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Abstract

Background: The onset and development of the COVID-19 pandemic have placed pressure on hospital resources and staff
worldwide. The integration of more streamlined predictive modeling in prognosis and triage–related decision-making can partly
ease this pressure.

Objective: The objective of this study is to assess the performance impact of dimensionality reduction on COVID-19 mortality
prediction models, demonstrating the high impact of a limited number of features to limit the need for complex variable gathering
before reaching meaningful risk labelling in clinical settings.

Methods: Standard machine learning classifiers were employed to predict an outcome of either death or recovery using 25
patient-level variables, spanning symptoms, comorbidities, and demographic information, from a geographically diverse sample
representing 17 countries. The effects of feature reduction on the data were tested by running classifiers on a high-quality data
set of 212 patients with populated entries for all 25 available features. The full data set was compared to two reduced variations
with 7 features and 1 feature, respectively, extracted using univariate mutual information and chi-square testing. Classifier
performance on each data set was then assessed on the basis of accuracy, sensitivity, specificity, and received operating
characteristic–derived area under the curve metrics to quantify benefit or loss from reduction.

Results: The performance of the classifiers on the 212-patient sample resulted in strong mortality detection, with the highest
performing model achieving specificity of 90.7% (95% CI 89.1%-92.3%) and sensitivity of 92.0% (95% CI 91.0%-92.9%).
Dimensionality reduction provided strong benefits for performance. The baseline accuracy of a random forest classifier increased
from 89.2% (95% CI 88.0%-90.4%) to 92.5% (95% CI 91.9%-93.0%) when training on 7 chi-square–extracted features and to
90.8% (95% CI 89.8%-91.7%) when training on 7 mutual information–extracted features. Reduction impact on a separate logistic
classifier was mixed; however, when present, losses were marginal compared to the extent of feature reduction, altogether showing
that reduction either improves performance or can reduce the variable-sourcing burden at hospital admission with little performance
loss. Extreme feature reduction to a single most salient feature, often age, demonstrated large standalone explanatory power, with
the best-performing model achieving an accuracy of 81.6% (95% CI 81.1%-82.1%); this demonstrates the relatively marginal
improvement that additional variables bring to the tested models.

Conclusions: Predictive statistical models have promising performance in early prediction of death among patients with
COVID-19. Strong dimensionality reduction was shown to further improve baseline performance on selected classifiers and only
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marginally reduce it in others, highlighting the importance of feature reduction in future model construction and the feasibility
of deprioritizing large, hard-to-source, and nonessential feature sets in real world settings.

(JMIRx Med 2021;2(4):e29392) doi: 10.2196/29392
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Introduction

Prior to the COVID-19 pandemic, hospitals in several countries
were already experiencing difficulty in managing scarce
resources and staff dissatisfaction.

In the United Kingdom, occupancy rates have steadily increased
for a decade, with general bed occupancy rising from 84.3% in
2010 to 89.4% in 2019 (92% for general and acute care beds)
[1]; meanwhile, overall bed stock across the European Union
declined by 2.5% between 2013 and 2018 [2].

In several countries, such as Italy, Greece, and Portugal, this
decrease in occupancy rates is set against a financial backdrop
of decreasing public health spend, with each listed country
registering a decrease in per capita government health care
expenditure between 2010 and 2018 [3]. In addition to
geographically localized reductions in funding, overall spend
has been edging away from acute care and hospital services,
with expenditure on inpatient care across Organisation for
Economic Co-operation and Development countries growing
14% slower than expenditure on outpatient care and 23% slower
than expenditure on long term care between 2013 and 2017 [4].

Staff satisfaction and supply have also proved troublesome. In
a cross-sectional US study that was performed shortly prior to
the onset of the COVID-19 pandemic, 70% of nurses across
hundreds of surveyed institutions stated they would not
recommend their hospital; half experienced high burnout, and
one-fourth stated they planned to leave the profession within a
year [5].

The increased demands imposed by the spread of COVID-19
have in many cases exacerbated the above areas of concern.
Lack of resource management protocols and stock limitations
led to a shortage of hospital beds [6] and ventilators [7,8] in the
early stages of the pandemic, while in some cases, contraction
of the virus by medical staff has as much as doubled sickness
absence rates [9], further straining staff availability and supply.

These shortcomings have direct adverse consequences for patient
care, with a study of 4453 hospitals in the United States from
the early phase of the pandemic finding that lower numbers of
intensive care unit beds, nurses, and general medicine beds per
COVID-19 case were significantly associated with a higher rate
of death [10].

To improve use of equipment and better manage physician and
nurse supply, increased focus has been brought to information
technology. Of particular interest to this paper are computational
models that are capable of predicting mortality using real-time

patient data. Such models aim to reduce hospital burden by
providing efficient patient triage, allowing for preallocation or
local hospital transfer of lifesaving equipment, quantifying the
need for further diagnostics or early treatment, and directing
limited staff attention and resources toward the patients at
highest risk.

Several such models have now entered the academic literature,
but with varying degrees of usability. Many suffer from mild
to severe flaws, such as training on alternative diseases such as
pneumonia as a proxy for COVID-19 [11], depending on less
immediately available data from blood tests and other
monitoring equipment [12-15], and unrepresentative population
samples—often older skewing [16] or monolocalized [17]; these
flaws result either in low performance or, more worryingly, in
excessively optimistic expectations of performance that overfit
to a certain facet of the population.

Although all predictive models will inevitably suffer from issues
surrounding quality of data or population reproducibility, many
of them still generate valuable findings that can materially aid
in patient profiling and optimization of treatment and have been
adopted on a supportive level by hospitals.

In this study, we aim to further the utility of existing models by
exploring the impact of dimensionality reduction on the
predictive accuracy of patient outcomes, providing a use case
for reduction of costly or slowly available patient attributes,
such as laboratory or imaging results, in favor of simple patient
history and demographics.

Methods

Data Set
Data for this study were obtained from a continuously updated
repository [18] containing anonymized patient level information
on 2,676,311 COVID-19–positive individuals across 146
countries. The results represent data sourced on February 18,
2021, encompassing entries up to and including the date in
question.

Variable Extraction and Data Preprocessing
Symptoms and comorbidities in the data set were parsed and
one-hot encoded into fixed variable names. Textbox 1 shows
all the patient variables used in the study.

Of the original 2,676,311 patients, only 212 patients had fully
populated fields for all the above variables; these patients were
retained in the study.
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Textbox 1. Features employed as predictors of mortality by category.

Symptoms

• Cough

• Fever

• Runny nose

• Fatigue

• Headache

• Diarrhea

• Sore throat

• Chest symptoms

• Chills

• Difficulty breathing

• Acute respiratory distress syndrome

• Pneumonia

Pre-existing conditions

• Benign prostatic hyperplasia and other prostate conditions

• Coronary heart disease or other cardiac condition

• Chronic kidney disease and other kidney conditions

• Hypertension

• Diabetes

• Pulmonary conditions

• Asthma

• Bronchitis

• Conditions affecting the arteries

• Cancer

Demographic attributes

• Age

• Sex

Derived attributes

• Number of pre-existing conditions

Dimensionality Reduction
Dimensionality reduction was applied to compare a full
25-feature data set to 7-feature and 1-feature reduced variations.
Feature selection was performed, first through mutual
information and second through chi-square tests, to compare
the selection impact of different approaches.

Both frameworks were executed in Python using the
mutual_info_classif and chi2 methods in scikit-learn’s
feature_selection module [19]. The only continuous variable in
the data set, age, was discretized through bins in the chi-square
method and through a k-nearest neighbors approach in the
mutual information method; a more comprehensive definition
of the latter can be found in the relevant cited work [20].

Features were extracted using the extent of P value significance
in the chi-square framework and mutual information in the
alternative method, where the latter can be broadly defined as
[21]:

where X is a predictor feature in the data and Y is an outcome
of death or recovery.

Predictive Models and Evaluation Criteria
Random forest and logistic regression were employed as primary
classifiers to be trained on ex ante balanced data and tested on
unprocessed imbalanced data.
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Model performance was evaluated based on accuracy, area
under the curve (AUC), sensitivity, and specificity. Sensitivity
measures the proportion of deaths correctly identified by the
model, expressed as:

Where death is a positive outcome and recovery is a negative
outcome. Specificity measures the proportion of recoveries
correctly identified, expressed as:

All metrics were derived from aggregation during 3-fold
cross-validation.

Results

Sample Baseline Characteristics
The fully populated data set contains full entries for each
category mentioned in the methodology, resulting in a sample
of 212 patients. The data are geographically diverse, with

representation from 17 countries, although 62/212 patients
(29.2%) originate from China alone. The mean age in the sample
is 55.9 (SD 21.8) years. The mean age of patients who died of
COVID-19 is significantly higher than that of those who did
not, at 64.1 (SD 19.6) years against 40.8 (SD 16.9) years,
respectively. Men comprised 67.9% (144/212) of the sample.
A sizeable 49.5% (105/212) of the sample suffered from a
pre-existing condition, which is overrepresented, and 64.6%
(137/212) of the sample ultimately died, rendering the final
class balance highly skewed.

Correlation Matrix of Features
Before analyzing the prediction model performance, Figure 1
outlines the main cross-correlation of patient characteristics and
their correlation with an outcome of death. We note that the
most explanatory features raising mortality risk are age
(correlation coefficient 0.51), whether a patient has a
pre-existing chronic condition (correlation coefficient 0.59),
and the number of pre-existing conditions (correlation
coefficient 0.53). This is followed by particularly risk-elevating
conditions, such as diabetes and hypertension, and specific
symptoms of advanced disease progression, such as pneumonia
and acute respiratory distress syndrome.

Figure 1. Correlation matrix of patient demographics, symptoms, and pre-existing conditions with each other and with an outcome of death. ARDS:
acute respiratory distress syndrome; BPH: benign prostatic hyperplasia.
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Feature Importance Analysis
As outlined in the methodology, dimensionality reduction
techniques were applied to generate two extracted data sets, one
with 7 features and one with 1 feature. The extraction was
repeated at each cross-validation fold to avoid lookahead bias,
making the final feature sets less auditable. In this section, we
anticipate subsequent results by providing a brief overview of
the 7 most salient features (Table 1) selected solely using mutual

information across the entire 212-patient sample rather than
individual training folds.

We note that with the exception of fever, symptoms were not
featured in the reduction, in favor of the increased importance
of pre-existing conditions and age as a general all-encompassing
feature. Among comorbidities, diabetes and hypertension stood
ahead of the others in impact, while the overall number of
concomitant comorbidities in a single patient was also
significant.

Table 1. Features included in a reduced 7-variable data set derived using mutual information on the full 212-patient data set.

Univariate mutual informationFeature

0.35Age

0.22Number of chronic diseases

0.20Presence of chronic diseases

0.19Hypertension

0.11Pneumonia

0.09Fever

0.09Diabetes

Mutual Information Feature Reduction
This study compares the impact of two dimensionality reduction
methods—mutual information and chi-square tests—on model
performance. Table 2 outlines the out-of-sample performance
of models trained on the full 25-feature data set compared to
7-feature and 1-feature variations extracted through mutual
information. All metrics were calculated over multiple
repetitions of 3-fold cross validation. Due to differences in class
balance across folds and simulated repetitions, accuracy metrics
are not necessarily a weighted average of their sensitivity and
specificity.

We note that performance across all models and datasets is
sound, with no accuracy below 79.2%. The best random forest
classifier performed substantially above the best logistic
classifier, with respective accuracies of 90.8% and 83.5%.

In assessing the impact of dimensionality reduction, we note
that transitioning from 25 features to 7 improved the

performance of the random forest classifier (89.2% to 90.8%
accuracy), while a minor (considering the extent of feature
shrinkage) reduction in performance was observed in the logistic
classifier (83.5% to 79.2%). The latter may be overstated by
the model’s decision threshold, as the AUC decrease was minor
(88.6% to 88.4%).

Finally, extreme reduction to a single most important
attribute—in most folds, age—resulted in substantially reduced
performance in the random forest classifier (89.2% to 80.1%
compared to the full data set baseline) but more muted loss in
the logistic classifier (83.5% to 81.5%).

All models were drawn from Python’s scikit-learn libraries. For
reproducibility, random forest models were run with 100
estimator trees and a 2-sample minimum split criterion, while
logistic models were run on default parameters with no
regularization.

JMIRx Med 2021 | vol. 2 | iss. 4 | e29392 | p. 5https://med.jmirx.org/2021/4/e29392
(page number not for citation purposes)

DoyleJMIRx Med

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Mortality prediction performance of selected classifiers on various reduced data sets extracted via mutual information.

Average values across folds (%)Model and data set granularity

AUCb (95% CI)Accuracya (95% CI)Sensitivitya (95% CI)Specificitya (95% CI)

Random forest

96.3 (95.9-96.6)89.2 (88.0-90.4)89.1 (86.8-91.4)83.2 (80.1-86.3)25-feature data set

95.0 (94.4-95.5)90.8 (89.8-91.7)90.0 (88.3-91.6)88.3 (86.2-90.6)7-feature data set

88.1 (87.1-89.0)80.1 (79.8-81.7)76.8 (74.9-78.7)84.9 (83.3-86.2)1-feature data set

Logistic regression

88.6 (87.5-89.7)83.5 (81.9-85.1)79.6 (76.0-83.2)82.9 (79.9-85.9)25-feature data set

88.4 (87.4-89.4)79.2 (76.9-81.5)70.3 (65.4-75.2)86.5 (83.9-89.1)7-feature data set

84.2 (83.4-84.9)81.5 (81.0-82.0)80.7 (79.3-82.0)80.3 (79.4-81.3)1-feature data set

aReported performance metrics represent averages across multiple simulations of 3-fold cross validation and, due to class balance variation between
folds, accuracy metrics are not always a weighted average of their sensitivity and specificity.
bAUC: area under the curve obtained from the receiver operating characteristic curve.

Chi-Square Feature Reduction
The impact of mutual information having been assessed, Table
3 outlines the out-of-sample performance of models training on
reduced data sets extracted via chi-square significance rather
than mutual information.

We note that the trends are generally similar between reduction
methods, but some important divergences are present. Random
forest performance improvement in transitioning from 25

features to 7 is larger when extracting features through
chi-square significance, with accuracy now improving from
89.2% to 92.5%. Performance loss in the logistic classifier is
also less severe, falling from 83.5% to only 79.8% while the
AUC increases (from 88.6% to 89.5%).

Performance differentials in transitioning to a single feature
data set are similar to those summarized using mutual
information.

Table 3. Mortality prediction performance of selected classifiers on various reduced data sets extracted via chi-square significance.

Average values across folds (%)Model and data set granularity

AUCb (95% CI)Accuracya (95% CI)Sensitivitya (95% CI)Specificitya (95% CI)

Random forest

96.3 (95.9-96.6)89.2 (88.0-90.4)89.1 (86.8-91.4)83.2 (80.1-86.3)25-feature data set

95.5 (95.2-95.8)92.5 (91.9-93.0)92.0 (91.0-92.9)90.7 (89.1-92.3)7-feature data set

88.5 (88.1-89.0)81.1 (80.7-81.6)77.6 (76.6-78.6)84.8 (83.3-86.2)1-feature data set

Logistic regression

88.6 (87.5-89.7)83.5 (81.9-85.1)79.6 (76.0-83.2)82.9 (79.9-85.9)25-feature data set

89.5 (88.4-90.6)79.8 (77.3-82.1)69.9 (64.9-74.8)90.4 (89.1-91.8)7-feature data set

84.2 (83.5-84.9)81.6 (81.1-82.1)80.9 (79.8-82.1)80.2 (79.4-81.0)1-feature data set

aReported performance metrics represent averages across multiple simulations of 3-fold cross validation and, due to class balance variation between
folds, accuracy metrics are not always a weighted average of their sensitivity and specificity.
bAUC: area under the curve obtained from the receiver operating characteristic curve.

Discussion

Principal Findings
Models trained on a high-quality 212-patient data set containing
25 symptom, comorbidity, and demographic variables showed
strong detection ability, with the highest-performing model
achieving specificity of 90.7% (95% CI 89.1%-92.3%) and
sensitivity of 92.0% (95% CI 91.0%-92.9%). The impact of
dimensionality reduction on performance was explored by
extracting features, first via mutual information and second via

chi-square significance, to create two reduced data sets, one
containing 7 features and one containing a single feature.

Application of either mutual information or chi-square
significance to reduce the data set to 7 features resulted in
improvement of the predictive performance when using a
random forest classifier and in mixed performance variation
when using a logistic classifier. These results strongly suggest
that dimensionality reduction can be beneficial to model
performance or can provide reduced dependence on large feature
sets at minimal cost to performance. We also note that all models
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tested on either the 25-feature or 7-feature data sets performed
roughly in line with or not much worse than existing studies
drawing on a plethora of additional blood markers and vitals
[12-15].

Further analyzing the effect of dimensionality reduction between
reduction methods showed disparity in the final performance
impact. Comparing the performance of a random forest classifier
trained on 25 features against that trained on 7 features derived
through feature extraction, mutual information reduction resulted
in an increase in accuracy from 89.2% to 90.8%, compared to
92.5% when employing chi-square methods. In the logistic
model, mutual information resulted in a decrease in accuracy
from 83.5% to 79.2%, compared to 79.8% using chi-square
methods; additionally, it should be noted that although the AUC
decreased from 88.6% to 88.4% in the former case, it
substantially increased to 89.5% in the latter. This suggests
there can be significant variation in performance based on the
choice of reduction methods, and it is strongly advised that in
future studies—especially those containing hundreds of features
initially sifted by feature extraction methods—a wide array of
dimensionality reduction methods should be employed and
tested as hyperparameters when cross-validating models as
opposed to arbitrarily selecting one ex ante.

Beyond reduction to 7 features, an extreme reduction to a single
most salient feature—often age—was tested to highlight the
ability of the models to generalize in even the most constraining
scenario; this resulted in decreased but still sound predictive
performance and demonstrated the high baseline predictive
power that age or other salient comorbidity variables have as
standalone variables in mortality detection, with remaining
variables providing marginal additional explanatory power.

Variable importance using mutual information was explored
by reporting the 7 most salient features; symptom data—with
the exception of fever—were found to be less impactful than
comorbidities (particularly hypertension and diabetes), age, and

a proxy for the number of concomitant comorbidities. Studies
[22] with a similar focus on feature extraction confirm the
importance of these same selected features, with additions such
as chronic obstructive pulmonary disease and heart failure,
although variations in importance can be noted by age strata.

The classifiers explored in this study have been shown to have
very high mortality prediction accuracy, confirming the utility
of this class of models for patient prognosis and triage. In
hospital settings, patient histories at admission include all
relevant attributes necessary to obtain a mortality prediction
from our classifiers, resulting in timely assignment to relevant
wards based on risk level, allocation of additional monitoring
equipment, consideration for additional screenings, escalation
to a secondary prediction model with more elaborate features,
or allocation of scarce or experimental preventive treatment.

Limitations
The study’s main limitations are the period its data relate to,
which spans the first 4 months of the COVID-19 pandemic and
does not include information on new variants of concern or
current dominant strains, and the relatively even class balance
in the sample, with 64.6% of the 212 patients (n=137) dying
from disease progression. The latter in particular means that the
performance reported above, while representative, could
experience a greater disparity in sensitivity and specificity
balance when testing on the more uneven class balance implied
by the current COVID-19 mortality rate.

Conclusion
This study has confirmed the substantial accuracy that machine
learning models can bring to the early detection of mortality in
COVID-19. Additionally, we demonstrated that dimensionality
reduction can at best further increase said accuracy or at worst
materially aid hospitals in reducing the number of diagnostic
variables needed before obtaining usable predictions with only
marginal costs to performance.
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