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Abstract

Background: Large data sets comprising routine clinical data are becoming increasingly available for use in health research.
These data sets contain many clinical variables that might not lend themselves to use in research. Structural equation modelling
(SEM) is a statistical technique that might allow for the creation of “research-friendly” clinical constructs from these routine
clinical variables and therefore could be an appropriate analytic method to apply more widely to routine clinical data.

Objective: SEM was applied to a large data set of routine clinical data developed in East London to model well-established
clinical associations. Depression is common among patients with type 2 diabetes, and is associated with poor diabetic control,
increased diabetic complications, increased health service utilization, and increased health care costs. Evidence from trial data
suggests that integrating psychological treatment into diabetes care can improve health status and reduce costs. Attempting to
model these known associations using SEM will test the utility of this technique in routine clinical data sets.

Methods: Data were cleaned extensively prior to analysis. SEM was used to investigate associations between depression,
diabetic control, diabetic care, mental health treatment, and Accident & Emergency (A&E) use in patients with type 2 diabetes.
The creation of the latent variables and the direction of association between latent variables in the model was based upon established
clinical knowledge.

Results: The results provided partial support for the application of SEM to routine clinical data. Overall, 19% (3106/16,353)
of patients with type 2 diabetes had received a diagnosis of depression. In line with known clinical associations, depression was
associated with worse diabetic control (β=.034, P<.001) and increased A&E use (β=.071, P<.001). However, contrary to
expectation, worse diabetic control was associated with lower A&E use (β=–.055, P<.001) and receipt of mental health treatment
did not impact upon diabetic control (P=.39). Receipt of diabetes care was associated with better diabetic control (β=–.072,
P<.001), having depression (β=.018, P=.007), and receiving mental health treatment (β=.046, P<.001), which might suggest that
comprehensive integrated care packages are being delivered in East London.
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Conclusions: Some established clinical associations were successfully modelled in a sample of patients with type 2 diabetes in
a way that made clinical sense, providing partial evidence for the utility of SEM in routine clinical data. Several issues relating
to data quality emerged. Data improvement would have likely enhanced the utility of SEM in this data set.

(JMIRx Med 2022;3(2):e22912) doi: 10.2196/22912
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Introduction

Background
Currently, large amounts of routinely collected clinical data are
becoming increasingly available for use in health research. The
main advantages of these large-scale data sets are their
comprehensive nature, and their large patient numbers [1]. Large
clinical databases can improve clinical care by providing
population characteristics, identifying risk factors, and allowing
for the development of predictive models using vast amounts
of historical data [1,2]. To date, several large data sets
comprising routine clinical data have been developed in the
United Kingdom and are being used to inform clinical guidance
and health care delivery [3-5]. These data sets provide a rich
research resource, but there are considerable limitations
associated with the use of routine clinical data, particularly
surrounding the completeness and accuracy of the data. Routine
clinical data are subject to data entry errors, as well as systematic
inconsistencies and coding errors, which can lead to inaccurate
findings.

Structural equation modelling (SEM) is a statistical technique
that allows for the inclusion of multiple variables and the
creation of important constructs that cannot be observed directly
[6]. Partial least squares SEM (PLS-SEM) is a variant of SEM
that poses no distributional assumptions (eg, normality,
continuous/scale) upon data used for modelling but is frequently
used for predictive approaches with an aim to understanding
causal structures [7]. Further, PLS-SEM can be effective with
a relatively small sample: approximately 10 cases per regression
or “path” estimate leading to the most connected latent variable
is considered adequate, although there has been some debate
about the use of PLS-SEM with very small sample sizes [7,8].

Routine clinical data contains many clinical variables that might
not be directly appropriate for answering research questions.
SEM could allow for the creation of clinical constructs from
the routinely collected clinical variables that are more suitable
for use in research. To the best of our knowledge, SEM has not
yet been applied to routine clinical data. A large integrated data
set has recently been developed in East London; it contains
routine clinical data from both primary and secondary care [9].
This data set was developed to support commissioning decisions
within health care trusts in East London, meaning that its
primary purpose was not for research. Therefore, we sought to
determine whether SEM could be used to make this data set
more “research friendly” by attempting to create clinical
constructs and model some well-known clinical associations
between depression and accident & emergency (A&E) use in
patients with type 2 diabetes.

Depression, Type 2 Diabetes, and A&E Use: A Case
Study
Depression has been shown to occur approximately twice as
frequently in type 2 diabetes than would be predicted by chance
alone [10], and is associated with increased diabetic
complications and poor diabetic control [11]. Patients with
comorbid depression and type 2 diabetes have been shown to
have increased health care utilization [12]; for example, they
are more likely to present at A&E departments [13] and have
increased health care costs (up to 70%) compared to patients
with type 2 diabetes without depression [14]. This is particularly
marked in those with poorly controlled diabetes [15]. Successful
management of depressive symptoms through the use of
psychotherapy and pharmacotherapy has been found to improve
diabetic control [16] and to reduce health care service use and
associated costs [17,18]. The evidence cited above comes from
trial data and observational studies designed specifically for
research purposes. We sought to replicate these findings using
large-scale routine clinical data. More specifically, we aimed
to model associations between depression, diabetic care, diabetic
control, and A&E utilization, while assessing the impact of
current mental health care provision. We hypothesized that
depression would be associated with increased diabetic
complications and poor diabetic control, and that both depression
and poor diabetic control would be associated with increased
utilization of A&E. We predicted that the receipt of mental
health treatment would improve diabetic control. We also hoped
to include relevant demographic, behavioral, and clinical factors
in the model that are likely associated with pathways to care
for people with depression and type 2 diabetes.

Methods

Study Setting
We used a large patient-linked data set from the borough of
Tower Hamlets, an inner-city area located in the East End of
London, United Kingdom. Tower Hamlets is unique as it has a
diverse population and is home to the largest Bangladeshi
community in England [19]. Tower Hamlets has the highest
rate of poverty, child poverty, and unemployment of any London
borough [20].

Data Source and Study Design
The patient-linked data set was developed by the Tower Hamlets
Clinical Commissioning Group (CCG) and contains routinely
collected clinical data from several sources: (1) Secondary Uses
Service database, a secure data warehouse that stores
patient-level information for management and clinical purposes
other than direct patient care, and supports commissioning and
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the delivery of health services; (2) a primary care data set
generated by North East London Commissioning Support Unit;
(3) Improving Access to Psychological Therapies (IAPT) data
sets (IAPT is a talking therapy service used for the treatment
of adult anxiety and depression in England); and (4) clustered
and nonclustered mental health care data sets (within the
National Health Service [NHS], mental health care clusters
provide a framework for planning and organizing mental health
services and patient support).

The data set comprises data for the general
practitioner–registered population in Tower Hamlets. A detailed
description of the data set has been published elsewhere [9]. In
this observational cohort study, routinely collected
cross-sectional clinical and health service utilization data from
Tower Hamlets were collated over one financial year
(2017/2018). Variables of interest were selected and extracted
from linked relational data sets. All data were pseudonymized
and stored in a secure network database at Tower Hamlets CCG,
Mile End Hospital. All data were accessed and analyzed on-site
at Tower Hamlets CCG.

Ethical Considerations
As this study was examining the utility of a statistical method,
it was deemed to not be defined as research and therefore
required no ethical approval. All the necessary approvals were
obtained from Tower Hamlets CCG to perform the analysis on
the data set.

Participants
The sample to be analyzed included patients aged ≥18 years
who were registered with a general practitioner in Tower
Hamlets and had a diagnosis of type 2 diabetes recorded in their
primary care records. Type 2 diabetes is deemed to be a difficult
disease to reverse [21]. Therefore, all patients who ever had a
type 2 diabetes diagnosis recorded were included.

Demographic and Clinical Factors
Demographic and clinical information included age, sex,
ethnicity, deprivation index, smoking status, and BMI.
Information about age and sex came from primary care records.
Age was treated as a continuous variable. Ethnicity was also
obtained from primary care records. Patients were classified
into nine ethnic groups: White, or not stated; Indian; Pakistani;
Bangladeshi; other Asian; Black Caribbean; Black African;
Chinese; other ethnic group. For the purposes of the analysis,
patients were reclassified into two groups: White or not stated
and non-White. Deprivation index was based on Census data
using Lower Layer Super Output Areas. Deprivation scores
ranged from 1-10, with lower deciles being indicative of higher
deprivation. Information relating to BMI and smoking status
came from primary care records.

Measures of Mental Health Diagnoses and Care
Mental health variables included in the analyses were from
primary care records, IAPT data, clustered mental health data
sets, and nonclustered mental health data sets. Information about
whether a patient had ever received a diagnosis of depression,
anxiety, severe mental illness (SMI), alcohol use, or personality
disorder was obtained from primary care records. The variable

used for alcohol intake was generated by North East London
Commissioning Support Unit. This variable contained collapsed
scores for both the Alcohol Use Disorders Identification Test
(AUDIT) and the AUDIT for consumption (AUDIT C) and was
treated as a continuous variable in the analyses. Scores on the
AUDIT range from 0-40, with higher scores indicating higher
risk of dependence. The AUDIT C consists of the 3 consumption
questions from the AUDIT and scores can range from 0-12,
with higher scores indicating higher risk.

As the analysis was mainly concerned with depression, availing
of clustered mental health care relating to depression was
included in the model as well. The following NHS mental health
clusters were deemed likely to be associated with depression:
care cluster 1 (common mental health problems, low severity);
care cluster 2 (common mental health problems, low severity
with greater need); care cluster 3 (nonpsychotic, moderate
severity); care cluster 4 (nonpsychotic, severe); care cluster 5
(nonpsychotic, very severe); and care cluster 15 (severe
psychotic depression).

Variables that may be markers for the treatment of depression
were also included in the analyses. These included whether a
patient had received an antidepressant prescription from their
general practitioner within that financial year, whether the
patient had accessed IAPT services, and whether the patient
had been admitted to a psychiatric inpatient ward. Although
these variables are not necessarily specific to depression, the
use of these services are increased among patients in the Tower
Hamlets data set who have received depression diagnoses.
Therefore, they are deemed to be an acceptable proxy for
depression treatment in this case.

There was no variable relating to the use of psychiatric inpatient
services readily available in the patient-linked data set.
Therefore, this variable had to be constructed using information
from the nonclustered mental health services data set. Within
Tower Hamlets, there are six psychiatric inpatient wards: Brick
Lane ward, Globe ward, Lea ward, Millharbour ward, Roman
ward, and Rosebank ward. If a patient had been admitted to any
of these wards within financial year 2017/2018, they were
recorded as having been a psychiatric inpatient. However, the
reason why the patient was admitted to a psychiatric ward was
unknown.

Measures of Diabetes Care
We included several variables relating to diabetes care and
diabetic control. The diabetes care variables were taken from
primary care records and comprised whether a patient had been
assigned a diabetes care plan, received a diabetic retinal exam,
or received a diabetic foot exam. As specified in the National
Institute for Health and Care Excellence (NICE) 2019 guidelines
for the treatment of type 2 diabetes in adults, when a patient
receives a diagnosis of type 2 diabetes, a diabetes care plan is
usually agreed between the patient and their general practitioner
[1,22]. This care plan allows the patient to take responsibility
for their own well-being through increasing understanding about
their condition, implementing healthy lifestyle changes, and
being proactive about seeking care. Receiving routine retinal
and foot exams is a standard part of type 2 diabetes care used
to detect any associated retinopathy or diabetic foot problems
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[22]. Variables pertaining to diabetic control included the
patients’ latest glycated hemoglobin (HbA1c) levels. In this
study, HbA1c is measured in mmol/mol as per the International
Federation of Clinical Chemistry units. HbA1c is measured to
determine the patient’s average blood sugar level, with higher
levels being associated with more diabetic complications [23].
Both systolic blood pressure (SBP) and diastolic blood pressure
(DBP) were also included as variables associated with diabetic
control. Blood pressure is known to be associated with increased
vascular risk in patients with type 2 diabetes and maintaining
a healthy blood pressure is associated with better clinical
outcomes for these patients [24].

A&E Use
Variables used to measure A&E use related to the number of
A&E attendances per patient within financial year 2017/2018
and the A&E spend associated with that patient for the same
time period. This data came from the Secondary Uses Service
database.

Data Preparation and Cleaning
The data were cleaned prior to statistical analysis. In many
cases, patients who had been assigned to a mental health cluster
code in that year had been assigned to several cluster codes,
leading to the same individual appearing in the data set
numerous times. In cases where assigned cluster codes were
the same, all duplicates were removed. If the assigned cluster
codes were different for an individual patient, the most severe

cluster code was retained, and the less severe cluster code was
removed from the data set. All patients aged <18 years were
removed from the data set to ensure that the analyses were being
carried out on an adult sample. All variables were complete
apart from AUDIT (alcohol intake) data, cholesterol data, and
deprivation level. Missing AUDIT and cholesterol data were
resolved using mean imputation (ie, missing values were
replaced by the mean of the available cases). As less than 50
patients were missing data pertaining to deprivation level, these
patients were removed from the data set. Frequency analysis
revealed that there were a number of data entries well out of
clinical range for HbA1c values (20-100 mmol/mol), SBP
(90-200 mm Hg), DBP (50-120 mm Hg), and BMI (15-55

kg/m2). These cases were removed from the data set.

Structural Model
As the purpose of this research was to test the role of mental
health service use on A&E use in patients diagnosed with type
2 diabetes, we constructed a model of latent variables that
reflected existing knowledge on this subject (Figure 1). Within
this model, for example, we recreated the links observed
between depression and poor diabetes control [11] and that the
comorbidity of the two conditions increases A&E attendance
[13]. We also included latent variables representing mental
health comorbidity and clinical risk factors for diabetes that
may confound the relationship between diabetes care,
depression, and A&E admission.

Figure 1. Fitted partial least squares structural equation model of factors associated with A&E use among patients with type 2 diabetes living in Tower
Hamlets. A&E: Accident & Emergency; AUDIT: Alcohol Use Disorders Identification Test; DBP: diastolic blood pressure; HbA1c: glycated hemoglobin;
IAPT: Improving Access to Psychological Therapies; PD: personality disorder; SBP: systolic blood pressure; SMI: severe mental illness.

Statistical Analyses
Independent t tests and chi-square analyses were used to measure
differences between patients with type 2 diabetes with and
without depression. To investigate the relationships between

depression, diabetic care, diabetic control, mental health
treatment, and A&E use, PLS-SEM was carried out. Given the
nature of the data, which consisted mainly of dichotomous
indicators (eg, diagnoses) and ordinal measures (eg, AUDIT
drinking scores) with only a small number of continuous
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observed variables (eg, HbA1c reading), PLS-SEM was selected
over other SEM approaches as it allows for the use of both
continuous and discrete observed variables as indicators that
measure unobservable latent variables. A covariance-based
SEM approach would require continuous variables with some
restrictions on distribution; Bayesian networks were also
considered but are entirely probabilistic in outcome and would
not have given the desired effect size coefficients for different
pathways.

Our modelling approach was reflective, in that we employed
observed variables from the health care data set to measure
pre-existing latent variables (eg, “A&E usage”) and that, to use
the typology proposed by Coltman et al [25], causality flows
from latent construct to observed variable (eg, A&E usage
[construct] causes increased spend on A&E services [observed]).
We created 8 latent variables with multiple indicators for A&E
use, poor diabetic control, diabetes care, depression severity,
mental health treatment, mental health comorbidities,
demographic risk factors, and clinical risk factors. PLS-SEM
allowed for multiple linear equations between these 8 latent
variables to be carried out simultaneously, which is not possible
using traditional regression methods. The latent variables were
created and connected using prior clinical and research
knowledge and discussed with a clinical reference group to
ensure that the proposed pathways made clinical sense.

All analyses were carried out using R software (version 3.51
for Windows x64; R Foundation for Statistical Computing)
[26]; SEM analysis within R was conducted using the plspm
package [27]. A P value of <.05 was considered significant.

Results

Patient Characteristics
Prior to data cleaning, the data set contained 20,088 patients
with type 2 diabetes. Once duplicates based on mental health
cluster codes were removed, the sample size was reduced to
18,092. Removal of patients under 18 years of age resulted in
a sample size of 18,067 adult patients with type 2 diabetes in
Tower Hamlets. Removing HbA1c values (n=1382), BMI values
(n=175), SBP values (n=55), and DBP values (n=55) outside
of clinical range further decreased the overall sample size to
16,400. In addition, 47 patients did not have deprivation level
recorded so were removed from the data set, leading to a final
sample of 16,353 patients with type 2 diabetes.

Sample characteristics for the overall sample and for type 2
diabetic patients with and without depression are provided in

Table 1. The overall sample comprised 7862 (48.1%) women
and had a mean age of 59.5 years. The sample were on average
overweight (mean BMI of 28.8) and living in areas of high
deprivation (12,145/16,353, 74.3%). A considerable proportion
of patients were recorded as smokers (n=4595, 28.1%), but
mean AUDIT scores were low (mean 0.5), which is indicative
of lower-risk drinking. In addition, 19% (n=3106) of patients
with type 2 diabetes had a diagnosis of depression recorded in
their primary care records, and 84.3% (n=2619) of these patients
had received prescriptions for antidepressants. Very few patients
with depression had been referred to local therapy services
(IAPT; 1.4%) but this might reflect issues with certain data
flows. Very few patients with depression had been admitted to
a psychiatric ward (39/3106, 1.3%) within the study period and
a greater proportion of psychiatric inpatients did not have a
primary care diagnosis of depression. Overall, the majority of
patients with type 2 diabetes had an agreed diabetes care plan
(15,271/16,353, 93.4%) and had both a retinal (n=15,521,
94.9%) and foot (n=16,005, 97.9%) exam in the last year.

Comparisons between type 2 diabetic patients with and without
depression revealed a number of significant differences in terms
of demographic, clinical, and health service use factors (Table
1). Patients with and without diagnoses of depression did not
differ in age but more female patients tended to have depression
(P<.001). The majority of patients were of non-White ethnicity
(12,528/16,353, 76.6%) but patients of non-White ethnicity
were less likely to have a recorded diagnosis of depression
(P<.001).

Patients with depression were more likely to be overweight
(P<.001), more likely to smoke (P<.001), and scored higher on
the AUDIT, indicating higher alcohol intake (P<.001). Patients
with depression did not differ from patients without depression
in terms of receiving retinal (P=.17) or foot (P=.88) exams.
However, patients with type 2 diabetes and depression were
more likely to have an agreed diabetes care plan (P=.02).
Depression did not have a significant impact on HbA1c levels
(P=.46). However, patients with depression had significantly
lower SBP (P=.004) but significantly higher DBP (P=.02) than
patients without depression. In terms of health service
utilization, patients with type 2 diabetes and depression attended
A&E more in the 12-month study period than those with type
2 diabetes and no depression (P<.001) and incurred higher spend
per head (P<.001). Spend, on average, for patients with type 2
diabetes with depression was £37.80 (US $49.84) more per year
in A&E than for patients with type 2 diabetes without
depression.
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Table 1. Sample characteristics.

P valueaNot depressed
(n=13,247)

Depressed (n=3106)Overall sample
(N=16,353)

Characteristics

.9459.5 (17.1)59.5 (14.6)59.5 (16.6)Age (years), mean (SD)

Gender

<.0015985 (45.2)1877 (60.4)7862 (48.1)Female, n (%)

N/Ab7262 (54.8)1229 (39.6)8491 (51.9)Male, n (%)

<.00110,564 (79.7)1964 (63.2)12,528 (76.6)Non-White ethnicity, n (%)

.309848 (74.4)2297 (74)12,145 (74.3)High deprivationc, n (%)

<.00128.5 (5.9)30.0 (6.9)28.8 (6.2)BMI (kg/m2), mean (SD)

<.0013531 (26.7)1064 (34.3)4595 (28.1)Smokers, n (%)

N/AN/AN/A3106 (19)Depression, n (%)

<.0011045 (7.9)1453 (46.8)2498 (15.3)Anxiety, n (%)

<.001393 (3)338 (10.9)731 (4.5)Severe mental illness, n (%)

<.00134 (0.3)97 (3.1)131 (0.8)Personality disorder, n (%)

<.0010.5 (0.9)0.7 (1.3)0.5 (0.9)Alcohol Use Disorders Identification Test score,
mean (SD)

<.0014981 (37.6)2619 (84.3)7600 (46.5)Antidepressant prescribing, n (%)

<.00135 (0.3)45 (1.4)80 (0.5)Improving Access to Psychological Therapies activ-
ity, n (%)

<.00143 (0.3)39 (1.3)82 (0.5)Psychiatric inpatient, n (%)

<.00111 (0.1)84 (2.7)95 (0.6)Depression cluster coded, n (%)

.0212,341 (93.2)2930 (94.3)15,271 (93.4)Diabetes care plan, n (%)

.1712,558 (94.8)2963 (95.4)15,521 (94.9)Retinal exam, n (%)

.8812,964 (97.9)3041 (97.9)16,005 (97.9)Foot exam, n (%)

.4657.8 (15.2)58.0 (16.3)57.8 (15.4)HbA1c, mmol/mol (International Federation of
Clinical Chemistry units), mean (SD)

.004127.8 (15.0)127.0 (14.9)127.6 (15.0)Systolic blood pressure (mm Hg), mean (SD)

.0274.8 (9.6)75.2 (9.5)74.8 (9.6)Diastolic blood pressure (mm Hg), mean (SD)

<.0010.6 (0.9)0.8 (1.2)0.6 (0.9)Accident & Emergency attendances, mean (SD)

<.00196.70 (160); 127.51
(210.98)

134.50 (210.70); 177.35
(277.83)

103.80 (170.20); 136.87
(224.42)

Accident & Emergency spend (£; US $), mean (SD)

aP value calculated by comparing the depressed with the nondepressed cohorts. For gender, those listed as male were compared with those listed as
female.
bN/A: not applicable.
cHigh deprivation: combination of deciles 1 and 2.
dDepression cluster codes include 1, 2, 3, 4, 5, and 15.

Structural Equation Modelling
The SEM diagram in Figure 1 depicts the relationships between
the latent variables and their indicators (outer model) and the
relationships among the latent variables (inner model) that make
up the SEM. Latent variables are shown as ellipses and observed
variables are shown as squares. Arrows show the hypothesized
direction of effect between variables and each arrow is
accompanied by a path coefficient, which can be interpreted as
standardized beta coefficients in a regression model. Statistically

significant associations between variables are shown using bold
arrows. Black arrows depict positive associations whereas red
arrows depict negative associations. Associations that are not
statistically significant are illustrated using dashed lines.

In the final inner model, coefficients were estimated
simultaneously for all 8 latent variables as depicted in Figure
1. Path coefficients are provided in Table 2 and shown in Figure
1. When checking the model, it was decided to omit deprivation
index from the model as this indicator did not load on to the
latent variable for demographic factors significantly.
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Table 2. Parameter estimates from final structural equation modelling.

P valuet value (df=240)Coefficient (SE)Parameter

Accident & Emergency on

<.00112.500.102 (0.008)Demographic risk factors

.65–0.448–0.003 (0.008)Clinical risk factors

.0013.180.028 (0.009)Mental health comorbidities

<.0017.970.071 (0.009)Depression severity

<.001–6.72–0.055 (0.008)Poor diabetic control

Poor diabetic control on

<.001–37.50–0.283 (0.007)Demographic risk factors

<.00126.800.201 (0.007)Clinical risk factors

.39–0.856–0.006 (0.008)Mental health treatment

<.001–9.68–0.072 (0.007)Diabetes care

<.0014.270.034 (0.008)Depression severity

Depression severity on

<.00169.40.477 (0.007)Mental health comorbidities

.0072.680.018 (0.007)Diabetes care

<.0015.890.046 (0.008)Diabetes care on mental health treatment

<.00139.30.294 (0.007)Mental health treatment on mental health comorbidities

<.00120.20.156 (0.008)Clinical risk factors on demographic risk factors

In the final model, depression severity was associated with
worse diabetic control (β=.034, P<.001) and higher A&E use
(β=.071, P<.001). However, poor diabetic control was associated
with lower A&E use (β=–.055, P<.001). Mental health treatment
was not significantly associated with poor diabetic control
(P=.39). Receipt of diabetes care was negatively associated with
poor diabetic control (β=–.072, P<.001). Receipt of diabetes
care was also associated with depression severity (β=.018,
P=.007) and receipt of mental health treatment (β=.046, P<.001).

Demographic risk factors associated with A&E use (β=.102,
P<.001) included being older, female, and of White ethnicity.
These same factors were negatively associated with poor
diabetic control (β=–.283, P<.001), meaning that being older,
female, and of White ethnicity is associated with better diabetic
control. Smoking and having a higher BMI were associated
with worse diabetic control (β=.201, P<.001).

Discussion

Principal Findings
In this study, we sought to test whether SEM could be applied
to a large routine clinical data set from East London to model
known associations between depression, diabetic care, diabetic
control, A&E utilization, and mental health care provision in
patients with type 2 diabetes.

The model showed that depression severity was associated with
worse diabetic control among patients with type 2 diabetes. This
is in keeping with previous epidemiological evidence that has
shown that depression is associated with increased diabetic
complications and poor diabetic control [11]. Depression was
associated with increased A&E utilization among patients with

type 2 diabetes, which is in line with previous research [12-14].
What this suggests is that the application of SEM to this routine
clinical data set enabled us to model associations in a way that
made clinical sense and was in agreement with existing research.
However, poor diabetic control was associated with lower A&E
utilization, which is not consistent with existing evidence [15].
It is possible that this association is valid and reasons for type
2 diabetic patients with depression presenting at A&E are related
to factors not associated with diabetic control. In fact, the
presence of hypertension and obesity in patients with type 2
diabetes has been associated with increased A&E visits [25]. It
is also possible that poor diabetic control results in greater
utilization of primary care services, as well as inpatient and
outpatient services. Future attempts to model associations
between depression and A&E usage in type 2 diabetic patients
should include relevant physical comorbidities (eg, coronary
heart disease, hypertension, obesity), examine the reasons for
A&E attendance, and include use of other health services in the
model.

We predicted that receiving mental health treatment would be
associated with improved diabetic control, thereby impacting
upon health service use. However, receipt of mental health
treatment was not associated with poor diabetic control in this
study. This is not in agreement with previous research, which
has shown that improvement of depressive symptoms through
the use of psychotherapy and pharmacotherapy is associated
with improved glycemic control [16]. The opposite association
reported in the current study is likely related to issues with data
quality, which will be outlined later. We found that better
diabetic control was associated with receipt of diabetes care
within primary care settings. Moreover, receiving diabetes care
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was also associated with depression and receipt of mental health
treatment. This indicates that patients with type 2 diabetes and
comorbid depression might be receiving better overall care,
suggesting that comprehensive integrated care packages are
being delivered in East London.

Taken together, these results provide partial support for the use
of SEM in large routine clinical data sets. The data allowed us
to model some associations within a sample of patients with
type 2 diabetes that made clinical sense. Counterintuitive results
are likely related to issues with the data set, rather than with the
use of SEM. This implies that this methodology could be
adapted and applied to data sets of this nature to understand
pathways to health service use in other comorbid patient groups.

Limitations
Large-scale routinely collected clinical data can have some
significant limitations, particularly surrounding data
completeness and accuracy [1]. In this study, the data needed
to undergo considerable cleaning before analysis could take
place. The removal of duplicate cases, cases where variables
were way out of clinical range, and cases where data were
missing and could not be imputed led to a decrease in sample
size of almost 19%. These issues are mainly attributable to data
entry errors and are largely unavoidable, but errors in coding
and recording need improvement to support wider use of routine
data in health research.

There were also suspect flaws in the data set, which may account
for some of the unexpected findings we report. IAPT referrals
seem suspiciously low (1.4%) in the patients with recorded
diagnoses of depression. In Tower Hamlets, about 29% of
patients with anxiety or depression access IAPT services [28].
This discrepancy probably reflects an issue with the flow of
data. The problem with the IAPT data likely affected the mental
health treatment latent variable in the SEM and might help to
explain why mental health treatment was not associated with
poor diabetic control.

We were unable to generate any robust goodness-of-fit statistics
for the specified SEM model into the data (eg, normed fit index,
standardized root mean squared residual) as these are not
implemented in the plspm package, and data protection
restrictions in place on the analysis environment meant that we
could not install external software packages (eg, SmartPLS)
designed to generate such statistics. The goodness-of-fit statistic
generated by this package is not standardized and does not
represent a “fit” measure [29]. Therefore, we could not be sure
that our model was a good or a poor fit to the data; however,
this was not our original intention.

A final significant limitation of this study is the cross-sectional
nature of the data, meaning that causality could not be attributed
in the SEM we report. Although the data we analyzed were
collected over one financial year, we had no temporal
information about the data, meaning that prospective analyses
were not possible. This was problematic for the direction of
effect we report in this study. For example, we could not tell
when the latest HbA1c or blood pressure measurement was taken,
and we did not know the date on which A&E attendances took
place. This means that the measure of diabetic control might
have been taken after the A&E attendances took place within
that financial year, making the attribution of causality difficult.
This also might have explained the counterintuitive result seen
in the SEM. Moreover, we could not tell how long a person had
diabetes or depression for, which would have provided a good
proxy for disease severity, and we also did not have information
about how long a person had been receiving treatment for
diabetes and/or depression. Despite these shortcomings, a lot
of the results we report make clinical sense, supporting the
application of SEM in routine clinical data. The quality of the
data will determine the utility of the SEM.

Future Directions and Recommendations
To confirm the validity of this study, it would be prudent to
apply SEM to another London-based routine clinical data set
in this same patient group. This would help to overcome some
of the limitations outlined above and provide further evidence
for utility of SEM in routine clinical data sets. Future analyses
should seek to use temporal data so that prospective analysis is
possible. This would allow the direction of association within
the SEM to be confirmed and causality attributed to the model,
overcoming some of the significant limitations outlined above.
Temporal information surrounding receipt of treatment and
duration of disease would also allow for the construction and
inclusion of latent variables that are more clinically valid.
Improvement of data flows (eg, information about use of IAPT
services) and more years of data would address issues around
lack of temporality and inaccurate findings.

Conclusions
In conclusion, our results indicate that, despite the significant
limitations of the data set, we were still able to successfully
model associations between depression and A&E use in a sample
of diabetic patients in a way that made clinical sense using SEM.
This demonstrates the utility of this statistical technique in
routine clinical data, and this model can be refined and retested
as more data become available and prospective analyses can be
carried out. Results also suggest that SEM could be adapted
and applied to routine clinical data for use in other patient groups
to model health care pathways.
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