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Abstract
Background: Noncommunicable diseases continue to pose a substantial health challenge globally, with hyperglycemia
serving as a prominent indicator of diabetes.
Objective: This study employed machine learning algorithms to predict hyperglycemia in a cohort of individuals who were
asymptomatic and unraveled crucial predictors contributing to early risk identification.
Methods: This dataset included an extensive array of clinical and demographic data obtained from 195 adults who were
asymptomatic and residing in a suburban community in Nigeria. The study conducted a thorough comparison of multiple
machine learning algorithms to ascertain the most effective model for predicting hyperglycemia. Moreover, we explored
feature importance to pinpoint correlates of high blood glucose levels within the cohort.
Results: Elevated blood pressure and prehypertension were recorded in 8 (4.1%) and 18 (9.2%) of the 195 participants,
respectively. A total of 41 (21%) participants presented with hypertension, of which 34 (83%) were female. However, sex
adjustment showed that 34 of 118 (28.8%) female participants and 7 of 77 (9%) male participants had hypertension. Age-based
analysis revealed an inverse relationship between normotension and age (r=−0.88; P=.02). Conversely, hypertension increased
with age (r=0.53; P=.27), peaking between 50‐59 years. Of the 195 participants, isolated systolic hypertension and isolated
diastolic hypertension were recorded in 16 (8.2%) and 15 (7.7%) participants, respectively, with female participants recording
a higher prevalence of isolated systolic hypertension (11/16, 69%) and male participants reporting a higher prevalence of
isolated diastolic hypertension (11/15, 73%). Following class rebalancing, the random forest classifier gave the best perform-
ance (accuracy score 0.89; receiver operating characteristic–area under the curve score 0.89; F1-score 0.89) of the 26 model
classifiers. The feature selection model identified uric acid and age as important variables associated with hyperglycemia.
Conclusions: The random forest classifier identified significant clinical correlates associated with hyperglycemia, offering
valuable insights for the early detection of diabetes and informing the design and deployment of therapeutic interventions.
However, to achieve a more comprehensive understanding of each feature’s contribution to blood glucose levels, modeling
additional relevant clinical features in larger datasets could be beneficial.
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Introduction
Noncommunicable diseases (NCDs) have become a substan-
tial public health concern in Africa [1]. Conditions like
coronary artery disease, stroke, hypertension, and diabetes,
which were once primarily associated with high-income
nations or affluence, have now become pervasive health
challenges in low- and middle-income countries and across
diverse socioeconomic strata [1]. The complex nature of
NCDs underscores the need for a comprehensive approach
to risk assessment, intervention, and prevention.

Suburban communities serve as a distinctive microcosm
within an evolving landscape of diseases [2,3]. These
communities, characterized by the coexistence of traditional
and modern lifestyles, grapple with risk factors that neces-
sitate thorough examination [4]. The epidemiological shift
from communicable to NCDs, coupled with limited health
care resources, especially in suburban parts of low- and
middle-income countries [5,6], stresses the importance of
this research. In addition, recent advancements in genetic
research have elucidated the underlying mechanisms of
various complex NCDs. The identification of individuals
at an elevated genetic risk for NCDs has the potential to
revolutionize the approach of health care stakeholders to
disease management. However, the effective implementation
of genetic screening for NCD risk analysis relies on a robust
understanding of the baseline contributors prevalent in the
target population [7,8]. This study provided a comprehen-
sive description of the prevalence and intricate interplay of
risk factors associated with NCDs, highlighting hypertension,
obesity, and diabetes. The specific focus was on undiagnosed
individuals who were asymptomatic to elucidate the complex
relationships of these health indicators within this population.

Machine learning encompasses a diverse set of algorithms
designed to extract patterns from data and establish associ-
ations between these patterns and discrete sample classes
within the data. Machine learning proves to be a valuable
tool for identifying potential disease risk factors, elucidating
etiology, and interpreting complex pathological processes in
the context of NCDs [9-16]. In this study, multiple machine
learning algorithms were developed to predict elevated blood
glucose levels in a cohort of undiagnosed individuals who
were asymptomatic. The primary objective was to systemati-
cally compare the accuracies of supervised machine learning
classifiers to identify the most effective model for predicting
hyperglycemia. Leveraging the predictors in the dataset, we
meticulously constructed and evaluated these models for the
identification of significant features associated with potential
diabetes in the population.

Methods
Ethical Considerations
Ethical approval was obtained from the institutional review
board of the Nigerian Institute of Medical Research
(IRB/21/074). Data collected from participants was anony-
mized, and personal identifiers were removed. Furthermore,
participants’ data were stored in our database with access
restricted to authorized research personnel only. The study
participants received refreshments as compensation for their
time and contribution. This gesture was intended to acknowl-
edge their involvement and ensure their comfort during the
study sessions while maintaining fairness and transparency in
the compensation process.
Participant Recruitment and Screening
This study was carried out as part of a parallel community-
based genetic screening of apparently healthy adults living
in Ijede Community, Lagos, Nigeria. Following informed
consent, participants were recruited, and 10 ml of venous
blood samples were collected per participant. Demographic
information, BMI, knowledge, attitude, and practices were
obtained from the participants. The study clinician also
obtained the participants’ personal and family medical history
as well as their smoking status. Exclusion criteria included
pregnancy at the time of recruitment, placement on antihyper-
tensive or antidiabetic chemotherapy or radiotherapy, current
or previous hematologic or tumoral diseases, and known
chronic diseases. Participants underwent electrocardiogram
(ECG) screening (SonoHealth, United States) to provide clues
on heart defects or other heart-related problems. Hemoglobin
electrophoresis was conducted to detect possible hemoglobin-
opathy in the participants [17]. In addition, random blood
glucose (RBG) concentrations (Guilin Royalze, China) and
blood pressure (BP) values (Iston Mediq, United States) were
determined to evaluate the presence or absence of prediabe-
tes, diabetes, prehypertension, or hypertension onset in the
participants. Participants with screening tests outside normal
ranges were advised to visit their health care specialists for
further checks. Normal BP was described as systolic BP
(SBP) <120 mmHg and diastolic BP (DBP) <80 mmHg.
Elevated BP was defined as SBP 120‐129 mmHg and
DBP <80 mmHg, stage 1 hypertension (prehypertension) as
SBP ≥130‐139 mmHg and DBP 80‐89 mmHg, and stage
2 hypertension as SBP ≥140 and DBP ≥90 mmHg [18].
Isolated systolic hypertension (ISH) was described as SBP
>140 mmHg and DBP <90 mmHg [19]. Isolated diastolic
hypertension (IDH) is an important subtype of hypertension
defined as SBP <130 mmHg and DBP ≥80 mmHg [20].
Prediabetes was defined as an RBG concentration of 140‐199
mg/dl or fasting blood glucose of 100‐125 mg/dl. Diabetes
mellitus was defined as an RBG level ≥200 mg/dl or fasting
blood glucose level ≥126 mg/dl [21]. However, as all the
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participants reported that they were not fasting, RBG values
were documented.
Correlation Analysis
Data cleaning, exploratory analysis, and feature engineering
were performed in Google Colab (with Python 3.10; Python
Software Foundation). The target variable was specified as
“blood glucose,” where 1 indicated an RBG concentration
≥140 mg/dl and 0 indicated an RBG concentration <140
mg/dl. Independent variables included age (integer), sex
(integer), BMI (float), smoking status (integer), ECG (float),
hemoglobin (float), cholesterol (float), uric acid (float), SBP
(integer), DBP (integer), normal BP (integer), elevated BP
(integer), prehypertension (integer), hypertension (integer),
ISH (integer), IDH (integer), prediabetes (integer), diabetes
(integer), normal glucose (integer), abnormal ECG values
(integer), and normal ECG values (integer). The dataset
was checked and visualized for missingness using seaborn
heatmap (Figure S1 in Multimedia Appendix 1). Missing
values were replaced with column mean (for continuous
variables) or mode (for categorical variables). Duplicate
rows and outliers were dropped before encoding categorical
variables and creating dummy variables. Subsequently, we
created a heatmap for the correlation of independent variables
with the target column in descending order. The cleaned
dataset was then scaled for subsequent training of machine
learning models. A P value ≤.05 was considered statistically
significant.
Machine Learning Algorithms and
Evaluation
The study adopted 26 supervised classification algorithms
and compared their accuracies to identify the best-performing
model for predicting high blood glucose, which was defined

in this study as an RBG concentration ≥140 mg/dl (Figure 1).
Specifically, after the installation and importation of Sci-Kit
Learn libraries [22], we carried out data cleaning, explora-
tion, and scaling to improve the efficiency of our model
(Multimedia Appendix 1). Imbalances in the distribution of
hyperglycemia cases and noncases within the dataset might
affect the model’s performance. Addressing this imbalance
and validating the model on balanced datasets could enhance
its robustness. To address the class imbalance in the outcome
variable (blood glucose level), we adopted the synthetic
minority oversampling technique (SMOTE). SMOTE tackled
the underrepresentation of the minority class and rebalanced
the class distribution for equitability [23]. After resampling,
we split the data into training and test sets at a ratio of 80:20,
respectively, using the train_test_split function in Sci-Kit
Learn. We went further to select and rank the performances of
the machine learning algorithms using LazyPredict to obtain
the weighted average of the F1-scores and accuracy scores
as well as the receiver operating characteristic–area under the
curve (ROC-AUC) score. For hyperparameter optimization,
we adopted GridSearchCV [24]. The grid search technique
constructs many versions of the model with all possible
combinations of hyperparameters to return the best one [25].
Subsequently, we determined feature importance to provide
insight into which features are most associated with eleva-
ted blood glucose levels using the best-performing model.
To operationalize the best-performing model generated at
scale, the training file was stored as a serialized pickle file.
Subsequently, we used the Fast Application Programming
Interface in Google Colab [26] to make an inference call
from the model using the predict() function and generated our
application programming interface. Pyngrok was used to open
secure tunnels from public URLs to the local host.

Figure 1. Pipeline for model development. SMOTE: synthetic minority oversampling technique.

Results
Cohort Description
A total of 200 participants ages 18‐83 years were enrolled
in the cohort. However, after hemoglobin electrophoresis

screening, 5 participants were found to possess the hemoglo-
bins SS and SC genotypes and were excluded from further
analysis. A total of 118 female and 77 male participants were
included (Figure 2 and Figure S2 in Multimedia Appendix 1).
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Figure 2. Participant recruitment and screening.

Correlation Analysis
Participants were categorized into six age groups: 18‐29,
30‐39, 30‐49, 50‐59, 60‐69, and ≥70 years. Of the 195
participants, normal BP, elevated BP, and prehypertension
were recorded in 63 (32.3%), 8 (4.1%), and 18 (9.2%)
participants, respectively. A total of 41 (21%) participants
presented with hypertension, of which 34 (83%) were female
(Figure S3 in Multimedia Appendix 1). Age-based analysis
revealed an inverse relationship between normotension and
age (r=−0.88; P=.02). Consistently, hypertension increased
with age (r=0.53; P=.27), peaking between 50‐59 years
(Figure 3). Of the 195 participants, ISH and IDH were
recorded in 16 (8.2%) and 15 (7.7%) participants, respec-
tively, with female participants recording a higher preva-
lence of ISH (11/16, 69%) and male participants reporting
a higher prevalence of IDH (11/15, 73%; Figure S4 in
Multimedia Appendix 1). There was a positive correlation
between ISH and participants’ age (r=0.86; P=.03), whereas
IDH was inversely correlated with age (r=−0.71; P=.11;
Figure 4). We went further to examine the heart rates of

the participants and observed an age-dependent increase in
the percentage of participants with abnormal ECG values
peaking between ages 60‐69 years (Figure 5). However, no
significant difference was observed in the ECG values of
male and female participants ( X2=0.13; P=.72; Figure S5 in
Multimedia Appendix 1). An RBG value between 140‐199
mg/dl (prediabetes) was detected in 22 (11.3%) and diabe-
tes was suspected in 5 (2.6%) of the 195 participants. A
total of 163 (85.8%) participants had normal blood glucose.
Though not statistically significant, an inverse relationship
(r=−0.81; P=.06) was observed between age and normal
glucose level, and the frequency of prediabetes (r=0.63;
P=.19) and suspected diabetes (r=0.58; P=.24) seemed to
increase with age (Figure S6 in Multimedia Appendix 1).
Meanwhile, a correlation matrix between each independent
variable and the target column (blood glucose level) showed
that age had the highest ranking even though the correlation
coefficient was weak (Figure 6 and Figure S7 in Multimedia
Appendix 1).
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Figure 3. Age-based analysis of BP. Percentage of participants with normal BP reduced with increases in age (r=−0.88; P=.02). Prevalence of HTN
increased with age (r=0.53; P=.27), peaking between 50-59 years. BP: blood pressure; HTN: hypertension.

Figure 4. Age-based analysis of ISH and IDH. ISH increased with participants’ age (r=0.86; P=.03), unlike IDH (r=−0.71; P=.11). IDH: isolated
diastolic hypertension; ISH: isolated systolic hypertension.
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Figure 5. Age-based ECG analysis. Age-dependent increase in the percentage of participants with abnormal ECG values peaking between ages 60-69
years. ECG: electrocardiogram.

Figure 6. Correlation matrix of independent variables with the outcome variable. BP: blood pressure; ECG: electrocardiogram; HTN: hypertension.

Machine Learning Algorithms and
Evaluation
Following data cleaning, transformation (Figure S8 in
Multimedia Appendix 1), and observation of a class
imbalance in the target variable (Figure S9 in Multimedia
Appendix 1), whereby the raw dataset demonstrated that 163
(83.6%) of the 195 participants had normal blood glucose
(0), while 32 (16.4%) had a high blood glucose level (1),
rebalancing was established with SMOTE to yield an even
representation of both categories of blood glucose level
(counter: 0: 163; 1: 163). When the performance of each
classifier was tested, the reports showed that the random
forest classifier (Figures 7 and 8) gave the best accuracy
(accuracy score 0.89; ROC-AUC score 0.89; F1-score 0.89),

followed by extra trees (accuracy score 0.88; ROC-AUC
score 0.88; F1-score=0.88) and extreme gradient boosting
classifiers (accuracy score 0.86; ROC-AUC score 0.86;
F1-score 0.86; Figure 7B and Table S2 in Multimedia
Appendix 1).

To determine the importance of each variable (feature) to
the outcome (blood glucose level), we carried out a ran-
dom forest feature analysis. The importance of a feature is
calculated based on how much the tree nodes that use that
feature reduce impurity across all trees in the forest. The
key findings showed that uric acid and age were the most
important features associated with elevated blood glucose
(Table 1), followed by SBP and BMI.

JMIRx Med Oyebola et al

https://med.jmirx.org/2024/1/e56993 JMIRx Med 2024 | vol. 5 | e56993 | p. 6
(page number not for citation purposes)

https://med.jmirx.org/2024/1/e56993


Figure 7. Accuracy scores of machine learning classifiers (A) before class rebalancing with the synthetic minority oversampling technique and (B)
after class rebalancing with the synthetic minority oversampling technique. CV: cross-validation; LGBM: light gradient boosting machine; NB: naive
Bayes; SGD: stochastic gradient descent; SVC: support vector classification; XGB: extreme gradient boosting.

Figure 8. Random forest confusion matrix showing a visual representation of the true vs predicted labels. True positive: the values that were positive
and were predicted positive, that is, 31 cases of hyperglycemia were predicted correctly by the model. False positive: the values that were negative
but falsely predicted as positive. In this case, only 3 cases were false positives. False negative: the values that were positive but falsely predicted
as negative. In this instance, there were 4 false negatives. True negative: the values that were negative and were predicted negative. Here, 28 cases
were detected. In all, the weighted average of the accuracy score and F1-score were 0.89 and 0.89, respectively. Precision is a metric that quantifies
the accuracy of a classifier by determining the number of correctly identified members of a class divided by all instances where the model predicted
that specific class. In the context of hyperglycemia prediction, precision would be the count of accurate predictions of hyperglycemia divided by the
total instances where the classifier predicted “hyperglycemia,” regardless of correctness. Recall, on the other hand, measures the effectiveness of a
classifier in correctly identifying members of a class by dividing the number of correctly identified instances by the total number of actual members
in that class. In the hyperglycemia scenario, recall would represent the number of actual participants with hyperglycemia correctly identified by
the classifier. The F1-score is a composite metric that combines both precision and recall into a single value. It provides a concise evaluation of a
classifier’s performance. A high F1-score indicates that both precision and recall are high, while a low F1-score suggests that one or both metrics are
low. This metric is particularly useful for quickly assessing whether a classifier effectively identifies members of a class or if it resorts to shortcuts,
such as indiscriminately classifying everything as a member of a larger class. avg: average.
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Table 1. Blood glucose predictors.
Feature Importancea

Age 0.17
Uric acid 0.17
BMI 0.12
Systolic blood pressure 0.11
Diastolic blood pressure 0.10
Cholesterol 0.09
Hemoglobin 0.08
Electrocardiogram values 0.04
Sex 0.04
Normal blood pressure 0.03
Elevated blood pressure 0.02
Hypertension 0.02
Pre-hypertension 0.01
Smoking status 0.01

aThe importance of a feature is calculated based on how much the tree nodes that use that feature reduce impurity across all trees in the forest.

Discussion
Principal Findings
NCDs, such as cancer, cardiovascular diseases, and diabetes,
are progressively becoming the primary causes of mortality
in sub-Saharan Africa [27]. This epidemiological shift is
primarily attributed to limitations in implementing crucial
control measures, such as prevention and early detection
[1]. This research focused on exploring key clinical indi-
ces of NCDs in individuals who are asymptomatic. The
application of machine learning in disease prediction is
now well established for its immense potential in analyz-
ing complex datasets and uncovering patterns that may
elude human detection [28-31]. This investigation employed
various machine learning algorithms to predict hyperglyce-
mia to enable early identification of individuals at risk of
developing diabetes. The study identified suspected hyperten-
sion in 21% of study participants, underscoring the urgency
of addressing hypertension as a major health challenge in the
country. Furthermore, a notable increase in the prevalence
of hypertension with advancing age was observed. However,
the investigation into hypertension subtypes revealed a dual
phenomenon: a pronounced increase in systolic hypertension
with age and a concomitant reduction in diastolic hyperten-
sion.

Several factors may contribute to the observed age-rela-
ted increase in systolic hypertension. Physiological changes,
alterations in vascular reactivity, and lifestyle factors could
play decisive roles in driving the upward trajectory of
SBP with advancing age [32,33]. In contrast, the age-rela-
ted reduction in diastolic hypertension may be associated
with changes in arterial compliance, heart rate dynamics, or
other physiological adaptations over the aging process [34].
Recognizing these dual dynamics holds significant clinical
implications, necessitating tailored screening protocols and

interventions to address the unique challenges posed by
hypertension in different age groups.

Moreover, a sex disparity was observed, with systolic
hypertension being more prevalent in female participants
and diastolic hypertension being more common in male
participants. This sex difference may be linked to heart rate
variability or hormonal influences, particularly fluctuations in
estrogen levels in female individuals. However, understand-
ing how blood vessels respond to changes in pressure and
the potential impact on SBP would be crucial in deciphering
these sex disparities [35-37]. Therefore, tailoring screening
protocols and interventions to address the unique challenges
posed by hypertension in different age groups and sexes is
essential to mitigate the overall burden of this condition.

ECG is a pivotal tool for assessing cardiac health, and
its interpretation can provide valuable insights into cardio-
vascular conditions. Our investigation revealed a remarkable
age-dependent pattern in abnormal ECG values, reaching
a peak at 70 years. Advancing age often coincides with
a myriad of physiological changes, including alterations in
cardiac structure and function [38-40]. A comprehensive
exploration of these factors is essential for delineating the
intricate relationship between aging and abnormal ECG
findings.

The global burden of diabetes is well-documented [41-43],
but our investigation into supposedly healthy individuals has
unearthed a concerning revelation. Despite outward appear-
ances of health, there existed a relatively high prevalence
of suspected prediabetes and diabetes in the cohort. This
underscores the importance of probing beyond outward health
markers to understand the latent metabolic landscape [44-47].
This prompts a reevaluation of health screening protocols
to incorporate metabolic parameters in apparently healthy
populations. Early detection and intervention strategies
should be tailored to encompass metabolic assessments,

JMIRx Med Oyebola et al

https://med.jmirx.org/2024/1/e56993 JMIRx Med 2024 | vol. 5 | e56993 | p. 8
(page number not for citation purposes)

https://med.jmirx.org/2024/1/e56993


providing an opportunity for targeted preventive measures
and lifestyle modifications.

In the realm of predictive modeling, selecting the most
effective machine learning algorithm is paramount. Our
study, aimed at evaluating various algorithms, revealed
insightful findings regarding their predictive performances.
Upon meticulous evaluation, random forest emerged as the
top-performing algorithm, consistently delivering the highest
accuracy among the tested models. The success of the
random forest algorithm can be attributed to its ensemble
learning nature [48,49], which harnesses the collective power
of multiple decision trees. This enables robustness against
overfitting, enhanced generalization, and effective handling
of complex datasets with diverse features. The observed
superiority of random forest in our study has profound
implications for future applications, suggesting its applicabil-
ity across diverse datasets and underscoring its potential as a
reliable choice for achieving high predictive accuracy.

To investigate the intricate determinants of hyperglycemia,
our study employed a robust feature importance analysis, with
compelling results showcasing uric acid and age as the most
influential predictors. Uric acid’s prominence as a predictor
of hyperglycemia adds a unique dimension to our understand-
ing of metabolic health. While traditionally associated with
conditions like gout, our findings suggest a potential link
between hyperuricemia and hyperglycemia, urging further
exploration into the underlying physiological mechanisms.
The identification of age as a key predictor aligns with
existing knowledge regarding the age-associated risk of
hyperglycemia [49-51]. Our findings reinforce the signifi-
cance of age as a robust indicator, reflecting the cumulative
impact of aging processes on metabolic health and glucose
regulation. The recognition of uric acid and age as pivo-
tal predictors holds significant clinical implications. Health
care practitioners can leverage these findings to enhance
risk assessment strategies for hyperglycemia. Incorporating
uric acid measurements and age considerations into routine
screenings may facilitate early identification of individuals
at heightened risk, enabling proactive interventions. While
our study sheds light on the importance of uric acid and
age, further research is warranted to unravel the intricate
relationships and mechanisms underlying these associations.
Longitudinal studies exploring the dynamic interplay between
uric acid, age, and hyperglycemia can deepen our understand-
ing and inform targeted interventions.
Limitations and Future Direction
While our study provides valuable insights into predict-
ing hyperglycemia using machine learning in undiagnosed
individuals, it is essential to acknowledge certain limitations
that may impact interpretation. First, the size of our cohort
may limit the generalizability of the results. A larger and
more diverse sample could enhance the external validity
of the predictive model. Furthermore, the study did not
account for potential variations in clinical practice, including
differences in diagnostic criteria. For instance, the study did

not take into consideration orthostatic hypotension, a decrease
in SBP ≥20 mmHg or a DBP decrease of ≥10 mmHg within
3 minutes of standing, especially in older individuals [19].
Although seats were provided to participants, we could not
accurately document how long participants had been standing
before attending the screening. Besides, phenomena such as
postprandial hypotension (a reduction in BP after meals, a
common cause of syncope and falls in older individuals who
are healthy and have hypertension), circadian BP variabil-
ity, and white-coat (nonsustained) hypertension, especially in
older adults, were not factored into the analyses [52-54]. As
such, incorporating standardized criteria across diverse health
care settings could enhance our model’s clinical applicability.

Moreover, the study did not dissect the influence of
ethnicity and genetics on hyperglycemia [55,56]. Future
research could explore these aspects to provide a more
comprehensive understanding of predictive factors. Since
the dataset primarily comprises information from a specific
geographic location or demographic group, extrapolating the
findings to other populations requires caution as regional
variations in lifestyle, genetics, and health care practices
may influence the performance of the predictive model.
In addition, the cross-sectional nature of our study limits
our ability to establish causation or assess changes over
time. Therefore, longitudinal studies would be beneficial to
understand the dynamic nature of hyperglycemia predictors.
The model’s performance was evaluated on the same dataset
used for training, raising the potential for overfitting. External
validation on an independent dataset would be crucial
to assess its generalizability and reliability in real-world
scenarios. Lastly, the importance of a feature in a random
forest model does not necessarily mean a causal relationship
and other models might find different results if additional
features are introduced. Future approaches are expected to
accommodate more features and larger datasets. This will
account for the deployment of built and containerized models
as publicly accessible web applications. Nevertheless, this
study has expounded the potential of machine learning for
early disease detection, risk assessment strategies, proactive
interventions, and targeted therapeutic design.
Conclusions
This study has made a substantial contribution to the
expanding domain of predictive modeling and offers
promising implications for enhancing early detection and
personalized risk assessment, particularly in the context of
hyperglycemia and its potential association with diabetes.
The research has not only brought to light the prevalence of
undiagnosed hypertension and isolated systolic and diastolic
hypertension but also highlighted factors associated with
elevated blood glucose within the population. The findings
of this study emphasize the significance of regular screen-
ing, effective intervention strategies, and targeted therapeutic
designs. Collectively, the results contribute to the overarching
effort to enhance health care outcomes through proactive and
tailored approaches.
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BP: blood pressure
DBP: diastolic blood pressure
ECG: electrocardiogram
IDH: isolated diastolic hypertension
ISH: isolated systolic hypertension
NCD: noncommunicable disease
RBG: random blood glucose
ROC-AUC: receiver operating characteristic–area under the curve
SBP: systolic blood pressure
SMOTE: synthetic minority oversampling technique
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