models To compare
specific model pairs simultaneously
Dunnett’s Correction Control for multiple comparisons
Controls Type I error rate in comparing multiple
treatments to a control group in one-way ANOVA

Delong’s test Comparison of the AUC of two correla-
ted ROC curves To compare AUC of two models/tests
during sensitivity testing

The above important points have been incorporated in
lines 316-318 and 398-399 and Table 1.

4. Regarding model tuning and specification of the best
models (PS: I still cannot find the supplements, only a revised
clean manuscript; I am not sure if this was due to issues from
my end), I am curious why different tuning practices were
used for different models, especially grid search for XGBoost
and SVM but manual tuning for random forest.

Response: Thank you for your helpful comment. For
random forest, the final model configuration used for
evaluation was the optimal set derived from our previous
study on the NACSA Bristol cohort [9]. For the new models
SVM and XGBoost, for which optimal parameters have
not been investigated in our previous study [9], we applied
3-fold grid search cross-validation to determine the optimal
hyperparameters.

The above important points have been incorporated by
updating the Model Specification section in Multimedia
Appendix 1.

5. In response to the query about the clinical significance
of the relatively small scale of performance drift, the authors
referred to one of their previous studies briefly discussing
this matter. However, it would be much clearer if the authors
could more explicitly elaborate in this study and, if possible,
provide additional analysis to support this argument.

Response: Thank you for this invaluable comment.

Net benefit projection (methods)
To further understand the clinical significance of the
performance drift over time, the fitted linear regression
model intercepts and slopes was used to extrapolate the
net benefit up to January 2030 for Xgboost and Neural
Network models.
Net benefit projection (results)
To further understand the clinical significance of the
performance drift over time, Figure 5 illustrates the
expected net benefit decrease for a NN model and an
XGBoost model. The blue line depicts the actual net
benefit drop depending on the NN’s slope, transitioning
to the projected red line using after March 2019. The
green line represents the actual net benefit drop for
the XGBoost model up to March 2019, changing to
the projected purple line after March 2019. A clinical
significant decrease (0.9035 to 0.8808) is shown for NN
but not for Xgboost (0.9051 to 0.8962).
Figure 5. The actual and projected net benefit drift for
NN and XGBoost models over time.
Discussion
However, through projecting the net benefit into the
year 2030 based on the fitted linear regression, the
decreases in the net benefit for Xgboost over time
was shown to be clinically insignificant. On the
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contrary, the Neural network model showed a clinically
significant drop in net benefit.

The above important points have been incorporated in
lines 372-375, 548-557, and 641-644.

Thank you again for your expert and invaluable review;
this has been really thought provoking and has made
significant contributions to improving the journal’s quality of
output. Thanks.

We hope this now addresses all your queries. Thank you.
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