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Abstract

The renin angiotensin system is composed of several enzymes and substrates on which angiotensin converting enzyme (ACE) 1
and renin act to produce angiotensin II. ACE1 and its substrates control blood pressure, affect cardiovascular and renal function,
hematopoiesis, reproduction, and immunity. The increased expression of ACE1 has been observed in human monocytes during
congestive heart failure and abdominal aortic aneurysm. Moreover, T lymphocytes from individuals with hypertension presented
increased expression of ACE1 after in vitro stimulation with angiotensin II (ATII) with the highest ACE1 expression observed
in individuals with hypertension with low-grade inflammation. Our group and others have shown that aging is associated with
comorbidities, chronic inflammation, and immunosenescence, but there is a lack of data about ACE1 expression on immune cells
during the aging process. Therefore, our aim was to evaluate the levels of ACE1 expression in nonlymphoid cells compared to
lymphoid that in cells in association with the immunosenescence profile in adults older than 60 years. Cryopreserved peripheral
blood mononuclear cells obtained from blood samples were used. Cells were stained with monoclonal antibodies and evaluated
via flow cytometry. We found that ACE1 was expressed in 56.9% of nonlymphocytes and in more than 90% of lymphocytes (all

phenotypes). All donors exhibited characteristics of immunosenescence, as evaluated by low frequencies of naïve CD4+ and

CD8+ T cells, high frequencies of effector memory re-expressing CD45RA CD8+ T cells, and double-negative memory B cells.
These findings, in addition to the increased C-reactive protein levels, are intriguing questions for the study of ACE1, inflammaging,
immunosenescence, and perspectives for drug development or repurposing (Reviewed by the Plan P #PeerRef Community).

(JMIRx Med 2023;4:e45220) doi: 10.2196/45220
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Introduction

Angiotensin converting enzyme (ACE1, also known as CD143)
and renin are components of the renin angiotensin system (RAS)
acting to produce angiotensin II. In a simplistic definition, RAS

is composed of a vasoconstrictor, proinflammatory
ACE1/angiotensin II (ATII)/ATII receptor type 1 (AGTR1)
axis, and a vasodilating anti-inflammatory
ACE2/angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis (Figure
1). In addition to blood pressure control, ACE1 and its peptide
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substrates affect cardiovascular and renal function,
hematopoiesis, reproduction, and the immunity [1,2]. Thus, it
seems crucial that the RAS presents an inflammatory axis and
an anti-inflammatory axis for adequate regulation of the immune

response. ACE1 expression has been not only observed in
tissues, but also its soluble form has been found in urine, serum,
seminal fluid, amniotic fluid, and cerebrospinal fluid [3].

Figure 1. The renin angiotensin system. ACE: angiotensin converting enzyme; ACE1: angiotensin converting enzyme 1; AGTR1: angiotensin II type
1 receptor; AGTR2: angiotensin II type 2 receptor.

The expression of ACE1 in cells from the immune system has
been reported in health and disease. Costerousse et al [4]
observed, via reverse transcriptase–polymerase chain reaction
and southern blot analysis, the expression of ACE1 in
monocytes, macrophages, and T cells but not in B cells in
healthy adult donors. In addition, ACE1 activity was very low
in monocytes, whereas it was high in macrophages (monocytes
driven to differentiation). T cells presented intermediary ACE1
activity and B cells expressed no activity [4]. In patients with
type 1 diabetes (median age 29 years, normotension), higher
ACE1 and lower ACE2 expression were observed when
compared to healthy controls (median age 32 years,
normotension) [5]. Coppo et al [6] found that T cells in culture
had increased mRNA expression of ACE1 and AGTR1 in
individuals with obesity with low-grade inflammation
(high-sensitivity C-reactive protein [CRP] level of >3 mg/dL).
ACE1 activity was also increased in the supernatant of a T cell
culture in individuals with obesity with a high-sensitivity CRP
level of >3 mg/dL. Moreover, expression of RAS genes in T
cells and levels of inflammatory cytokines in the serum were
oppositely associated with serum levels of insulin [6,7]. Ulrich
et al [8] have shown that the increased expression of ACE1 in
monocytes was associated with kidney and cardiovascular
disease progression, suggesting that circulating leukocytes can
modulate local immune responses via their own RAS
components [8-10].

Considering that aging has been associated with comorbidities,
low-grade chronic inflammation, and altered frequency or
function of immune cells [11-14], it seems reasonable to suggest
that ACE1 play an important role in the aging process. ACE1
has been suggested to influence age-related diseases (ie,

Alzheimer disease, sarcopenia, and cancer) but the associated
mechanisms are still under investigation. ACE1 polymorphisms
have been correlated with susceptibility to Alzheimer disease
[15,16]. In addition, it was shown recently that in normal aging,
ACE1 expression is increased in brain homogenates, and this
expression is unchanged in early stages of Alzheimer disease
[17]. Regarding sarcopenia, Yoshihara et al [18] found a weak
correlation between ACE1 polymorphism and physical function.
In cancer (gastric or colorectal), patients presented higher
expression of ACE1 in tumors than in healthy tissues [19,20].
In hematopoietic stem/progenitor cells isolated from peripheral
blood, Joshi et al [21] showed that aging is associated with
decreased ACE2 and increased ACE1 protein expression. This
imbalance suggests a bias to the detrimental proinflammatory
axis of the local RAS. Considering the scarce information about
ACE1 expression in the phenotypes of T and B cells, we aimed
to investigate ACE1 expression in cells from the immune system
and parameters of immunosenescence in adults older than 60
years. Results herein show different levels of expression of
ACE1 in nonlymphoid versus lymphoid cells, with expression
being higher in lymphoid cells.

Methods

Overview
Blood was collected from adults (n=6, four females and 2 males)
aged 64-67 years in 2015. Peripheral blood mononuclear cells
were isolated using a Ficoll–Hypaque density gradient
(Amersham Biosciences) and centrifugation. Viable cells were
counted, adjusted to 2×106/100 μL in 80% fetal bovine serum
and 20% dimethylsulfoxide (Sigma), and frozen stored until
the phenotyping. In 2021, cells were thawed, checked for
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viability, and stained with monoclonal antibodies to the T cell
phenotypes CD4 PerCP Cy5.5, CD8 APC Cy7, CD27 APC,
CD45RA PE; B cell phenotypes CD19 PE, CD27 APC, IgD
PE Cy5.5 (eBioscience), and ACE CD143 fluorescein
isothiocyanate (R&D Systems). After 30 minutes of incubation
with monoclonal antibodies in the dark at 4 °C, the cells were
washed with phosphate-buffered saline and centrifuged. Living
cells (based on forward and side scatter) were acquired in the
BD FACSCanto II flow cytometry system using the DIVA
software (Becton Dickinson).

For assessing metabolic parameters, the serum of studied
individuals was previously isolated through centrifugation and
frozen stored until use. Measurement of metabolic parameters
was performed in the Laboratório Central–Hospital São Paulo,
Federal University of São Paulo.

Statistical Analysis
Data are presented as mean (SD) values. To test the normality
of data, we used the Shapiro-Wilk test. We considered P values
for interindividual differences in each variable, since individuals
were aged differently (biological aging) and thus, physiological
parameters could be affected by genetics, lifestyle, nutrition,
and comorbidities. A P value less than .05 was considered
significant.

Ethics Approval
The Ethics Committee of the Federal University of São Paulo
approved all procedures (protocol 10904).

Results

Table 1 shows that older adults are heterogeneous for some
physiological parameters such as glucose, urea, glycated
hemoglobin, and CRP.

Table 2 and Figures 2-4 show that CD143 (ACE1) is expressed
in almost 100% of lymphocytes, whereas it is expressed in

56.9% (SD 20.6%) of nonlymphocytes. CD8+ T cells presented

the highest expression (98.4%), followed by CD19+ B cells

(93.7%, SD 3.4%) and CD4+ T cells (90.7%, SD 8.7%). In T
cells, ACE1 is expressed in all phenotypes (naïve, central
memory, effector memory, and effector memory re-expressing
CD45RA [EMRA]). In B cells, ACE1 was expressed in naïve,
unswitched memory, switched memory, and double-negative
(DN) cells.

Table 3 shows that characteristics of senescent T cells were
observed in both males and females, such as low expression in

naïve CD4+ and CD8+ T cells and high expression in EMRA

CD8+ T cells.

Table 4 shows that aging adults with lower percentages of naïve
B cells also presented a higher percentage of DN memory B
cells.

Table 1. Physiological parameters observed in older adults.

C-reactive

proteine

(mg/dL)

Glycated

hemoglobind

(mg/dL)

Albumina

(mg/dL)
Creatininea

(mg/dL)
Ureac

(mg/dL)
Glucoseb

(mg/dL)

Triglyc-

eridesa

(mg/dL)

Low-density

lipoproteina

(mg/dL)

Cholesterola

(mg/dL)

7.3, 4.1, 6.0,
23.1, 4.6,
and 0.6

5.9, 6.2, 7.9,
5.5, 5.8, and
6.0

3.8, 4.1, 3.2,
4.2, 3.8, and
3.4

0.86, 0.73,
0.84, 0.68,
0.79, and 1.01

30, 40, 28,
28, 29, and
28

80, 86, 137,
83, 89, and
165

152, 152,
130, 149,
163, and 130

137, 176, 96,
150, 186,
and 125

207, 253,
181, 223,
249, and 191

Individual
participants’
values

7.6 (7.2)6.2 (0.8)3.8 (0.4)0.82 (0.1)30.5 (4.3)106.7 (32.5)146.0 (12.1)145.0 (30.4)217.3 (27.2)Overall,
mean (SD)

aP>.10.
bP=.047.
cP=.02.
dP=.02.
dP=.03.

Table 2. CD143 (ACE1) expression in lymphocytes and nonlymphocytes.

Nonlymphocytesa (%)Lymphocytes (%)

CD19+CD143+bCD8+CD143+bCD4+CD143+b

74.6, 35.4, 47.7, 75.0, 32.9,
and 75.9

90.5, 90.6, 91.4, 99.0, 95.7,
and 94.9

97.1, 96.7, 99.0, 99.6, 98.5,
and 99.6

84.8, 77.6, 96.9, 98.8, 87.8,
and 98.3

Individual participants’
values

56.9 (20.6)93.7 (3.4)98.4 (1.3)90.7 (8.7)Overall, mean (SD)

aP=.08.
bP>.15.
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Figure 2. Flow cytometry gating strategy for B cell phenotypes and CD143 expression. (A) All cells and gates for lymphocyte (green) based on forward

scatter (FSC-A) and side scatter (SSC-A); (B) exclusion of doublets (from the lymphocyte gate); (C) CD19+ B cells (from the doublets exclusion gate);

(D) CD143+ACE1 cells (from the CD19+ B cells’ gate); and (E) B cell phenotypes and CD143+-IgM+IgD+CD27- (naïve), IgMlowIgD-CD27+

(memory-unswitched), IgM-IgD-CD27+ (memory-switched), and IgM+IgD-CD27- (memory double-negative). DN: double-negative; FSC: forward
scatter; Mem: memory; SSC: side scatter.

Figure 3. Flow cytometry gating strategy for T cell phenotypes and CD143 expression. (A) All cells and gates for lymphocyte (green) based on forward

scatter (FSC-A) and side scatter (SSC-A); (B) exclusion of doublets (from the lymphocyte gate); (C) CD4+ and CD8+ T cells (from the doublets exclusion

gate); (D) CD143+ACE1 cells (from the CD4+ and CD8+ T cells’ gate); (E) T cell phenotypes and CD143+, CD45RA+CD27- (naïve), CD45RA-CD27+

(central memory), CD45RA-CD27- (effector memory), and CD45RA+CD27- (effector memory re-expressing CD45RA) cells. FSC: forward scatter;
SSC: side scatter.
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Figure 4. Flow cytometry gating strategy for nonlymphocytes and CD143 expression. (A) All cells and gates for lymphocytes (P1) and nonlymphocytes

based on forward scatter (FSC-A) and side scatter (SSC-A) and (B) CD143+ ACE1 cells (from the nonlymphocyte gate). FSC: forward scatter; SSC:
side scatter.

Table 3. Phenotypes of CD4+ and CD8+ T cells.

CD8+ T cells (%)CD4+ T cells (%)

Effector memory
re-expressing

CD45RAa

Effector

memorya
Central

memorya
NaïveaEffector memory

re-expressing

CD45RAb

Effector

memorya
Central

memoryb
Naïvea

36.0, 58.6, 62.5,
63.0, 48.1, and
49.6

20.1, 24.8,
13.6, 9.8,
27.6, and
20.4

26.5, 6.5,
10.3, 16.6,
11.5, and
18.3

17.3, 10.2,
13.6, 10.7,
12.8, and 11.7

4.1, 12.2, 2.0,
3.0, 1.5, and 22.4

12.4, 15.4,
29.2, 34.7,
18.3, and
19.7

55.9, 29.1,
55.4, 49.8,
55.3, and
25.4

27.6, 43.3,
13.4, 12.5,
24.8, and 32.6

Individual par-
ticipants’values

53.0 (10.4)19.4 (6.7)15.0 (7.1)12.7 (2.6)7.5 (8.3)21.6 (8.6)45.2 (14.1)25.7 (11.7)Overall, mean
(SD)

aP>.10.
bP=.047.

Table 4. Phenotypes of CD19+ cells.

Double-negative memorya %Switched memorya (%)Unswitched memorya (%)Naïvea (%)

15.9, 26.1, 35.8, 16.1, 37.7,
and 19.0

4.0, 5.7, 31.4, 22.1, 18.5, and
9.8

6.3, 6.9, 4.1, 10.0, 7.9, and 3.573.8, 61.3, 28.6, 51.8, 35.9,
and 67.7

25.1 (9.8)15.3 (10.6)6.5 (2.4)53.2 (17.9)Overall, mean (SD)

aP>.10.

Discussion

Our results show that for the studied population, chronological
aging and biological aging are asynchronous. Even among
individuals with a small chronological difference (64 to 67
years), there is heterogeneity in physiological parameters such
as glucose, urea, glycated hemoglobin, and CRP. Changes in
the same functional parameters have been reported by Carlsson
et al [22] and Helmerson-Karlqvist [23] in healthy older adults.
Carlsson’s [22] study found that the CRP level was 2.6% with
a coefficient variation of 1.4%, whereas in our study, we
observed higher levels of CRP in 5 out of 6 individuals.
Increased CRP levels have been associated with inflammaging,
and our findings show that the study population has changes in
functional parameters, which are likely associated with an
inflammatory profile [24].

The link between the RAS and inflammation has been suggested
but its role is not completely clear under physiological and
pathological conditions [25,26]. In addition, the association
between altered ACE1 expression in tissues (brain, muscle,
heart, and vessels) and the development and progression of
age-related conditions such as Alzheimer disease, sarcopenia,
and cardiovascular disease has been suggested, but results are
controversial [17,27-30].

There are few studies showing the association between ACE1
expression in cells from the immune system (monocytes and T
cells) and the progression of kidney and cardiovascular disease
[8,9,31,32]. Therefore, considering the lack of information on
this issue, we questioned whether ACE1 (CD143) was highly
expressed in cells from the immune system during the aging
process. We found that ACE1 was expressed in almost 100%

of T (CD4+ and CD8+) and B lymphocytes and in all phenotypes
of these cells. In nonlymphoid cells, mean ACE1 expression

JMIRx Med 2023 | vol. 4 | e45220 | p. 5https://med.jmirx.org/2023/1/e45220
(page number not for citation purposes)

Bueno et alJMIRx Med

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


was 56.9% (SD 20.6%). In agreement with our findings,
independent studies showed that T cells from healthy donors
and monocytes from patients with congestive heart failure
expressed ACE1, but there has been no investigation on cell
phenotypes [25,26]. Our study is the first to show that either
inexperienced (naïve) or fully activated (memory) cells
expresses ACE1. Our findings suggest that the expression of
ACE1 in lymphoid and nonlymphoid cells reflects health status,
since our studied population presented changes in physiological
parameters and high levels of ACE1 expression in immune cells.
Previous independent studies showed that patients with unstable
angina [32] or acute myocardial infarction [33] presented higher
expression of ACE1 in T cells and dendritic cells than control
subjects. In addition, markers of cell (lymphoid and
nonlymphoid) functional status, such as inflammatory or growth
factor production, could be modulated by ACE inhibitors
(ACEi). Accordingly, mononuclear leukocytes from healthy
subjects incubated with an endotoxin exhibited high levels of
tissue factor activity, which was reduced in the presence of
captopril in a dose-dependent pattern. This result could be
related to the antithrombotic effect of ACEi [34]. In patients
with congestive heart failure, immune cells cultured with
lipopolysaccharide secreted high levels of the proinflammatory
tumor necrosis factor α, and these levels were significantly
reduced in the presence of captopril [35].

It may be proposed that mechanistically, ATII is produced by
mononuclear cells or lymphocytes and, at the same time, ATII
induces immunologic activation in these cells. Therefore, the
inflammatory axis ACE1/ATII/AGTR1 and the counterregulator
ACE2/Ang-(1-7)/Mas receptor axis [36,37] could play a role
in chronic diseases, inflammaging, and immunosenescence
observed in older adults. Our studied population presented
changes in some physiological parameters and increased levels
of CRP. This inflammatory profile [24], in addition to more
than 90% of T and B cells expressing ACE1 in our population
of older adults, suggest a correlation among aging,
inflammaging, and ACE1 expression. Independent of
chronological age, inflammation (even if related to subclinical
diseases) may be a contributor to disease progression when the
balance with anti-inflammation is shifted [38]. In this context,
the regulation of ACE1/ACE2 expression could be explored as
a target for the balance of exacerbated inflammatory reactions.
Considering that the equilibrium between ACE1 and ACE2
expression could play an important role in healthy aging, our
subsequent studies will be focused on ACE1 and ACE2
expression in cells from the immune system.

The phenotype of T and B lymphocytes has been used to identify

senescence in immune cells. CD4+ T cells present changes
during the aging process with a decrease in naïve phenotypes

and an increase in effector memory phenotypes, whereas CD8+

T cells show a decrease in the naïve phenotype and an increase
in the effector memory and EMRA phenotypes [12,39,40]. It
has been shown that the reduction in naïve B cells is
accompanied by no change in memory-unswitched and
memory-switched B cells but an increase in the percentage of

double-negative B cells [41-44]. Using these phenotypes, we
found a similar senescent phenotype in some of the studied
aging adults. The reduction in naïve lymphocytes has been
related to impaired antigen responsiveness, and for B cells, a
decrease in the production of antibodies has been observed
[45,46]. The increased percentage of DN memory B cells has
been linked to autoimmune diseases [47,48]. We observed ACE1
expression in more than 90% of T cells and B cells and in all
phenotypes. ACE1 was expressed in nonlymphocytes in a range
of 32.9% to 75.9%. Our findings suggest that ACE1 could play
a role in several processes linked to aging, including the
generation and activation of autoimmune cells, due to the
experimental evidence that inhibitors of ACE1 suppress the
autoimmune process in a number of autoimmune diseases such
as experimental autoimmune encephalomyelitis, arthritis,
autoimmune myocarditis [49].

This study is the first to compare the expression of the protein

ACE1 between different cell types, both lymphoid cells (CD4+

and CD8+ T cells and B cells) and nonlymphocytes in older
adults. It was also observed that even though the study
participants were in the early stage of chronological aging (64
to 67 years), they presented heterogeneity in physiological
parameters, signs of inflammaging (increased CRP levels), and
immunosenescence, including low expression in naïve T and
B cells in addition to the accumulation of terminally

differentiated CD8+ T cells and DN B cells. This study has
limitations such as the small sample size and the lack of young
adults for comparison. As an example, the subject presenting
the highest CRP and albumin levels also exhibited a high

percentage of ACE1 expression in T cells (CD4+ and CD8+),
B cells, and nonlymphoid cells, in addition to the lowest

percentage of CD4+ naïve cells, and the highest percentage of

CD8+ terminally differentiated (EMRA) and DN B cells.
However, due to the small sample size, it was not possible to
associate the high expression of ACE1 in immune cells with
inflammaging and immunosenescence. Correlation of
physiological parameters and health status with ACE1
expression and investigating whether age and associated chronic
diseases could lead to increased ACE1 expression would yield
important information. Moreover, we only determined CRP as
a marker of inflammaging, and interleukin 6 and tumor necrosis
factor α would be desirable to complete our panel. Functional
analyses are needed to clarify the impact of ACE1 expression
on immune cells and whether ACEi and angiotensin receptor
blockers administered to patients with hypertension somehow
affect immunity. Recently, it was shown that membrane-bound
ACE2 acts as a receptor for SARS-CoV-2, but the possible
effects on RAS components [ATII, Ang-(1-7), ACE1, ACE2,
AT1, and Mas] and whether ACEi and angiotensin receptor
blockers interfere with the mitigation of COVID-19 require
further investigation [50-54]. Therefore, it is important to
emphasize the negative impact of chronic diseases on the
outcomes of older adults during a viral infection and how ACE1
or ACE2 expression in immune cells could provide information
regarding diagnosis and treatment.
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