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This is the author’s response to peer-review reports for
“Machine Learning–Based Prediction of COVID-19 Mortality
With Limited Attributes to Expedite Patient Prognosis and
Triage: Retrospective Observational Study.”

Round 1 Review

Reviewer DD
More detail is provided in the responses to individual comments
[1], but for general context, to increase originality, the revised
manuscript [2] now focuses more heavily on the impact of
feature reduction on model performance rather than model
performance as a standalone finding. The original reduction
method, mutual information, is complemented by chi-square
reduction, and comparisons between the impact of each were
made, highlighting the need for different reduction methods to
be tested as part of model tuning. Additional points were added
to the Discussion stating that comparable models drawing from
much richer feature sets performed comparably to our reduced
ones and that large amounts of explanatory power can be
captured by even a single variable, with the ultimate goal of

reducing the number of variables, and consequently the tests
and imaging, needed before models can be used in a hospital
setting.

1. Mutual information was used due to the mixture of categorical
and continuous variables, with a large presence of the former.
A general equation for mutual information, which is the criterion
used for feature selection, was provided. Variables were not
binned but rather modelled through a k-nearest neighbors
estimation approach; this was mentioned in the study, and the
relevant source paper was cited for further detail. Software
packages used (methods from Python’s sklearn library) were
mentioned explicitly in the methodology.

2. Features are a subset/extraction of the original feature set,
not a transformation/combination. A section was added to the
Results section detailing the 7 most salient features selected via
mutual information.

3. This would be a productive comparison; however, the reason
it was not performed is due to data limitations. As outlined in
the original paper, the 5121-patient data set has an extremely
small proportion of patients affected by pre-existing conditions,
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meaning that keeping those features and training a 5121 patient
model on age + comorbidities and comparing it to the full
212-patient data set would really simply be a comparison of the
impact of age in the 5121-patient model against the full features
in the 212-patient model, given that co-morbidity data is largely
absent (and vastly underrepresented) in the 5121-patient data
set. However, from other helpful revision comments, a feature
importance table using mutual information was provided in the
Results section; it shows that with the exception of fever,
symptoms do not seem to play a high-importance role in
prediction and do not feature in the top 7 explanatory variables.

Additionally, to further facilitate comparisons between data sets
and feature reductions, only the 212-patient data set was retained
in the study.

4. 95% confidence intervals were added to the result tables for
all sensitivity, specificity, accuracy, and area under the curve
(AUC) findings.

5. A paragraph has been added to the Discussion section briefly
comparing the 7 features extracted in our study using mutual
information to the most salient features from the proposed paper,
finding substantial overlap, particularly with fever and
pneumonia as high-value features.

6. The parameters used were reported in the Results section.

7. The date on which the data were accessed was added to the
relevant data section in the methodology. Detailing the exact
breakdown of samples in training and testing over multiple
iterations of sample splitting and dimensionality reduction seems
excessive, especially considering that the sample is small and
retrievable and the methodology (3-fold cross-validation coupled
with simple classifiers) is easily reproducible.

8. This was poor wording on the study’s end; it was intended
to state that receiver operating characteristic (ROC) curves will
be produced in order to obtain numerical AUC estimates, but
the ROC plots were never meant to be graphically reported in
the study. The original sentence was removed from the paper
to avoid confusion.

Reviewer EB
1. Noted; the suggestion [3] has been implemented. An in-depth
review of existing equipment, public spending, and staff
shortage limitations prior to the COVID-19 pandemic was
provided with examples from around the world, with additional
indicators of strain following the pandemic, as well as studies
directly linking shortage of resources to worse patient outcomes,
therefore justifying the need for better resource management.
The primary management tool proposed in the study is the
introduction of predictive modelling for better triage, providing
potential benefits to “pre-allocation or local hospital transfer of
life saving equipment, quantifying the need for further
diagnostics or early treatment and directing limited staff
attention and resources toward highest risk patients.” All
condensed points in this response can be found in expanded
form in the introduction of the study.

2. In the new Discussion section, a paragraph has been added
regarding the real-world use cases of the models explored in
the study.

3. Noted; a more streamlined and direct objective has been
included in the new Abstract.

4. Noted; this has now been rectified.

5. Noted; this has now been rectified.

6. This refers to the Area Under the Curve, and a footnote has
now been added.
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AUC: area under the curve
ROC: receiver operating characteristic
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