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Abstract
Background: Type 1 diabetes (T1D) is a chronic condition in which the body produces too little insulin, a hormone needed
to regulate blood glucose. Various factors such as carbohydrates, exercise, and hormones impact insulin needs. Beyond
carbohydrates, most factors remain underexplored. Regulating insulin is a complex control task that can go wrong and cause
blood glucose levels to fall outside a range that protects people from adverse health effects. Automated insulin delivery (AID)
has been shown to maintain blood glucose levels within a narrow range. Beyond clinical outcomes, data from AID systems are
little researched; such systems can provide data-driven insights to improve the understanding and treatment of T1D.
Objective: The aim is to discover unexpected temporal patterns in insulin needs and to analyze how frequently these occur.
Unexpected patterns are situations where increased insulin does not result in lower glucose or where increased carbohydrate
intake does not raise glucose levels. Such situations suggest that factors beyond carbohydrates influence insulin needs.
Methods: We analyzed time series data on insulin on board (IOB), carbohydrates on board (COB), and interstitial glucose
(IG) from 29 participants using the OpenAPS AID system. Pattern frequency in hours, days (grouped via k-means cluster-
ing), weekdays, and months were determined by comparing the 95% CI of the mean differences between temporal units.
Associations between pattern frequency and demographic variables were examined. Significant differences in IOB, COB, and
IG across temporal dichotomies were assessed using Mann-Whitney U tests. Effect sizes and Euclidean distances between
variables were calculated. Finally, the forecastability of IOB, COB, and IG for the clustered days was analyzed using Granger
causality.
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Results: On average, 13.5 participants had unexpected patterns and 9.9 had expected patterns. The patterns were more
pronounced (d>0.94) when comparing hours of the day and similar days than when comparing days of the week or months
(0.3<d<0.52). Notably, 11 participants exhibited a higher IG overnight despite concurrently higher IOB (10/11). Additionally,
17 participants experienced an increase in IG after COB decreased after meals. The significant associations between pattern
frequency and demographics were moderate (0.31≤τ≤0.48). Between clusters, mean IOB (P=.03, d=0.7) and IG (P=.02,
d=0.67) differed significantly, but COB did not (P=.08, d=0.55). IOB and IG were most similar (mean distance 5.08, SD
2.25), while COB and IG were most different (mean distance 11.43, SD 2.6), suggesting that AID attempts to counteract both
observed and unobserved factors that impact IG.
Conclusions: Our study shows that unexpected patterns in the insulin needs of people with T1D are as common as expected
patterns. Unexpected patterns cannot be explained by carbohydrates alone. Our results highlight the complexity of glucose
regulation and emphasize the need for personalized treatment approaches. Further research is needed to identify and quantify
the factors that cause these patterns.
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Introduction
Type 1 diabetes (T1D) is a chronic condition where the
body produces little or no insulin, a hormone required to
regulate blood glucose levels. The principal treatment for
T1D is exogenous insulin [1]. Insulin must be skillfully
matched to carbohydrate intake to avoid increased blood
glucose levels. Beyond carbohydrates, various factors such as
exercise, stress, illness, and hormones affect insulin needs [1].
These factors have varying lagging and long-lasting effects
and remain underexplored. Hence, insulin dosing remains a
complex control task that can go wrong and result in blood
glucose levels outside the range that protects people with T1D
from adverse health effects [2].

Automated insulin delivery (AID) systems, comprising
an insulin pump, a continuous glucose monitor (CGM),
and a decision algorithm, represent state-of-the-art T1D
treatment [3]. Both commercial [4] and open-source AID
systems [5] are becoming more widely adopted. Machine
learning research for managing T1D [6] focuses on the
safety of AID systems, improving the insulin dosing
decision algorithms, improving blood glucose prediction
[7,8], predicting hypoglycemia [9], and predicting insulin sets
[10] and blood glucose sensor failures [11]. This research
uses diverse machine learning methods including support
vector machines [12], random forests [13], and combined
approaches [14]. In [13], random forests were used to
predict blood glucose levels, leveraging multivariate data
on daily rhythms in glucose metabolism. Data used for
these studies were either from simulated patients [15] or
collected in clinical settings, including around 5‐30 people.
Crucially, research efforts concentrate primarily on predicting
blood glucose levels to inform the more ambitious task of
controlling these levels, which requires knowledge of the
causal structure. Our research uses a data-centric approach
to explore the effects of lesser-known causal interactions in
glucose metabolism.

Both commercial and open-source AID solutions
effectively regulate blood glucose levels [16-22]. Although
AID data are often used to assess clinical outcomes and

system safety, its potential for broader research remains
largely untapped. One study that goes beyond clinical
outcomes has looked at blood glucose outcomes and
variability concerning gender [23]. Other T1D research
focuses on issues such as predicting diabetes onset [24],
predicting changes in behavior, and evaluating the efficacy
of treatment. These researchers stress the importance of
data-driven methods and the shift toward tailored manage-
ment of therapies. Research into AID data offers insights
into glucose regulation in free-living conditions. Further
advantages of AID data include more comprehensive and
accurate datasets than manual treatment records, as well as
more consistent, indefatigable, undistracted, emotionless, and
replicable insulin dosing decision-making by an algorithm
compared to human decision-making. However, open-source
AID data collected in real-life conditions come with the
challenges of irregularities, noneven sampling, and missing
data, which make it hard to handle the data with current time
series techniques. In this study, we use the OpenAPS Data
Commons dataset, which is an extensive dataset collected
in real-life conditions from 183 people with T1D who use
an open-source AID system [25]. From the AID device’s
extensive system logs, we are focusing on the insulin on
board (IOB), carbohydrates on board (COB), and interstitial
glucose (IG) information. The insulin and carbohydrates “on
board” values are calculations of the AID to model how much
insulin and carbohydrates are active at any point in time
[26,27].

The goal of insulin dosing is euglycemia, the state when
blood glucose levels are within the normal range. In clinical
practice, carbohydrate intake is considered the most impor-
tant factor in determining insulin needs [2]. Insulin needs
are estimated by monitoring glucose levels after carbohydrate
intake or fasting. If glucose levels remain in the normal range,
the insulin needs for that time are met; if glucose levels
rise, the insulin dose is too small or late; and if glucose
levels drop, the insulin dose is too high or early [2,28-30].
This experimentation has been formalized—for example, in
the educational program called Dose Adjustment for Normal
Eating—and been shown to improve outcomes but with
mixed long-term success [31]. We know that euglycemia
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is the result of a complex interplay of metabolic processes
that lower and increase blood glucose levels and change
the effect that hormones like insulin have [32-34]. Unob-
served confounding factors influencing insulin needs include
other macronutrients, exercise, stress, and menstrual cycle.
Fat and protein affect glucose levels by impacting carbohy-
drate absorption and being broken down into glucose [35].
Exercise triggers a complex neuroendocrine response that
is impaired in people with T1D and necessitates insulin
adjustment [36]. Stress alters glucose metabolism and insulin
production [37,38], while the fluctuation in female hormones
continuously changes insulin requirements [39]. These factors
lead to unexpected situations, for example, when eating
carbohydrates does not lead to increased glucose levels, and
glucose levels increasing in the absence of carbohydrate
intake. Currently, these factors are not continuously measured
and not systematically considered in insulin dosing [1,2,30].

This study aims to identify and quantify expected and
unexpected temporal patterns in insulin needs using AID data.
AID data provides a novel opportunity to research the impact
of unobserved confounding factors on blood glucose due to
the automatic (albeit with a lag) insulin dose adjustment
by the algorithm attempting to keep IG within a specified
range. Our hypothesis is that unexpected temporal patterns
in insulin needs are common in AID data. Our findings aim
to encourage more research into less-explored factors that
change insulin needs and to use this information to improve
insulin dosing decision-making. We further hope to motivate
more research into time series pattern-finding methods that
can deal with this complex type of real-life system data.

Methods
Overview
The methods and results are organized as follows: we
describe the data and participants; explain how similar
days were grouped; define the “expected” and “unexpected”
patterns; analyze how common the patterns are for various
time resolutions; investigate the relationship between pattern
frequency and demographic factors; explore how IOB, COB,
and IG compare across various temporal dichotomies; and
finally study whether past values of IOB, COB, and IG can
predict each other.
Data and Population
We analyzed the OpenAPS Data Commons dataset, which
consists of open-source AID data collected in free-living

conditions from people with T1D and their self-reported
demographic data [25]. OpenAPS was selected (n=116),
being the most frequently used system, excluding the
AndroidAPS and Loop systems. From the OpenAPS device
status files, the enacted time stamp and IOB, COB, and IG
(called BG in the dataset) values were read and processed into
regularly, hourly sampled and equal length daily segments
for each person. The time stamps were made uniform by
translating the different formats into UTC. Time stamps
without time zone information were imputed with time zone
information from previous time stamps and missing time
stamp entries were dropped. The irregular time series were
resampled into regular time series with an hourly frequency
aggregating values into a mean value. To avoid resampling
over periods without sufficient data points, days with less
than 1 reading per hour were dropped. Note that this excludes
days when the system was interrupted for more than an hour,
such as when the CGM sensor was changed. To ensure we
gained a representative picture of patterns for each partici-
pant, we excluded people with less than 30 days of data [40].
The code to preprocess the OpenAPS Data Commons data
into regularly, hourly sampled time series has been made
available [41]. The population whose patterns were analyzed
in detail is group 1 (n=29). Demographic information was
available for 26 of the individuals. Figure 1 shows how the
people were selected. Group 1 consists of the participants
who have more than 29 days of data; group 2 (n=28) is the
subgroup of them who have at least 3 days in each cluster;
group 3 (n=28) is the subgroup with data from all 7 days
of the week; group 4 (n=8) is the subgroup with data from
at least 4 different months that include December, January,
February, June, July, and August; and group 5 (n=16) is the
subgroup with data from more than 1 year.

To describe the resulting data, we calculated the mean,
SD, range, and amount of data for IOB, COB, and IG, as
well as the demographic data for group 1. For individuals
with multiple demographic reports, we used the report closest
to the most current AID record. For IOB, COB, and IG,
we investigated the distribution properties including kurtosis,
skew, number of modes, and whether IOB, COB, and IG
follow a normal distribution. We used Python for all analyses.
To calculate the distribution properties, we used Pandas [42]
and NumPy [43], while to test for normal distribution, we
used SciPy [44].
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Figure 1. Flowchart of the selection process for the 29 people whose data were used in this study. Groups 2‐5 are subgroups of the participants from
group 1 with sufficient data for the different time resolutions.

Clustering Similar Days
To group similar days, we used time series k-means cluster-
ing. To prevent bias from different measurement scales, we
applied min-max scaling of IOB, COB, and IG values to
a range of 0 to 10 for each participant. Min-max scaling
does not change the distribution, but it ensures that IOB
(measured in U) with a value range in the low tens, COB
(measured in grams) with a value range in the tens, and IG
(measured in mg/dL) with a value range in the low hundreds
all have the same importance for the distance calculation
[45,46]. K-means clustering requires specifying the number
of clusters k. We determined k using silhouette analysis
[47,48]. Silhouette analysis calculates the distance between
all days and compares the average distance of days in the
same cluster to those in other clusters. The resulting average
silhouette score is a number between −1 and 1. Higher
silhouette scores indicate that the days in each cluster are
similar and that the clusters are well separated. Negative
scores convey that the days in a cluster are closer to days in
other clusters. Both silhouette analysis and k-means cluster-
ing require an appropriate similarity measure to compare the
time series. We evaluated Euclidean, dynamic time warping
(DTW) [49], and SoftDTW [50] distances. The Euclidean
distance is calculated by adding the difference between each
hour of the day and dividing the total by 24. DTW and
SoftDTW attempt to align similar elements between the time
series by allowing the hours compared to warp. Despite DTW
resulting in higher average silhouette scores, we used the
Euclidean distance, as it allows us to compare the same
hours of the day between the clusters. The optimal number
of clusters for most participants was 2, which we used for
everyone. We presented the time series clustering used in this
study in more detail at the NeurIPS 2022 Time Series for
Health Workshop [51]. For clustering, we used TSLearn [52];
for scaling, we used scikit-learn [53].

Pattern Definition
We defined the “expected” and “unexpected” patterns based
on the logic of the standard trivariate model for IOB, COB,
and IG typically used for insulin dosing, as shown in Table 1.
The patterns are determined by sequentially setting the level
of each of the 3 variables higher than usual and then assigning
the expected or unexpected level of the variable considered
causal to the higher levels observed in the first variable.
This results in 3 “expected” patterns of insulin need for
which the trivariate model works (E1-E3) and 3 “unexpected”
patterns of insulin need in which unobserved confounders
override the logic of the standard model (U1-U3). Expected
pattern E1 describes situations when IOB is higher than
usual, therefore COB is expected to be higher than usual,
and IG is similar (IOB matches COB well), lower (too much
IOB), or higher (too little IOB). In the unexpected form
of this pattern U1, when IOB is higher, COB unexpectedly
is similar or lower, and IG unexpectedly is similar (IOB
matches confounders well) or higher (too little IOB to cover
confounders). Expected pattern E2 describes situations when
IG is higher than usual, therefore COB is expected to be
higher than usual, and IOB is similar (too little IOB to cover
more COB), lower (IOB mistakenly reduced), or higher (IOB
not sufficiently increased). In the unexpected form of this
pattern U2, when IG is higher, COB unexpectedly is similar
or lower, and IOB unexpectedly is similar (too little IOB
for confounders) or higher (IOB not sufficiently increased to
cover confounders). Finally, expected pattern E3 describes
the same situations as pattern E1 but the causal variable for
higher COB this time is IOB. Therefore, in the unexpected
form of this pattern U3, when COB is higher than usual,
IOB unexpectedly is similar or lower, and IG unexpectedly is
similar (COB matches confounders) or lower (too little COB
to cover confounders).
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Table 1. Overview of expected (E1-E3) and unexpected (U1-U3) patterns of insulin needs in type 1 diabetes using the standard trivariate insulin on
board (IOB), carbohydrates on board (COB), and interstitial glucose (IG) insulin dosing model. In each of the 3 expected and 3 unexpected patterns,
we observed a significantly higher mean level than usual in 1 of the 3 variates for a specific time unit.a The mean observed level of the variate
thought to be causing this change is marked with b and the mean observed level for the third variate with c. If the level of the causal variate and the
third variate follow the model, it is an expected pattern; if not, it is an unexpected pattern.
Pattern description Observed levels for variates

IOB COB IG
Expected patterns of insulin needs (trivariate model works)

E1 Higher IOB is needed for higher COB Highera Higherb Anyc

E2 Higher IG is due to higher COB Anyc Higherb Highera

E3 Higher COB needs higher IOB Higherb Highera Anyc

Unexpected patterns of insulin needs (confounding factors involved)
U1 Higher IOB is not due to higher COB Highera Similar, lowerb Similar, higherc

U2 Higher IG is not due to higher COB Similar, higherc Similar, lowerb Highera

U3 Higher COB does not require higher IOB Similar, lowerb Highera Similar, lowerc
aVariate for which a significantly higher mean level than usual is observed for a specific time unit.
bExpected/unexpected mean level for the variate thought to be causing the difference in variate.
cExpected/unexpected mean level observed for the leftover third variate.

Frequency of Expected and Unexpected
Patterns
To determine how often patterns occur, we counted the
frequency of all patterns defined in Table 1 for each
participant by calculating the 95% CI of the differences in
means between the different time units. We counted the
patterns for the following time resolutions: comparing the
hours of the day, the same hours of the day between the 2
clusters, the days of the week, and the months of the year.
For each comparison, the means μ1 and μ2 were deemed
similar when 0 was part of the CI, lower when CI<0 (μ1<μ2),
and higher when CI>0 (μ1>μ2). We applied a Bonferroni
correction to control the family-wise error rate at 5% for
each time resolution. Therefore, for hours of the day, α was
adjusted to .0002; for the clusters, α was adjusted to .0021;
for days of the week, α was adjusted to .0024; and for months
of the year, α was adjusted to .0008. Participants in group 1
were used for hours of the day, group 2 for clusters, group
3 for days of the week, and group 1 for months of the year
(see Figure 1 for a description of the groups). We calculated
the empirical effect size d = (μ1 – μ2) / sp (Equation 1) using
the pooled standard deviation sp = square root(((n1 – 1) s12

+ (n2 – 1) s22) / (n1 + n2 – 2)) (Equation 2) [54]. Note that
n1 and n2 are the numbers of observations, and s1 and s2 are
the standard deviations of the time units compared. Further,
we calculated the number of observations n that would be
required for a power of 80% using n = 2((zα/2 + 0.84) /
d)2 (Equation 3) [54], where zα/2 is the critical value of the
Bonferroni adjusted α for each time resolution.
Relationships Between Pattern
Frequency and Factors
Kendall τ [55] variant b (to allow for ties [56]) was used
to assess the relationships between pattern frequency and
the self-reported demographics for the different participants,
except for sex, for which we only had 2 females and 7
males. We selected Kendall τ as it can relate continuous and
ordinal variables and deals well with outliers [57]. Further,

unlike Pearson r, it can handle skewed variables [57] and
assess nonlinear relationships. Compared to Spearman ρ,
Kendall τ provides more protection against type I errors
in severe conditions, requires smaller sample sizes, and is
easy to interpret [57]. We calculated both the strength of
the relationship τ and the statistical significance P. The null
hypothesis stated that the 2 variables are not related (τ=0)
using the 2-tailed alternative hypothesis. Depending on the
presence of ties, P is calculated using either the exact or
asymptotic method [56]. We calculated Kendall τ using SciPy
[44], which offers an automatic option for the P calcula-
tion method. For relationships where P<.05, we concluded
that the relationship was statistically significant. Further, we
calculated the number of participants that would be needed
for a power of 80% as n = 4+0.437((zα/2 + zβ) / (z(τb1) –
z(τbo)))2 (Equation 4) [58], where zα/2=1.96, zβ=0.84, z(τb1)
is the Fisher z transformed value of τ, and z(τb0) is the Fisher
z transformed value for the null hypothesis τ=0, which is 0.
Comparison of IOB, COB, and IG
We compared IOB, COB, and IG across the following 4
temporal dichotomies: the clusters of similar days; workdays
(Monday-Friday) versus weekends (Saturday and Sunday);
winter (December-February) versus summer months (June-
August); and first versus second year of AID data. This
comparison was performed using the nonparametric 2-tailed
Mann-Whitney U test [59], where we rejected the null
hypothesis that μ1=μ2 when P<.05. The empirical effect
size d was calculated using Equation 1 but with the simple
pooled standard deviation sp = square root((s12 + s22) / 2).
The number of participants required for a power of 80% for
each temporal category was established using the empirical
effect sizes and α=.05. We then grouped the participants
with significant opposite effects by comparing the 95% CIs
of mean differences. For this comparison, we applied a
Bonferroni correction to control the family-wise error rate
at 5%. Therefore, to compare the 2 clusters and the week-
days and weekends, α was adjusted to .0018; to compare
winter and summer months, α was .0063; and to compare
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the first and the second year, α was .0031. The effect size d
was calculated using Equation 1. Finally, to further compare
the means between the 2 clusters, we visually inspected the
clusters’ 95% CIs of mean IOB, COB, and IG, and calculated
the Euclidean distance between these means. We used group
2 to compare clusters, group 3 to compare workdays and
weekends, group 4 to compare winter and summer months,
and group 5 to compare the first and second year of AID
data. For the 3 people who had days from 3 different years
in group 5, we used the 2 years with more data. Given that
k-means clustering randomly assigned the cluster labels for
each participant, we consistently labeled the clusters, calling
the cluster with the lower mean IOB “cluster 1.” For the
Mann-Whitney U tests, we used SciPy [44]; for the power
calculation, we used G*Power software (version 3.1.9.6;
Erdfelder, Buchner, and Lang [60]).

Forecastability of IOB, COB, and IG
We explored whether IOB, COB, and IG can forecast each
other for each cluster assessing Granger causality. Granger
causality between 2 time series determines if 1 time series
carries information about the other time series to forecast it
at a certain lag (delay) [61,62]. We investigated a lag of 1
hour, 2 hours, and 3 hours. We concluded that the lag that
achieves the lowest P value for the Granger causality works
the best. The time series investigated need to be stationary.
It is common practice to run an augmented Dickey-Fuller
(ADF) unit root test to test for the stationarity of a time series
[63,64]. If the mean of a cluster was not stationary, we took
the derivative until we passed the ADF test for stationarity
with P<.05 for all variates. Note that in Granger causality, if
variate 1 can be used to forecast variate 2, the opposite is not
necessarily true. Therefore, we evaluated Granger causality
for all pairwise permutations of IOB, COB, and IG. Statmo-
dels [65] was used to calculate Granger causality and for
the ADF test. This method runs 4 different statistical tests,
and we required all of them to have P<.05 to infer Granger
causality. We calculated the derivative using NumPy [43].

Ethical Considerations
The Faculty of Engineering Research Ethics Committee of
the University of Bristol reviewed and approved this study.
The ethics approval code is 11270. This ethics application
included and extended the OpenAPS Data Commons research
guidelines for working with the OpenAPS Data Commons
dataset as set out by the community, which can be found
on their website [66]. The application also included the
permission granted to research this data by the OpenAPS
Data Commons administrator. The OpenAPS Data Commons
data and the demographic data used in this study have been
voluntarily donated via the Open Humans platform by people
who use an open-source AID or their parents. The Open
Humans platform guides the participants through the donation
process and automatically deidentifies them using a numeri-
cal ID that must not be published. Participants can recall
their data at any time, which forces us to delete their data
from our copy of the data. The uploading of data is ongo-
ing; we worked with a version of the dataset from April
2022. We have further improved the participants’ privacy by
excluding their free-form notes sometimes present in the data
and using UTC timestamps without geolocation information.
The participants have not received compensation for donating
their data.

Results
Data and Population
A total of 29 participants had at least 30 days of data with
at least 1 reading each hour. Table 2 shows the number of
participants (n), the mean (SD), and the range of values for
all the characteristics. In addition, 21 of the 29 participants
reported having T1D themselves, 5 are parents of a child with
T1D, and we did not have this information for the remaining
3 participants. For 19 participants, sex was unknown; there
were 7 reported to be male and 3 reported to be female.

Table 2. Characteristics from automated insulin delivery device and accompanying demographic data for group 1 (n=29).
Characteristic Participants, n Mean (SD) Range
Automated insulin delivery device dataa

Hours (count) 29 1923.3 (1807.9) 720‐9024
Days (count) 29 80.14 (75.3) 30‐376
Months (count) 29 6.38 (3.7) 3‐19
Years (count) 29 1.62 (0.6) 1‐3
Most recent year recorded (year) 29 2018.66 (1.2) 2017‐2021
Insulin on board (U) 29 1.66 (0.9) 0.41‐3.67
Carbohydrates on board (grams) 29 9.84 (5.3) 1.73‐24.08
Interstitial glucose (mg/dL) 29 133.92 (16.5) 98.15‐162.45

Demographics datab

Age (years) 25 36.4 (16.6) 8‐66
Duration with type 1 diabetes (years) 26 21.7 (14.7) 1‐56
Last lab-reported glycated hemoglobin A1c (mmol/mol) 25 46 (7.9) 34.4‐60.66
Average carbohydrates (grams/day) 25 156.7 (72.2) 20‐330
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Characteristic Participants, n Mean (SD) Range

Average insulin (U/day) 23 41.1 (20.5) 14‐89
Average basal insulin (U/day) 24 22.6 (15.4) 8.6‐69.8
Pumping since (year) 25 2006.9 (8.8) 1980‐2018
Continuous glucose monitoring since (year) 25 2013.5 (3.5) 2006‐2018
Automated insulin delivery since (year) 25 2017.1 (0.9) 2016‐2020
Demographics reported (year) 26 2017.8 (1) 2017‐2020

aAutomatically recorded.
bSelf-reported.

From Table 2, we can see that group 1 covers a good range
of people regarding age and duration of T1D. The participants
had excellent glucose control, with an average lab-reported
glycated hemoglobin A1c (HbA1c) of 46 mmol/mol (SD
7.9). The National Institute for Health and Care Excellence
recommends HbA1c≤48 mmol/mol, which in the United
Kingdom, 9.8% of people with T1D achieve, and 19.5%
achieve <53 mmol/mol [67,68]. All the people lived in
Western countries (19 in North America, 6 in Europe, 1 in
Oceania, and 3 unknown). Further, the participants were early
adopters of diabetes technology. On average, they started
pumping in 2006, using a CGM in 2013, and using an AID
system in 2017. In 2009, the uptake of insulin pumps in T1D
in the USA was 43.2%, while the uptake of CGM was 10.5%;
in 2019, insulin pumps were used by 54.4% (this percentage
is lower for the United Kingdom) of people with T1D and
and 40.9% used CGM [69]. Open-source AID systems were
the forerunners of commercially available AID systems, with
over 100 users in 2016 [70]. Commercial systems became
available around 2017 [4].

On average, the participants reported eating 156.7 grams
(SD 72.2) of carbohydrates per day. A total of 10 people
reported eating a standard amount of carbohydrates (>130
grams/day), 17 people ate a low-carbohydrate diet (50‐130
grams/day), and 2 people ate a very low carbohydrate diet of
<50 grams/day [71]. Only 1 person reported eating more than
266 grams/day. The total amount of daily insulin varied from
person to person (mean 41.1 U, SD 20.5).

IOB, COB, and IG did not follow a normal distribution
for any participant. We rejected the null hypothesis of the
normal test with P<.001. The distribution characteristics
varied considerably between the individuals. The kurtosis
results (range −0.2 to 26.18) indicated that these distribu-
tions are more peaked than a normal distribution, with one
exception where a single participant showed a flatter IG
distribution. The skew results indicated that lower values
are more frequent than higher values (range 0.06 to 4.9).
Regarding the most frequent value (mode), only COB had
a mode of 1 for everyone. IOB and IG were multimodal,
IOB (range 1‐22) more so than IG (range 1‐3). A total of 21
people had 1 IG mode, 6 had 2, and 2 had 3. IOB had more
variations: only 12 people had 1 mode, and 4 had 3 modes.
One person had 22 modes, another had 21; for the others,
the number of modes was ≤10 (see Table S1 in Multimedia
Appendix 1 for more details).

Clustering Similar Days
The Euclidean distance achieved the lowest average
silhouette scores (mean silhouette score 0.17, SD 0.09) and
SoftDTW the highest (mean 0.32, SD 0.016; see Table S2
in Multimedia Appendix 1). Creating 2 clusters achieved the
highest silhouette score for 21 of 29 participants in group 1.
For the other 8 participants, the best cluster number k varied
between 3 and 16, with Euclidean silhouette scores ranging
from 0.07 to 0.19 (see Table S3 in Multimedia Appendix 1).
Frequency of Expected and Unexpected
Patterns
Our results found that unexpected patterns were as frequent
as their expected counterparts. Table 3 shows the number of
participants with 1 or more occurrences of a specific pattern
for a given time resolution. The number of participants with
patterns varied for the different time resolutions. Averag-
ing across patterns, 21 participants had expected patterns
(E1-E3) for hours of the day, while 23 had unexpected
patterns (U1-U3). For clusters, 8.67 had expected patterns
and 11.7 had unexpected patterns; for the days of the week,
2.67 had expected patterns and 8 had unexpected patterns.
For months of the year, 7.33 had expected patterns and
11.3 had unexpected patterns. Averaging across the different
time resolutions and patterns, 9.9 participants had expected
patterns and 13.5 participants had unexpected patterns. Note
that the participants with patterns in one of the time resolu-
tions are not necessarily the same individuals in another.
Not all participants had patterns. When summing up all
expected and unexpected patterns across all time resolutions,
3 participants had no expected pattern in any of the time
resolutions. All participants had at least one unexpected
pattern in 1 or more of the time resolutions. However, for
hours of the day, 2 participants of 29 had no patterns; for
clusters, 6 of 28; for days of the week, 15 of 29; and
for months of the year, 10 of 29. For 1‐2 participants, the
unexpected patterns continued to appear in the hours of the
day and clusters in their most pronounced form for which
the means of all 3 variates were forced to be significantly
different in contradictory ways. The frequency of patterns
varied greatly across the participants. The mean occurrence
of the expected patterns was 76.1, SD 67.24, range 0‐265.
For unexpected patterns, the mean occurrence was 47.14, SD
31.35, range 6‐127. The difference in occurrence between
expected and unexpected patterns overall was not statisti-
cally significant (P=.08; 1-tailed Mann-Whitney U test with
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the alternative hypothesis that expected patterns are more
frequent than unexpected patterns). Comparing the sum of
the frequency of the expected forms of a pattern with their
unexpected forms showed that expected pattern E1 was
more frequent than unexpected pattern U1 (P=.046) and U3
(P<.001) but expected pattern E2 was less frequent than its
unexpected form U2 (P=.007), all 1-tailed Mann-Whitney U
tests. Unexpected pattern U2 was the most common among
participants; it describes situations when IG is higher but
COB is not (see Table 1 for a description of the patterns).
The second most common pattern was U1, which describes
situations where IOB is significantly higher but COB is
not. The least common pattern was expected pattern E2,

which describes situations when COB and IG are significantly
higher. The latter indicates that the AID did a good job
of reducing the impact of COB on IG. In general, patterns
were most common in hours of the day, second most when
comparing the same hours of the day between the 2 clus-
ters, third most when comparing months of the year, and
least common in days of the week. This suggests that these
patterns occur in a circadian and seasonal rhythm, rather than
a weekday rhythm. However, these results are also influenced
by the amount of data available for each time resolution. Ui’,
Ui’’, and Ui’’’ are stricter variations of the original pattern
(i=1,2,3).

Table 3. Number of participants with at least 1 occurrence of the expected or unexpected pattern, comparing hours of the day, the same hour of the
day between clusters, days of the week, and months of the year.
Pattern Observed levels for variates Number of people with the pattern n Mean n (SD)

Insulin on board Carbohydrates
on board

Interstitial
glucose

Hours of
the day

Clusters Days of
the week

Months of
the year

Expected patterns of insulin needs
Mean of E1-E3 —a — — 21 8.7 2.7 7.3 9.9 (7.82)
E1 Higherb Higherc Anyd 24 9 3 8 11 (9.06)
E2 Anyd Higherc Higherb 15 16 11 14 7.8 (5.44)
E3 Higherc Higherb Anyd 24 9 3 8 11 (9.06)

Unexpected patterns of insulin needs
Mean of U1-U3 — — — 23 11.7 8 11.3 13.5 (6.55)
U1 Higherb Similar, lowerc Similar, higherd 26 13 9 8 14 (8.29)
U2 Similar, higherd Similar, lower Higherb 23 16 11 14 16 (5.1)
U3 Similar, lowerc Higherb Similar, lowerd 20 6 4 12 10.5 (7.19)

Unexpected patterns, most pronounced form
U1’ Higherb Lowerc Higherd 1 1 0 0 0.5 (0.58)
U2’ Higherd Lowerc Higherb 1 1 0 0 0.5 (0.58)
U3’ Lowerc Higherb Lowerd 2 0 0 1 0.5 (0.58)

Unexpected patterns, not allowing similar in third variated

U1’’ Higherb Similar, lowerc Higherd 19 12 5 4 10 (6.98)
U2’’ Higherd Similar, lowerc Higherb 19 12 5 4 10 (6.98)
U3’’ Similar, lowerc Higherb Lowerd 8 1 0 3 3 (3.56)

Unexpected patterns, not allowing similar in “causal” variatec

U1’’’ Higherb Lowerc Similar, higherd 1 1 0 1 0.75 (0.5)
U2’’’ Similar, higherd Lowerc Higherb 9 3 3 0 3.75 (3.76)
U3’’’ Lowerc Higherb Similar, lowerd 2 0 0 1 0.75 (0.96)

aNot applicable.
bVariate for which a significantly higher mean level than usual is observed for a specific time unit.
cExpected/unexpected mean level for the variate thought to be causing the difference in variate.
dExpected/unexpected mean level observed for the third variate.

The mean effect sizes ranged from 0.97 to 1.27 for hours of
the day and clusters. Smaller mean effect sizes were observed
for days of the week and months of the year (0.3<d<0.52;
see Table 4 for details). The number of observations varied
for the 3 variates (IOB, COB, and IG) and the different time
resolutions, resulting in a range of n1 (number of observations
for variate 1) and n2 (number of observations for variate 2).
Therefore, Table 4 includes the 25% and 50% quantiles of the
effect sizes and the number of observations for the variable

with fewer observations min(n1, n2). To achieve a power of
80% for effect sizes ≥0.8, a total of 66 observations for hours
of the day would be required, 48 for clusters, 47 for days of
the week, and 56 for months of the year. For an effect size
of 0.5, we would need 169 observations for hours of the day,
123 for clusters, 121 for days of the week, and 142 for months
of the year (see Table S4 in Multimedia Appendix 1 for other
effect sizes). We achieved a power of 80% for the effect sizes
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at 50% quantiles, except for lower IG for clusters and higher
COB for days of the week.

Table 4. Mean, SD, range, 25% and 50% quantiles of empirical effect size d, and 25% and 50% quantiles for minimum number of observations in
group 1 (n1) or 2 (n2) for significantly lower and higher differences in mean insulin on board (IOB), carbohydrates on board (COB), and interstitial
glucose (IG) across the different time resolutions.
Time resolution and
variates

Lower differences Higher differences

Cohen d min (n1,n2) Cohen d min (n1,n2)
Mean (SD) Range 25% 50% 25% 50% Mean (SD) Range 25% 50% 25% 50%

Hours of the day
IOB 1.27a (0.54) 0.30‐3.65 0.90 1.16a 45 67 1.15a (0.51) 0.27‐3.67 0.82 1.07a 45 74
COB 1.12a (0.47) 0.29‐3.47 0.82 1.02a 45 67 1.09a (0.45) 0.27‐2.89 0.80 1.00a 45 74
IG 0.97a (0.41) 0.28‐3.15 0.70 0.90a 47 92 0.94a (0.36) 0.27‐2.21 0.68 0.88a 53 92

Clusters
IOB 1.41a (0.87) 0.49‐5.59 0.93 1.11a 23 27 1.21a (0.66) 0.44‐4.95 0.82 1.03a 31 57
COB 1.53a (1.15) 0.52‐5.51 0.76 1.07a 14 28 1.30a (1.36) 0.35‐8.19 0.75 0.92a 24 35
IG 1.26a (0.42) 0.35‐2.21 1.02 1.19 23 26 1.08a (0.44) 0.37‐3.16 0.82 1.02a 31 42

Days of the week
IOB 0.41a (0.24) 0.18‐1.60 0.25 0.38a 120 204 0.42a (0.15) 0.13‐0.77 0.29 0.41a 102 264
COB 0.30a (0.13) 0.12‐0.54 0.20 0.26a 96 504 0.38 (0.10) 0.23‐0.57 0.36 0.39 24 72
IG 0.41 (0.16) 0.14‐0.88 0.25 0.46a 96 168 0.41 (0.19) 0.14‐0.82 0.27 0.42a 144 216

Months
IOB 0.40a (0.17) 0.16‐0.97 0.28 0.33a 264 384 0.52a (0.29) 0.18‐1.97 0.32 0.44a 312 384
COB 0.42a (0.17) 0.25‐0.92 0.29 0.38a 144 336 0.38a (0.16) 0.18‐0.92 0.27 0.34a 198 384
IG 0.40a (0.16) 0.17‐1.22 0.29 0.35a 288 384 0.43a (0.19) 0.19‐1.22 0.31 0.39a 216 336

aEffect sizes with a power of ≥80%.

Relationships Between Pattern
Frequency and Factors
The demographic factors that were significantly associated
with the frequency of patterns were the last lab-reported
HbA1c (pattern E1 for days of the week, pattern E2 for
months of the year, pattern U1 for hours of the day, pattern
U2 for months of the year), average insulin (pattern U1 for
hours of the day), and pumping since (pattern U2 for clusters
and months of the year); see Table 5 for more information.
These associations were of medium strength ±0.3<τ<±0.5.
Age, duration of T1D, average carbohydrates, average basal
insulin, using CGM since, and using AID since were not
significantly associated with the frequency of any pattern.
Further, mean COB (pattern E1 for hours of the day) and
mean IG (pattern E1 for clusters and days of the week,
pattern E2 for clusters, pattern U1 for hours of the day), as
well as number of hours, days, months, and years were also
significantly associated with the frequency of some patterns.
Mean IOB was not significantly associated with the frequency
of any pattern. The significant associations between pattern
frequency and the amount of data were all positive. This
shows that the pattern frequency increases with more data
(see Table 2 for the mean amount of data). These relation-
ships were not significant for all patterns and time resolutions.
The number of factors with a significant association was
similar for each pattern except for pattern U3, which was not
significantly associated with any factor other than the amount

of data (Table 5). Further, we found a significant relation-
ship for the last lab-reported HbA1c with the frequency of
pattern E1 (E1 increased as HbA1c decreased for days of
the week), the frequency of pattern E2 (E2 increased with
HbA1c for patterns in months of the year), and the same for
pattern U1 in hours of the day and pattern U2 in months
of the year. For self-reported average insulin, the frequency
of pattern U1 increased as insulin decreased. Additionally,
the frequency of pattern U2 increased when people used a
pump less long in clusters and months of the year. Note
that “pump since” was provided as a year, therefore higher
numbers mean that a pump has been used for a shorter period.
The frequency of pattern E1 increased when the AID device
recorded higher mean COB in hours of the day. Finally, the
lower the mean IG was, the higher the frequency of pattern
E1 in clusters and days of the week. The same was noted
for the frequency of pattern E1 in clusters. However, the
frequency of pattern U1 increased when the mean IG in hours
of the day was higher. Overall, pattern U3 had the weakest
association with any factors and pattern U2 had the strongest.
Patterns E1-E3 and U1 had similarly strong associations with
factors. Differences in association strength between the time
resolutions were not pronounced. Days of the week had the
fewest significant associations and months of the year had the
most. The latter, however, was most often associated with the
amount of data. Unsurprisingly, patterns in months were only
found in participants with more than 1 month of data.
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Table 5. Kendall τ associations between expected (E1-E3) and unexpected (U1-U3) patterns and factors with significant associations for each time
resolution. The results for all factors can be found in Table S5 in Multimedia Appendix 1.
Pattern and time resolution Last glycated

hemoglobin A1c
Average
insulin

Pumping
since

Mean
COBa

Mean
IGb

Hours
count

Days
count

Months
count

Years
count

Participants for clusters 24 22 24 28 28 28 28 28 28
Participants for others 25 23 25 29 29 29 29 29 29
E1 (more IOBc is needed for more COB) and E3 (more COB is needed for more IOB)

Hours of the day
τ 0.13 0 0 0.45d,e 0.11 0.38d,e 0.38d,e 0.18 0.11
P value .36 .98 .98 <.001 .42 .005 .005 .20 .50

Clusters
τ −0.21 0.11 0.22 0.15 −0.30e 0.27 0.27 0.11 0.27
P value .22 .51 .20 .31 .04 .07 .07 .50 .13

Days of the week
τ −0.41d,e 0.14 −0.06 −0.02 −0.38d,

e
0.01 0.01 −0.02 0.06

P value .02 .41 .71 .91 .01 .97 .97 .91 .75
Months of the year

τ 0.3 0.05 0.14 −0.03 0.05 0.31e 0.31e 0.48d,e 0.2
P value .06 .77 .39 .85 .74 .04 .04 .002 .26

E2 (higher IG is due to more COB)
Hours of the day

τ 0.15 −0.05 0.14 0.08 0.19 0.35e 0.35e 0.17 0.18
P value .30 .75 .35 .55 .15 .01 .01 .21 .26

Clusters
τ −0.24 0.14 0.20 0.02 −0.35e 0.22 0.22 0.08 0.24
P value .16 .42 .25 .92 .02 .15 .15 .61 .19

Days of the week
τ −0.05 −0.1 0.07 −0.01 −0.02 −0.04 −0.04 0.02 −0.15
P value .76 .55 .66 .95 .88 .78 .78 .90 .38

Months of the year
τ 0.35e −0.05 0.16 −0.05 0.15 0.34e 0.34e 0.38d,e 0.13
P value .03 .77 .33 .73 .32 .03 .03 .02 .46

U1 (more IOB is not due to more COB)
Hours of the day

τ 0.42d,e −0.31e 0.17 −0.13 0.36d,e 0.21 0.21 0.05 0.05
P value .004 .04 .24 .34 .007 .12 .12 .70 .75

Clusters
τ 0.01 0.12 0.28 −0.03 0.02 0.28 0.28 0.25 0.12
P value .94 .46 .08 .86 .90 .05 .05 .10 .48

Days of the week
τ 0.04 0.05 0.18 −0.21 0.01 0.16 0.16 0.36d,e 0.14
P value .80 .75 .27 .17 .96 .28 .28 .02 .42

Months of the year
τ 0.23 −0.16 0.2 −0.09 −0.18 0.24 0.24 0.41d,e 0.46d,e

P value .16 .33 .21 .57 .23 .11 .11 .008 .008
U2 (higher IG is not due to more COB)

Hours of the day
τ 0.15 −0.05 0.14 0.08 0.19 0.35e 0.35e 0.17 0.18
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Pattern and time resolution Last glycated

hemoglobin A1c
Average
insulin

Pumping
since

Mean
COBa

Mean
IGb

Hours
count

Days
count

Months
count

Years
count

P value .30 .75 .35 .55 .15 .01 .01 .21 .26
Clusters

τ 0.14 −0.01 0.33e 0.00 −0.04 0.30e 0.30e 0.40e 0.19
P value .38 .98 .04 .98 .79 .04 .04 .01 .24

Days of the week
τ −0.05 −0.1 0.07 −0.01 −0.02 −0.04 −0.04 0.02 −0.15
P value .76 .55 .66 .95 .88 .78 .78 .90 .38

Months of the year
τ 0.39d,e −0.22 0.35e 0.07 0.15 0.34e 0.34e 0.41d,e −0.02
P value .01 .18 .03 .61 .32 .02 .02 .008 .89

U3 (more COB does not require more IOB)
Hours of the day

τ −0.03 0.21 −0.19 0.21 0.07 0.06 0.06 −0.02 −0.01
P value .85 .17 .19 .12 .61 .66 .66 .89 .93

Clusters
τ −0.16 0.19 −0.01 −0.04 −0.03 0.07 0.07 −0.11 0.08
P value .34 .29 .95 .78 .82 .64 .64 .48 .66

Days of the week
τ −0.06 0.22 −0.19 −0.02 −0.14 −0.2 −0.2 0.15 0.28
P value .74 .20 .26 .87 .36 .20 .20 .36 .12

Months of the year
τ 0.18 −0.07 0.24 −0.07 0.12 0.41d,e 0.41d,e 0.45d,e 0.34d,e

P value .27 .66 .14 .66 .41 .006 .006 .003 .048
aCOB: carbohydrates on board.
bIG: interstitial glucose.
cIOB: insulin on board.
dPower of ≥80%.
eStatistically significant association with P<.05 where we can reject the null hypothesis τ=0.

Our study achieved a power of 80% for associations with
τ≥0.36. For associations with 0.3<τ<0.36, 2‐9 additional
participants would be required. For τ≤0.3, we could not reject
the null hypothesis that τ=0. A τ of 0.3 would require 41
participants, a τ of 0.24 would require 64 participants, a τ
of 0.2 would require 91 participants, and a τ of 0.15 would
require 163 participants.
Comparison of IOB, COB, and IG
The comparison of IOB, COB, and IG across the 4 temporal
dichotomies revealed varying results. For clusters of similar
days, the Mann-Whitney U tests found significant differen-
ces for both IOB (P=.03, d=0.7) and IG (P=.02, d=0.67)
but not COB (P=.08, d=0.55). For weekends versus work-
days, no significant differences for IOB, COB, or IG were
found (IOB P=.43, d=0.05; COB P=.45, d=0.15; IG P=.56,
d=1.28). The same results were found for summer versus
winter months (IOB P=.65, d=0.62; COB P=.19, d=1.09; IG
P=.78, d=1.23) and year 1 versus year 2 (IOB P=.87, d=0.55;
COB P=.53, d=0.48; IG P=.49, d=1.2). For all temporal
dichotomies, the effect size d was larger for IG (0.67-1.28)
than for IOB (0.43‐0.87) or COB (0.15‐0.55). Power analysis
suggested that, for the clusters, we would need 27 (IOB),
30 (COB), and 44 (IG) participants to achieve a power

of 80% (α=.05, 1-tailed). For the weekdays/weekends, we
would need 13,696 (IOB), 1464 (COB), and 24 (IG). For the
winter/summer months, we would need 88 (IOB), 30 (COB),
and 26 (IG). Finally, for year 1/2, we would need 114 (IOB),
144 (COB), and 26 (IG). Therefore, most of these results are
not conclusive for the number of participants included.

Grouping participants from these results by significant
opposite differences highlighted the heterogeneity of the
participants. Comparing the 2 clusters, 15 participants had
lower IOB in cluster 1 (mean d=9.41, SD 5.47, range
3.56‐20.78), and 13 showed no significant differences. In
addition, 13 participants had lower COB in cluster 1 (mean
d=6.66, SD 2.99, range 3.1‐14.08), 3 had higher COB
(mean d=5.07, SD 1.95, range 3.59‐7.27), and 12 showed no
significant differences. A total of 15 participants had lower
IG in cluster 1 (mean d=9.57, SD 5.06, range 3.23‐20.02), 2
had higher IG (mean d=3.75, SD 0.8, range 3.18‐4.31), and
11 showed no significant differences. Of the 15 people with
lower IOB in cluster 1, one person had less IOB (difference in
mean IOB of 0.86 U), while unexpectedly having signifi-
cantly more COB (difference in mean COB of 5.33 grams),
and their IG was also lower (difference in mean IG of 20.86
mg/dL) in cluster 1. Furthermore, 5 people had no significant
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differences in COB between clusters 1 and 2 despite having
significantly lower IOB in 1 of them. Comparing weekdays
and weekends revealed only 1 participant with lower IOB
on weekends (d=3.27) and 1 individual with more IOB
on weekends (d=4.21), while 26 showed no difference.
No significant differences were observed for COB and IG.
Comparing winter and summer months found 1 person with
less IOB in summer (d=5.37), 2 individuals with more IOB
in summer (mean d=7.78, SD 5.74, range 3.72‐11.84), and
5 people with no significant differences. No one had less
COB in summer, 3 people had higher COB in summer (mean
d=3.31, SD 0.28, range 3.12‐3.63), and for 5 people, there
were no significant differences. Finally, no one had lower IG
in summer, 2 participants had higher IG in summer (mean
d=5.28, SD 2.49, range 3.52‐7.34), and for 6 people, there
were no significant differences. Finally, comparing year 1 and
2 of AID use, we found that 5 participants had less IOB in
year 2 (mean d=10.61, SD 5.58, range 4.35‐16.42), 2 people
had more IOB (mean d=14.16, SD 1.54, range 13.07‐15.24),
and for 9, there were no significant differences in IOB. For
COB, 4 people had lower COB in year 2 (mean d=9.76, SD
3.59, range 6.36‐13.54), 3 people had higher COB (mean
d=4.74, SD 1.39, range 3.62‐6.3), and for 9 people, there

were no significant differences. For IG, 5 people had lower
IG in year 2 (mean d=6.51, SD 2.22, range 3.87‐9.05), 4
individuals had higher IG (mean d=5.63, SD 1.31, range
3.71‐6.55), and 7 people had no significant differences.

Comparing the 2 clusters by visualizing the 95% CIs of
mean IOB, COB, and IG for each cluster showed further
interesting patterns, such as differences in the number of
pronounced COB spikes, duration of hours with 0 COB,
and days with flatter lines versus days with spikes. For 18
people, the number of pronounced COB spikes (presumably
the main meals of the day) varied between the clusters (Figure
2B). Only 1 person had 3 COB spikes (presumably 3 big
carbohydrate meals) in both clusters (Figure 2A), while 6
participants had no pronounced COB spikes in either cluster.
Visually, COB varied more between the clusters (for 25 of
the 28 people). This was perhaps due to COB forming distinct
spikes, while IOB varied more frequently but subtly. For 24
people, the longest continuous hours of 0 COB were different
between the 2 clusters. There were 18 people with 5 or more
hours of 0 COB in at least 1 cluster, 8 in both, and 11 in
neither.

Figure 2. Cluster means (solid lines) and 95% CIs (bands) of (A) a participant with 3 meal spikes and an unexpected pattern of raised IG after meals
and (B) another participant with flatter lines in cluster 1 compared to cluster 2. For (A), IOB matches COB more closely, while for (B), IOB matches
IG more closely. COB: carbohydrates on board; IG: interstitial glucose; IOB: insulin on board.

In all, 12 participants had 1 cluster where IOB, COB, and
IG varied more and another cluster with flatter lines. For
11 people, the cluster with flatter lines was more common
(see Figure 2B for an example of this pattern). The most
common unexpected pattern from visual inspections of the
clustering results was a pattern where IG continues to rise
after COB from meals has dropped (17 people; Figure 2A).
Another common visually identifiable, unexpected pattern (11

people of 28) in the clustering results was higher IG during
the night (see Figure 3 for 2 examples). This pattern occurred
especially in the early part of the night (Figure 3A) and
in some people through the night (Figure 3B). In addition,
10 participants with this pattern also had higher IOB but
the AID’s correction was too small to avoid the higher IG.
Finally, 3 people had higher IOB but not higher IG, and
therefore the IOB correction matched their insulin needs well.
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Figure 3. Cluster means (solid lines) and 95% CIs (bands) from 2 different participants (A) and (B) with a different “higher IG during the night
despite significantly higher IOB” pattern. The first 2 rows show the 3 variates in cluster 1 and cluster 2. The bottom 3 rows show cluster 1 and 2 for
each variate. COB: carbohydrates on board; IG: interstitial glucose; IOB: insulin on board.

Looking into the similarities between the mean IOB, COB,
and IG time series in the clusters, IOB and IG were most
similar (mean distance 5.08, SD 2.25) and COB and IG
were most different from each other (mean distance 11.43,
SD 2.6). Interestingly, this changed for the first derivative
of the means. In trend, IOB and COB were most similar
(mean distance 1.48, SD 0.85) and COB and IG were still
the most different from each other (mean distance 3.03, SD
1.51). Figure 2A shows an example of a person where IOB
is visibly more like COB for both clusters, while Figure 2B
shows another person where IOB and IG are visibly more like
each other.
Forecastability of IOB, COB, and IG
Testing which variate could forecast another revealed that at
lag 1, IOB could forecast IG; COB could forecast IG; and IG

could forecast COB most frequently. For 12 participants, this
was true for both of their clusters; for another 12 participants,
this was the case for 1 of their clusters; and for 4 participants,
this was not the case. IG could forecast IOB least frequently
(Table 6). A lag of 1 (meaning the value of variate 1 from
1 hour ago can be used to forecast the value of variate 2
now) gave the best result. For lags 2 and 3, fewer partici-
pants had Granger causalities between the variates. The mean
derivative required to pass the ADF test for stationarity was
1.98 (SD 0.9, range 0‐3), indicating that momentum was most
frequently stationary.

Table 6. The number of people for which one variate can forecast the other variate with a lag of 1 hour in both clusters, 1 cluster, or never, and the
mean (SD) of the number of derivatives of insulin on board (IOB), carbohydrates on board (COB), and interstitial glucose (IG) required to achieve
stationarity.

Number of people Mean (SD) derivative
For both clusters For 1 cluster Never

IOB forecasts COB 10 12 6 2.2 (0.91)
COB forecasts IOB 10 13 5 2.1 (0.9)
IOB forecasts IG 12 12 4 2.0 (0.87)
IG forecasts IOB 9 11 8 2.0 (0.9)
COB forecasts IG 12 12 4 1.97 (0.9)
IG forecasts COB 12 12 4 2.0 (0.94)

Surprisingly, Granger causality changed for most people (21
of the 28) for 1 or more of the 2-pair permutations of IOB,

COB, and IG between the 2 clusters. For 7 people, there was
no difference in Granger causality between the 2 clusters. For
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5 people, all 6 pair permutations of IOB, COB, and IG in
both clusters differed. There were 7 people who had 1 cluster
where IOB, COB, and IG could not be used to forecast each
other at lag 1; for 4 of these, this was also true for lag 2; and
for 3 of them, for lag 3. Figure 4 shows the cluster visuali-
zations for the person for whom IOB, COB, and IG were
best forecastable (Figure 4A) and the person for whom they
were least forecastable (Figure 4B). For the best forecastable

cluster means, IOB, COB, and IG could forecast each other in
clusters 1 and 2 for lag 1 for all pairwise permutations. For
cluster 1, this held for lag 2 and 3. For cluster 2, at lag 2 and
3, IG did not Granger cause IOB nor vice versa. For the least
forecastable cluster means, in cluster 1, all IOB, COB, and IG
permutations were not Granger causal for lag 1, 2, and 3. In
cluster 2 COB, only Granger caused IOB at lag 1. No other
Granger causalities were present for lag 1, 2, and 3.

Figure 4. Cluster means (solid lines) and 95% CIs (bands) of (A) the participant with the top forecastable means and (B) the participant with the least
forecastable means. COB: carbohydrates on board; IG: interstitial glucose; IOB: insulin on board.

Discussion
Principal Results
We discovered interesting temporal patterns in the insulin
needs of people with T1D that cannot be explained by
carbohydrate intake alone. Our study analyzed automatically
recorded IOB, COB, and IG time series data from the
AID systems of 29 participants. Compared to national T1D
statistics, our participants had a lower HbA1c (mean 46
mmol/mol) [67,68] and were early adopters [69] of insulin
pumps (mean started in 2006), CGMs (mean started in 2014),
and AIDs (mean started in 2017). Remarkably, unexpected
patterns, such as when more insulin and higher glucose levels
did not coincide with more carbohydrates, were as frequent
as their expected counterparts. Overall, 9.9 participants (range
2.67‐21) had expected patterns and 13.5 (range 8‐23) had
unexpected patterns (Table 3). Both expected and unexpected
patterns were more frequent, and their effect sizes were larger
(d>0.94), when comparing hours of the day and clusters of
similar days compared to days of the week or months of
the year (0.3<d<0.52). There was a considerable variety of
patterns among the participants. For example, 3 participants
did not have an expected pattern, while all participants had at
least 1 unexpected pattern in at least 1 of the time resolutions.
The number of observations and effect sizes of the patterns
varied among the participants. A power of 80% was achieved
for effect sizes around the median value and higher (Table 4).

Overall, the significant associations between demographic
information and pattern frequency were of medium strength
0.31≤τ≤0.48 (P<.001 to .04; Table 5). Surprisingly, age,
duration of T1D, average daily carbohydrates, basal insulin,
and length of CGM and AID use were not significantly
associated with the frequency of expected or unexpected
patterns (0.01≤τ≤0.31). A higher HbA1c increased the

frequency of the expected pattern E2 (higher IG and higher
COB) and unexpected patterns U1 (higher IOB but similar or
lower COB) and U2 (higher IG but similar or lower COB),
with 0.35≤τ≤0.42; in addition, higher HbA1c decreased the
frequency of expected pattern E1 (higher COB and higher
IOB), with τ=−0.41. Participants who used an insulin pump
for a shorter period had a higher frequency of the unex-
pected pattern U2 (higher IG but same or lower COB),
with 0.33≤τ≤0.35. Lower mean IG was associated with an
increased frequency of the expected patterns E1 (higher IOB
and higher COB) and E2 (higher IG and higher COB), with
0.38≤τ≤0.3. Finally, higher mean IG was associated with
an increase in the unexpected pattern U2 (higher IOB but
same or lower COB), with τ=0.36. Note that these relation-
ships did not hold for all the time resolutions. Similarly to
the frequency of patterns, days of the week had the fewest
significant associations. For the significant associations where
τ≥0.36, the power was ≥80% at α=.05.

Mean IOB and IG significantly differed between the 2
clusters (IOB P=.03, d=0.7; IG P=.02, d=0.67; COB P=.08,
d=0.55). No significant differences were found between
workdays and weekends, winter and summer months, and the
first and second year of AID data. However, visual analysis of
the clustered days showed 2 common examples of unexpected
patterns: a pattern with higher IG overnight (11 of 29 people)
alongside higher IOB (10 of these 11 people; Figure 3) and
a pattern where IG continued to rise after COB from meals
dropped (17 of 29 people; Figure 2). In the first pattern, the
AID system correctly raised IOB to deal with the increased
IG but not sufficiently to avoid IG rising. Given the AID
system had no information about the cause of this rise in IG
(there is no higher COB during these times), it increased IOB
cautiously. Further, we found that, measured in Euclidean
distance between the means of each cluster, IOB and IG
were most similar (mean distance 5.08, SD 2.25), and COB
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and IG were most different from each other (mean distance
11.43, SD 2.6). This demonstrates the AID system utilizing
insulin to control IG by counteracting COB and unobserved
confounders.

IOB, COB, and IG were all able to forecast each other for
some of the participants in some of their clusters (Table 6).
Which variable could forecast another and at what lag varied.
This variation in the ability to predict IG from IOB and
COB provides further evidence that unobserved confounding
factors influence glucose regulation.

From a methods perspective, using a temporal view aided
our discovery of patterns. This is perhaps not surprising given
the long-lasting and often delayed effects of different factors
on IG [35,72]. Although time series k-means clustering of
the days uncovered many interesting patterns between IOB,
COB, and IG, the clustering quality achieved was unsatisfac-
tory (mean average silhouette score for Euclidean distance
was 0.17, SD 0.09, range 0.06‐0.43). Our results suggest that,
even after grouping the days into 2 clusters, many differences
remained. This can be explained by people varying when
and how often they eat, sleep, and do other activities that
impact insulin needs. The improved silhouette scores for the
SoftDTW distance measure further support this explanation.
Comparison With Prior Work
Many studies research various factors that impact blood
glucose regulation. Potential explanations for the nighttime
high glucose pattern could be the impact of quality of
sleep on glycemia [73] or the dawn phenomenon [74]. The
second pattern of rising glucose levels after the carbohydrates
have dropped could be due to the AID system’s method of
calculating COB, which perhaps underestimates how long
carbohydrates take to be fully absorbed either in general or
for some meals where other nutritional components create a
longer lasting or delayed rise of glucose. Again, there are
studies available that suggest macronutrients [35] should be
considered for insulin dosing. Another reason for unexpected
patterns could be varying insulin absorption due to various
factors such as malfunctioning infusion systems, lipohyper-
trophy, and temperature changes, which are being researched
[72,75]. Like our study, previous studies were not able to
consistently observe effects across all participants.

Various studies have examined the accurate prediction of
blood glucose levels in T1D using different algorithms [7].
The researchers found that their algorithm works better on
simulated patients. We conjecture that this is due to unexpec-
ted patterns not being simulated. Another study explored 12
learning algorithms and 13 feature sets to predict glucose
levels [76]. They concluded that manually recorded diary data
did not provide accurate predictions and suggested that CGM
data might improve the situation. We found that whether
COB and IOB can be used to forecast IG varies. Our findings
suggest that, in many situations, more information than IG
from CGM, IOB, and COB is required.

The participants studied seemed to be mindful about
how much and when they ate carbohydrates. This was
evident by the relatively low mean amount of carbohydrate

intake reported (156.7 grams/day, SD 72.2, range 20‐330),
as well as in the clustering of the days where 18 people
had 1 cluster with lower carbohydrates (P<.001 to .02).
Furthermore, 10 people reported eating a standard amount
of carbohydrates per day (>130 grams/day), 17 people ate
a low-carbohydrate diet (50‐130 grams/day), and 2 people
ate a very low carbohydrate diet of <50 grams/day; meas-
ures for diet classification were obtained from [71]. Only 1
person reported eating more than 266 grams/day. Overall,
the carbohydrates eaten were lower than the recommended
amount of carbohydrates for the general population (267
grams/day for females, 333 grams/day for males, guide-
lines taken from [77]). Although carbohydrate counting and
professional nutritional advice are part of the treatment
guidelines for T1D, restricting carbohydrates is not recom-
mended for people with T1D [78]. However, reducing the
amount of carbohydrates eaten seems to be a successful
glucose management strategy for many. A total of 12 people
had flat lines of IG and IOB on days where COB was also
a flat line, while IG varied more on days with COB spikes.
Our results showed that the people we studied seemed to
be cautious about their carbohydrate intake and their IG
outcomes were more stable on days with fewer carbohy-
drate spikes. However, a “low” or “very low” carbohydrate
diet remains a controversial T1D intervention with unclear
long-term effects [2] and studies stress the importance of a
professionally supported low-carbohydrate diet [66].
Limitations
There are a few important limitations to consider. The
OpenAPS Data Commons dataset used in this study might
be biased due to circumstances that have led to participants
donating their data: donation happens on a volunteer basis;
the participants need access and funding for an insulin pump
and continuous glucose monitor; and the participants need
to feel competent and confident to navigate the process of
setting up and running their open-source AID device. The
participants in this study are early technology adopters and
live in Western countries (the majority in North America).
More research on different cohorts is required to understand if
and how these characteristics have influenced the results.

Given the data are donated ad hoc, the amount of data
varies between participants (the range of number of hours
is 720‐9024; Table 2). We have included only participants
who have at least 30 days of data, and we selected methods
that can cope with comparing means from varying group
sizes. However, limitations still exist. For some people, the
data might be from consecutive days, while others have gaps.
Further, some people have data from 19 different months
and some from 3 different months; there are similar discrep-
ancies for years (Table 2). Therefore, we cannot tell if the
lower frequency of patterns in months of the year is due to
not having at least 12 full months of data for everyone or
because these patterns happen less frequently monthly. This
would need to be investigated in a future study with more
consecutive data for everyone. The significant relationships
found between the frequency of patterns and the amount of
data (Table 5) further support this.
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Having only 29 participants limited some analyses. We
could not find a significant difference in overall mean IOB,
COB, and IG between workdays and weekends, winter and
summer months, and first and second year of AID data.
These results were inconclusive, particularly where our study
did not achieve a power of 80% for the participants and
effect sizes we observed. We have provided the number of
participants required for a power of 80% to help plan future
studies.

Furthermore, the OpenAPS AID device offers configura-
tions that impact the IOB and COB calculations. On top of
this, the software is regularly updated. We have not assessed
the impact of settings or software changes in this study.

The time series k-means algorithm requires regularly
sampled data with no gaps, which led us to create the
hourly sampled daily time series. On one hand, aggregating
multiple readings into a mean hourly reading lessens the
impact of outliers, while on the other hand, it hides patterns
that happened within the hour. Time series analysis meth-
ods generally expect regularly sampled and close to equal-
length data. More work needs to be done on algorithms that
can handle data that are irregularly sampled, with varying
sampling intervals between variates, as well as missing data.

During preprocessing of the data, we decided to translate
all timestamps to UTC to avoid jumps in time that are
common for people who live in countries with multiple time
zones like the United States and countries that follow daylight
saving time. UTC also provides better anonymization of the
data. However, it also means that the “hour of the day” is
different for people depending on where they live. This means
we cannot compare the same “hour of the day” from one
person to another, as it might be nighttime for one participant
and lunchtime for another.

Last, this study did not examine the differences in
demographics between individuals who have a pattern and
those who do not, nor did it research which confounding
factors caused a pattern due to the dataset lacking high-fre-
quency recordings of such factors. This would be interesting
for future research and could help to stratify people with
similar patterns and shed light on what leads to unexpected
patterns. Note that for the 29 individuals selected in this
study, there are only 2 female data donors. More data would
be needed for such a study.
Conclusions
In conclusion, our results show that changes in insulin needs
due to factors beyond carbohydrate intake occur frequently.
The AID device adjusts insulin in unexpected ways, which
seems required for the narrow range of HbA1c maintained
(mean 46 mmol/mol, SD 7.9). This supports our hypothesis

that factors beyond carbohydrates play a substantial role
in euglycemia. For such factors to become more systemati-
cally included in clinical practice, we need to find a way
to measure and utilize this information for insulin dosing
decisions. This information could also help forecast IG,
which we have shown is not consistently possible from
IOB and COB alone. Our findings further demonstrate the
heterogeneity of patterns in insulin needs among people
with T1D and underline the need for personalized treat-
ment approaches. Not only do people have different and
often conflicting patterns, but some people also have no
patterns. This increases the complexity of detecting such
patterns and devising an approach for including them in
insulin-dosing decisions. It also offers a potential explanation
for why factors beyond carbohydrates are not yet systemati-
cally considered, measured, and quantified, and why adjusting
insulin dosing for such factors is often left to the individ-
ual with T1D to decipher. We have not found characteris-
tics that can predict which pattern people will follow, nor
could we consistently relate their demographic information to
their pattern frequency. Based on the relationships between
pattern frequency and demographic information found, we
can assume that HbA1c, the amount of carbohydrates eaten,
and how long an insulin pump has been used impact the
frequency of patterns. It remains to be seen if a cohort with
less tech experience and higher HbA1c would have similar
patterns. Based on our findings, we would like to stress
the importance of including a variety of participants when
researching T1D and anticipating that methods that work for
some cohorts might not work for others.

Until we have measurable and quantifiable information
about factors that drive changes in insulin needs in unexpec-
ted ways, AID systems are left to adjust IOB cautiously, with
the effect of IG going outside of euglycemia. More research is
required to gain measurable and quantified information about
these factors. This would be an enormous contribution to a
better understanding of T1D and its treatment.

From a methods perspective, clustering days is helpful
but crude. Future research could investigate segmenting
and clustering time series dynamically based on changes in
the relationships between IOB, COB, and IG. Our results
show that patterns are more commonly found in finer time
resolutions, which require methods that support irregularly
sampled multivariate time series data, inherent to AID data
and medical data in general.

Finally, to support future research, we would welcome
long-term, open-access AID datasets that include a wide
range of sensor measurements of possible factors and a
diverse cohort of people with T1D. Such data would also aid
research into the causalities behind these patterns.
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