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Abstract

Background: L-asparaginase II (asnB), a periplasmic protein commercially extracted from E coli and Erwinia, is often used
to treat acute lymphoblastic leukemia. L-asparaginase is an enzyme that converts L-asparagine to aspartic acid and ammonia.
Cancer cells are dependent on asparagine from other sources for growth, and when these cells are deprived of asparagine by the
action of the enzyme, the cancer cells selectively die.

Objective: Questions remain as to whether asnB from E coli and Erwinia is the best asparaginase as they have many side effects.
asnBs with the lowest Michaelis constant (Km; most potent) and lowest immunogenicity are considered the most optimal enzymes.
In this paper, we have attempted the development of a method to screen for optimal enzymes that are better than commercially
available enzymes.

Methods: In this paper, the asnB sequence of E coli was used to search for homologous proteins in different bacterial and
archaeal phyla, and a maximum likelihood phylogenetic tree was constructed. The sequences that are most distant from E coli
and Erwinia were considered the best candidates in terms of immunogenicity and were chosen for further processing. The structures
of these proteins were built by homology modeling, and asparagine was docked with these proteins to calculate the binding
energy.

Results: asnBs from Streptomyces griseus, Streptomyces venezuelae, and Streptomyces collinus were found to have the highest
binding energy (–5.3 kcal/mol, –5.2 kcal/mol, and –5.3 kcal/mol, respectively; higher than the E coli and Erwinia asnBs) and
were predicted to have the lowest Kms, as we found that there is an inverse relationship between binding energy and Km. Besides
predicting the most optimal asparaginase, this technique can also be used to predict the most optimal enzymes where the substrate
is known and the structure of one of the homologs is solved.

Conclusions: We have devised an in silico method to predict the enzyme kinetics from a sequence of an enzyme along with
being able to screen for optimal alternative asnBs against acute lymphoblastic leukemia.
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Introduction

Acute lymphoblastic leukemia is a malignant cancer of the white
blood cells characterized by uncontrolled overproduction and
accumulation of lymphoid progenitor cells [1]. It is most
common among children, which compromise 80% of the
worldwide acute lymphoblastic leukemia occurrences, although
some cases in adults are also seen. It is equally life-threatening
in both cases. In the United States, acute lymphoblastic leukemia
is estimated to have a frequency of 1.7 cases per 100,000 people
[2]. In 2015 alone, 111,000 deaths were reported out of 876,000
cases worldwide [3]. Thus, a substantial potential market exists
for new and improved therapies to acute lymphoblastic
leukemia.

Experiments in the 1950s with guinea pig serum have shown
that it could inhibit the growth of transplantable lymphoblastic
tumors in mice and rats along with radiation-induced leukemia
in mice [4]. Research linked this effect to guinea pig serum
being rich in L-asparaginase [5], a nonhuman enzyme of often
bacterial origin, belonging to the amidase group that hydrolyses
the amide bond in L-asparagine to form L-aspartic acid and
ammonia [6]. It has since been shown to be an effective
antineoplastic agent and is often used in conjugation with
chemotherapy for acute lymphoblastic leukemia treatment.

Normal cells require L-asparagine as an amino acid for the
synthesis of proteins. A natural diet like vegetables is one of
the sources of L-asparagine for the body. It is not classified as
an essential amino acid as it is naturally synthesized by the body
through a pathway involving the enzyme L-asparagine synthase,
which coverts aspartic acid and glutamic acid into L-asparagine
[7]. Neoplastic cells like acute lymphoblastic leukemia cells
lack this enzyme and therefore are not able to produce
L-asparagine on their own [8]. This leaves them dependent on
L-asparagine from outside sources like the serum where it is
pooled from diet and from normal cells. This provides the basis
for the use of L-asparaginase as a therapeutic agent against acute
lymphoblastic leukemia, the intent being to deplete the local
circulating pools of L-asparagine in the blood serum thus
starving the cancer cells of the amino acid and causing cell
death.

L-asparaginase is produced by a wide variety of organisms and
can be classified into several families. The ones of therapeutic
interest can consist of two enzymes called L-asparaginase of
two closely related families named L-asparaginase I and
L-asparaginase II. L-asparaginase I, referred to also as asnA, is
a low-affinity enzyme found in the cytoplasm and is
constitutively produced by the organism. L-asparaginase II,
referred to as asnB, on the other hand, is a high-affinity
periplasmic enzyme expressed during anaerobiosis. Its
expression is dependent on aeration, carbon source, and amino
acid availability [9].

Extracellular L-asparaginase accumulates in the culture broth
and thus is most favorable for extraction and downstream

processing for commercial production [10]. The most
commercial form of therapeutic L-asparaginase is extracted
from E coli and Erwinia species. They secrete the enzyme into
the periplasmic space between the plasma membrane and the
cell envelope [11]. The enzyme is extracted by lysis of the cells,
which brings the enzyme along with inner cell contents into the
culture medium. It is usually purified using fractionation with
ammonia sulfate.

However, the commercially available L-asparaginase has several
drawbacks. L-asparaginase from E coli and Erwinia is known
to show immunogenic and allergic reactions. Most therapeutic
use of L-asparaginase has shown toxicity [12]. Toxicity of
L-asparaginase can be attributed to lower activity of the enzyme
to L-asparagine and higher activity to glutamine. Thus, the
decrease in glutamine levels in the normal cells causes an
allergic reaction [13]. Another problem with the currently
available L-asparaginase is the immunological response. The
body recognizes the enzyme as being foreign and thus mounts
an immune response against the enzyme, which can range from
a mild allergic reaction to anaphylactic shock [14].

The Michaelis constant (Km) is a value for the substrate
concentration at which the reaction rate is half of the maximum
reaction rate. A lower Km suggests that the enzyme can reach
half the maximum reaction rate at lower substrate
concentrations. One can interpret this to mean that enzymes
with lower Km have greater activity toward that substrate. An
enzyme with greater activity toward L-asparagine can be
expected to show fewer undesirable effects, as it will have a
lower activity to unintended substrates [15]. Another useful
metric for the measurement of enzyme activity is kcat or the
turnover number. It gives the number of substrates converted
to a product by a single molecule of enzyme per unit time. The
turnover number signifies the rate at which a substrate is
catalyzed by the enzyme [16].

Catalysis is based on binding energy that lowers the activation
energy and overcomes the unfavorable entropic requirements
needed for the correct orientation of the catalyst and reactants
brought together for reaction [17]. Binding energy is the energy
released when a substrate forms weak bonds with the enzyme
active site. Binding energy is measured as the free energy (Delta
G). Gibbs free energy, defined as “a thermodynamic potential
that measures the capacity of a thermodynamic system to do
maximum or reversible work at a constant temperature and
pressure (isothermal, isobaric), is one of the most important
thermodynamic quantities for the characterization of the driving
forces” [18].

Experimental calculation of this energy is difficult and
cumbersome. Thus, experimental screening techniques for a
lead compound for drug candidates are still expensive and slow
despite several advances in automation and parallelization of
the process. A more efficient method would be to screen a large
library of small molecules in silico before short-listing a small
group for experimental verification. The availability of large
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volumes of experimental data on the 3D structure of the enzymes
and their substrates allows us to analyze their interaction.
Docking is one of these in silico methods where rigid body
interaction of contact surfaces of the ligand or small molecules
and the target protein is determined using computational
methods. Combinatorial methods are used to account for the
ligand conformational flexibility, and various energy functions
are used to calculate energetics of the interaction. Docking is
typically used to screen for potential lead compound candidates
from a large library of small molecules based on their binding
energy and other parameters to the target protein. Those
compounds with greater binding energy to the protein are seen
as potential inhibitors and thus considered to lead for developing
drugs of therapeutic value [19]. However, in
L-asparaginase–based therapy of acute lymphoblastic leukemia,
the enzyme itself is used as a therapeutic agent, while the
substrate, L-asparagine, is the target compound. Our goal in
this research is to find a better enzyme candidate with more
favorable interaction with our target compound. Thus, our use
of docking in this research is different from the standard use of
the docking method. We used docking to screen a collection of
L-asparaginase enzyme from different organisms and select a
suitable enzyme based on its binding energy to L-asparagine.

The E coli L-asparaginase II has a functional form in a
homotetramer having the molecular mass from 140 to 160 kDa.
The monomers are 330 amino acid long and have two distinct
domains. One is the larger N-terminal domain and the other is
the smaller C-terminal domain. The two domains are connected
by a 20-residue linker. The functional form of the enzyme is
thought to contain five active sites [20].

Homology modeling is a technique used to generate a model
from an amino acid sequence based on a template of a 3D
structure of a closely related protein obtained via experimental
data. It uses comparative protein structure modeling where the
template and the query sequences are aligned and the query’s
structure is predicted. According to Eswar et al [21], it has the
following four major steps: fold assignment, which identifies
similarity between the target and at least one known template
structure; alignment of the target sequence and the template or
templates; building a model based on the alignment with the
chosen template or templates; and predicting model errors. We
have used MODELLER 9.22 to model L-asparaginase sequence
from the organisms that were selected, using the E coli
L-asparaginase II (PDB ID: 1nns) as a template for generating
all of them.

E coli and Erwinia L-asparaginases, the two commercially
available forms of the therapeutic enzymes, have deficiencies
in the aforementioned parameters. Thus, they show
unsatisfactory results and side effects. In this research, we hope
to find a better L-asparaginase from a different host organism
for the commercial production of this therapeutic enzyme. We
hypothesize that a host whose L-asparaginase amino acid
sequence is distinct from that of the currently used organisms
can be assumed to have markedly different properties. We can
screen such a family or genus of host organisms and hope to
find L-asparaginase that displays kinetic and binding properties
that decrease the chances of immunogenic and allergic reactions
making it more favorable for therapeutic use. We have used a

phylogenetic tree-based approach to find such host organisms.
A phylogenetic tree is an important bioinformatics tool that
allows us to analyze the sequences of proteins, DNA, and RNA
to find the historical and evolutionary relationship between the
sequences. The nodes of a tree can be given values as support
values for its reliability. These are called bootstrap values that
give the expectation of that particular node in the many alternate
trees generated by reruns of the same sequence data set [22].
Many algorithms for tree construction exist. Here, we have used
the maximum likelihood (ML) algorithm in the MEGA
bioinformatics tool to construct, bootstrap, and analyze our tree.
The tree was used to look for hosts with evolutionarily distant
L-asparaginase sequences, which can be screened for desired
properties using docking tools.

Methods

Phylogenetic Tree Construction
To construct a phylogenetic tree, we retrieved the L-asparaginase
B (asnB) protein sequence of Escherichia coli k12 strain from
the Uniprot [23] (UniProtKB-P00805 ASPG2_ECOLI).
Microorganisms that are capable of producing the asnB based
on the previous literature [24-27] were searched by doing blastp
in the National Center for Biotechnology Information (NCBI)
database [28]. Basic Local Alignment Search Tool (BLAST)
is a sequence analysis tool that searches a database for sequences
that are similar to a query sequence. Blastp is a variation of
standard blast that searches a database of nonredundant and
nonpatented sequences based on a query sequence. Blastp can
be used to search a database for organisms that produce
sequences that are the same or similar to our query sequence,
helping us in compiling a list of known asnB-producing
organisms that can be used for construction of our phylogenetic
tree. The protein sequence of E coli k12 asnB was used as the
query sequence for blastp on a nr database resulting in a list of
organisms that produced proteins of a similar sequence. The
organisms with percentage identity greater than or equal to 30%
were selected. The genomes of two types of organisms were
searched for the presence of asnB. The first group of organisms
were already characterized for the production of asnB protein.
The other group of organisms included bacteria and archaea
from various phyla [29] that represented the entire tree of life.
A total of 101 sequences were retrieved after searching for asnB
sequence in organisms given by the literature. Organisms with
more than one asnB sequences were also retrieved and labeled
as genus species 1, 2, or 3. The phylogenetic tree was then
constructed in Mega-X software (Pennsylvania State University)
[30], in which the alignment was done by Muscle. The following
criteria were used to run a tree: statistical method: ML; test of
phylogeny: bootstrap method; substitution type: amino acid;
model or method: WAG model; rates among sites: gamma
distributed with invariant sites, number of discrete gamma
categories: 5; gaps or missing data treatment: partial deletion;
site coverage cutoff: 95%; ML heuristic method: nearest
neighbor interchange; initial tree for ML: make initial tree
automatically (Default-NJ/BioNJ); branch swap filter: None;
and number of threads: 3 [31]. In our method, we have used a
sequence based on genetic or evolutionary distance for the
construction of our tree.
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Homology Modeling
The organisms that were distantly placed in the phylogenetic
tree with respect to E coli and Erwinia were chosen, and
organisms whose enzymes were characterized in the literature
were also chosen. To carry out homology modeling, the
MODELLER 9.22 was used. The selected organism’s asnB
sequence was used as the query while E coli k12 asnB (“1nns”)
[32] with a resolution of 1.95 Å was used as the reference
template. Discrete optimization protein energy (DOPE) is an
atomic distance–based scoring function used to access the
quality of models produced from homology modeling, derived
from a sample of native protein structures in PDB. Statistically
optimized atomic potentials (SOAP) is another scoring function
based on data from native protein structures used in the
assessment of homology modeling results. For each organism,
the structure with the lowest DOPE or SOAP assessment score
and with the highest GA341 assessment score was selected [33].
Each protein’s model was then checked for protein structure
stereochemistry including Ramachandran plot and Psi/Phi angles
using PROCHECK. Further verification was done using
WHATCHECK and ProSA-web [34].

Active Site Prediction
After the validation of the model, active sites for each protein
were determined using PyMol (Schrödinger, Inc) software [35].
The models built were superimposed to the 1nns structure, and
then by aligning both model and 1nns sequences, the active site
with reference to the 1nns active site was predicted. The active
site of 1nns for L-asparagine is T(12), S(58), Q(59), T(89), and
D(90) [36].

Molecular Docking Studies
Docking of ligands, L-asparagine (derived from the PubChem
website) with enzymes L-asparaginases (distant proteins from
E coli and Erwinia and enzymes with measured Km value) was
performed by using AutoDock Vina [37] conjugated with PyRx
software (Sarkis Dallakian) [38]. The AutoDock tool’s graphic
interface was used for the preparation of all the proteins
(enzymes). Proteins were prepared by removing water, adding
polar hydrogen, merging nonpolar, and adding Kollman charge.
In the case of ligand, L-asparagine was retrieved from PubChem
(Compound CID: 6267; molecular formula: C4H8N2O3;
molecular weight: 132.12 g/mol) [39]. Energy minimization
was done by the Universal Force Field using Open Babel (Open
Babel Development Team) software [40] conjugated with PyRx.
The grid parameter file and docking parameter file were set,
and the grid points for auto grid calculations were set as 25 ×
25 × 25 Å, with the active site residues in the middle of the grid
box. The algorithm used in the overall process was the
Lamarckian genetic algorithm, which was used to calculate
protein-fixed ligand-flexible calculations [41].

Interacting Atoms With Active Sites
Distant organisms’ asnBs with the best binding energies were
selected. The docked protein and ligand files were run on
ligPlot+ (European Bioinformatics Institute) software [42] for
viewing the interacting atoms between ligands and proteins.

Relation Between Km, kcat, and Binding Energy

To evaluate if the binding energy could predict the relative
efficacy of the enzymes, Km and kcat values from the literature
were tabulated alongside binding energy. A total of 10 Km and
5 kcat values were obtained from the literature for asnBs of
different species. The line fitted plot was drawn using minitab
[43], plotting binding energy on the x-axis and Km on the y-axis.

Pairwise Sequence Alignment
Pairwise sequence alignment and comparison of three predicted
optimal asnB enzyme sequences was done against the E coli
asnB enzyme sequence using blastp (protein-protein blast) on
Blast+ [28]. Scoring parameters used were BLOSUM62 matrix,
gap penalties of 11 for existence, and 1 for extension.

Results

Deductions From the Phylogenetic Tree
A list of asparaginase-producing organisms were compiled from
the literature. Asparaginase II (asnB) homologs of these
organisms were searched by protein blasting asnB from E coli
against the nonredundant protein database of these organisms
in NCBI. The organisms whose genomes are not sequenced
were not used in this study. Additionally, the protein database
of a wide variety of bacteria and archaea from different phylum
were searched for the presence of asnB. The two lists were
compiled to make up our list of a wide range of asnBs. A ML
phylogenetic tree of 101 asnBs was drawn for these proteins
using Mega X software using the parameters described in the
Methods section. The resulting tree is shown in Figure 1. The
phylum of bacteria, archaea, and fungi to which the proteins
belong to is labeled on the right. Unlike most other proteins for
which similar trees were drawn, there were minimal proteins
from the same phylum that lay next to each other in the tree.
When a similar tree was drawn for Ku protein in bacteria and
beta clamp for bacteria, proteins from the same phylum tended
to cluster together in the tree (unpublished data). Although some
clustering is found for asnB tree, proteins from the same phylum
are distributed throughout the tree, indicating extensive
horizontal gene transfer. Among the list of asnBs that we have
collected, the largest number of proteins comes from
proteobacteria (alpha, beta, gamma, delta, and epsilon).

Besides predicting the origin and history of asparaginases, the
tree is also useful in predicting which of the asnBs are closely
related by evaluating which lie close together and which lie
further apart. From the tree, the most common commercially
used asnB from E coli lies somewhere in the center. The other
commercially used asnB from Erwinia (nowadays called
Dickeya chrysanthami) lies at the top of the tree. The asnBs
that are most distant from these two commercially available
asparaginases, and hence least likely to give an immunogenic
reaction when these two give an immunogenic reaction, lie at
the bottom of the tree. Of the 101 asnBs used in construction
of the phylogenetic tree, 23 asnBs were selected as candidates
for better enzyme activity due to them being the most
evolutionarily distant from the commercially available asnBs.
These have been labeled in Figure 1. Most of them lie in the
Streptomyces genus and some are from archaea. Since most of
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the candidates in this group were Streptomyces, we decided to
limit our list of potential asnB candidates to the 13 Streptomyces
species in the list. Thus, we screened 13 potential species out

of the 101 asnB-producing organisms we had found via blastp
due to them being most evolutionarily distant from the
organisms that produce commercially available asnBs.

Figure 1. Phylogenetic tree of the total 101 sequences of asnBs using the maximum likelihood method. The top and middle portion of the tree under
the red rectangle shows organisms that are currently used for the commercial production of asnBs for the treatment of acute lymphocytic leukemia. The
bottom portion of the tree shows organisms that are most distant to E coli (mostly Actinobacteria), and their enzyme activity is yet to be discovered.

Use of a phylogenetic tree is perfectly adequate for identifying
organisms that produce asnBs that can be expected to have better
activity and lower immunogenicity than commercially available
asnBs. This is because there is a direct relationship between a
protein’s sequence, structure, function, and immunogenicity.
Therefore, asnBs that are evolutionarily distant to commercially
available asnBs can be expected to have markedly different
structure and can be expected to have potentially better activity
than commercial variants. We can also expect evolutionarily
distant asnBs to show different immunogenicity when compared
to their commercial counterparts. The severity of immunogenic
reaction from an antigen on an organism depends on the measure

of its novelty. Immune response to a biological macromolecule
is complex and dependent on many factors, a significant one
being structure, which is dependent on sequence [44]. Two
proteins that are evolutionarily different will also be structurally
different and thus have different levels of immune responses.
An example is that commonly used experimental antigen bovine
serum albumin does not show immunogenic reaction when
injected in cows but is actively immunogenic when injected
into rabbits. Sidewise it would show enhanced reaction in
chickens than in goats, for the reason that the latter is closely
related to bovines. These analyses endorse that the greater the
phylogenetic distances between two species, the greater the

JMIRx Med 2021 | vol. 2 | iss. 3 | e29844 | p. 5https://med.jmirx.org/2021/3/e29844
(page number not for citation purposes)

Baral et alJMIRx Med

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


structural (and therefore the antigenic) divergence that can be
found between them [45].

Homology Modeling and Verification
For homology modeling, MODELLER 9.22 (University of
California, San Francisco) software was used, and five models
were built for each protein, among which the model with the
lowest DOPE was selected. This software uses an inbuilt DOPE
function to access the quality of all the models that were made.
The model that was selected according to the lowest DOPE
scores was validated using Ramachandran plot. A
Ramachandran plot of the three best organisms that lie distant
to the E coli and have a better binding affinity toward
L-asparagine than E coli and Dickeya chrysanthami are shown
in Figures 2-4. The plot shows 94.5% (256/271) of residues in
most favored regions, 4.4% (12/271) in additional allowed
regions, 0.4% (1/271) residues in generously allowed regions,
and 0.7% (2/271) residues in disallowed regions for
Streptomyces collinus (Figure 2); 86% (263/304) of residues in
most favored regions, 10.5% (32/304) in additional allowed
regions, 2.3% (7/304) residues in generously allowed regions,
0.7% (2/304) residues in disallowed regions for Streptomyces
griseus 1 (Figure 3); and 90.7% (244/269) of residues in most
favored regions, 7.8% (21/269) in additional allowed regions,
0.7% (2/269) residues in generously allowed regions, and 0.7%
(2/269) residues in disallowed regions for Streptomyces
venezuelae 2 (Figure 4). More than 99% of residues in the
allowed region given by the Ramachandran plot indicate a very

good model. Furthermore, the Ramachandran z scores calculated
by WHATCHECK (–0.245, –1.024, and –0.830 for S collinus,
S griseus 1, S venezuelae 2, respectively) fall on the accepted
region [46] and were allowed by the WHATCHECK. The
structures were finally validated using ProSA-web server. This
server gives the z score, which indicates the overall model
quality and measures the deviation of the total energy of the
structure with respect to an energy distribution derived from
random conformations [47]. The z scores given by the server
(–9.44, –7.88, and –9.07 for S collinus, S griseus 1, and S
venezuelae 2, respectively) fall inside the range of the plot (black
dot) that contains the z scores of all the experimentally
determined protein in the PDB (X-ray, nuclear magnetic
resonance; part a of Figures 5-7). The energy plot (part b of
Figures 5-7) indicates the local model quality by plotting energy
as the function of the amino acid sequence. Generally, the
portion in the positive region of the plot indicates the erroneous
part of the structure. We can conclude from the plot that the
structure is feasible or accepted as overall residue energies fall
under the negative part of the plot. The colored 3D structure of
the proteins (part c of Figures 5-7) shows that the portion in red
color is of high energy and the portions with the blue color are
of low energy [34]. Validation of all other structures used in
the experiment is in Multimedia Appendix 1. Most of the active
site residues are conserved in every model made by
MODELLER 9.22 in reference to the 1nns structure, which also
signifies that good models were made during the process and
can proceed toward the docking (Table 1).
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Figure 2. Ramachandran plot of Streptomyces collinus. The Ramachandran plot shows the phi-psi torsion angles for all residues (black cubes) in the
structure (except those at the chain termini). Glycine residues are separately identified by triangles, as these are not restricted to the regions of the plot
appropriate to the other sidechain types. The darkest red area indicates "core" regions representing the most favorable combinations of phi-psi values.
The regions are labeled as follows: A (core alpha), L (core left-handed alpha), a (allowed alpha), l (allowed left-handed alpha), ~a (generous alpha), ~l
(generous left-handed alpha), B (core beta), p (allowed epsilon), b (allowed beta), ~p (generous epsilon), and ~b (generous beta).
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Figure 3. Ramachandran plot of Streptomyces griseus 1. The Ramachandran plot shows the phi-psi torsion angles for all residues (black cubes) in the
structure (except those at the chain termini). Glycine residues are separately identified by triangles, as these are not restricted to the regions of the plot
appropriate to the other side chain types. The darkest red area indicates the "core" regions representing the most favorable combinations of phi-psi
values. The regions are labeled as follows: A (core alpha), L (core left-handed alpha), a (allowed alpha), l (allowed left-handed alpha), ~a (generous
alpha), ~l (generous left-handed alpha), B (core beta), p (allowed epsilon), b (allowed beta), ~p (generous epsilon), and ~b (generous beta).

Figure 4. Ramachandran plot: Streptomyces venezuelae 2. The Ramachandran plot shows the phi-psi torsion angles for all residues (black cubes) in
the structure (except those at the chain termini). Glycine residues are separately identified by triangles, as these are not restricted to the regions of the
plot appropriate to the other sidechain types. The darkest red area indicates the "core" regions representing the most favorable combinations of phi-psi
values. The regions are labeled as follows: A (core alpha), L (core left-handed alpha), a (allowed alpha), l (allowed left-handed alpha), ~a (generous
alpha), ~l (generous left-handed alpha), B (core beta), p (allowed epsilon), b (allowed beta), ~p (generous epsilon), ~b (generous beta).
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Figure 5. Validation of model Streptomyces collinus. (a) ProSA-web z scores of all protein chains in the Protein Data Bank determined by X-ray
crystallography (light blue) or NMR (dark blue) with respect to their length. The black dot in the plot indicates that the model protein structure falls
inside the range of the plot that contains the z score of all the experimentally determined proteins in the Protein Data Bank. The plot shows only chains
with less than 1000 residues and a z score 10. The z scores of model proteins are highlighted as large dots. (b) Energy plot of model protein that indicates
the local model quality by plotting energy as the function of the amino acid sequence. Generally, the portion in the positive region of the plot indicates
the erroneous part of the structure. (c) Residues are colored from blue to red in the order of increasing residue energy. NMR: nuclear magnetic resonance.

Figure 6. Validation of model: Streptomyces griseus 1. (a) ProSA-web z scores of all protein chains in the Protein Data Bank determined by X-ray
crystallography (light blue) or NMR spectroscopy (dark blue) with respect to their length. The black dot in the plot indicates that the model protein
structure falls inside the range of the plot that contains the z score of all the experimentally determined proteins in the Protein Data Bank. The plot
shows only chains with less than 1000 residues and a z score of 10. The z scores of model proteins are highlighted as large dots. (b) Energy plot of
model protein that indicates the local model quality by plotting energy as the function of the amino acid sequence. Generally, the portion in the positive
region of the plot indicates the erroneous part of the structure. (c) Residues are colored from blue to red in the order of increasing residue energy. NMR:
nuclear magnetic resonance.
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Figure 7. Validation of model: Streptomyces venezuelae 2. (a) ProSA-web z scores of all protein chains in the Protein Data Bank determined by X-ray
crystallography (light blue) or NMR spectroscopy (dark blue) with respect to their length. The black dot in the plot indicates that the model protein
structure falls inside the range of the plot that contains the z score of all the experimentally determined proteins in the Protein Data Bank. The plot
shows only chains with less than 1000 residues and a z score 10. The z scores of model proteins are highlighted as large dots. (b) Energy plot of model
protein that indicates the local model quality by plotting energy as the function of the amino acid sequence. Generally, the portion in the positive region
of the plot indicates the erroneous part of the structure. (c) Residues are colored from blue to red in the order of increasing residue energy.
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Table 1. Predicted active sites of proteins of organisms that were distant to the E coli and organisms whose Km has been determined experimentally

(described elsewhere in the paper).a

Predicted active site residuesOrganisms

T(34), S(80), Q(81), T(111), D(112)Escherichia coli

I(12), S(61), S(62), T(94), D(95)Streptomyces globisporus

I(12), S(61), S(62), T(94), D(95)Streptomyces venezuelae 1

T(20), S(61), S(62), T(94), D(95)Streptomyces griseus 1

T(12), S(53), P(54), T(86), D(87)Streptomyces katrae

A(12), G(43), A(44), T(75), D(76)Streptomyces fradiae

T(12), M(62), R(63), T(94), D(95)Streptomyces albidoflavus 1

T(12), M(62), R(63), T(94), D(95)Streptomyces albidoflavus 2

T(12), R(63), L(64), T(94), D(95)Streptomyces albidoflavus 3

T(8), S(50), Y(51), T(83), D(84)Streptomyces fradiae 2

T(16), S(63), L(64), T(94), D(95)Streptomyces collinus

T(16), P(60), G(61), T(94), D(95)Streptomyces griseus 2

T(13), S(54), L(55), T(83), D(84)Streptomyces aurontiacus

T(12), —, —, T(79), D(80)Streptomyces venezuelae 2

T(34), S(81), E(82), T(114), D(115)Pectobacterium carotovorum 1

T(36), S(83), E(84), T(116), D(117)Dickeya chrysanthami (Erwinia) 1

T(55), S(102), Q(103), S(135), D(136)Bacilus aryabhattai

T(62), S(109), Q(110), T(142), D(143)Bacillus Licheniformis 1

T(61), S(108), T(109), T(141), D(142)Bacillus subtilis 1

T(62), S(109), E(110), T(142), D(143)Delftia acidovorans 1

T(45), S(92), E(93), T(125), D(126)Azotobacter vinelandii

T(36), S(83), E(84), T(116), D(117)Dickeya chrysanthami (Erwinia) 2

T(34), S(80), Q(81), T(113), D(114)Helicobacter pylori 1

—, S(80), D(81), T(113), D(114)Pseudomonas stutzeri 1

—, S(80), D(81), T(113), D(114)Pseudomonas stutzeri 2

T(61), S(108), T(109), T(141), D(142)Bacillus subtilis 2

T(63), S(110), T(111), T(143), D(144)Bacillus licheniformis 2

T(62), S(109), E(110), T(142), D(143)Delftia acidovorans 2

T(34), S(80), Q(81), T(113), D(114)Helicobacter pylori 2

T(34), S(81), E(82), T(114), D(115)Pectobacterium carotovorum 2

aFive amino acids were conserved, which has been termed a pentad in this paper. The letter represents the amino acid involved in the active site, the
number in parenthesis represents the position of the amino acid. When no amino acid homology was found, the site was left blank with an em dash.

Active Site of asnBs
Along with the 1nns structure of E coli asnB, obtained from
pdb, comes the description of active site amino acid residues.
Using aspartate as a surrogate for asparagine, the active sites
have been predicted. For the full-length protein, the active site
contains 5 amino acid residues: T(34), S(80), Q(81), T(111),
and D(112). These 5 residues can be called a pentad. A table
with these pentad residues has been constructed for asnBs of
other organisms (Table 1). Four of the five residues—T(34),
S(80), T(111), and D(112)—are highly conserved across species
(Table 1).

Km, kcat, and Binding Energies of asnBs

To further predict which list of asnBs would be most useful to
treat acute lymphoblastic leukemia, binding energies were
calculated using docking software. First, using a 1nns structure
of E coli asnB, structures of unsolved asnBs were predicted
using homology modeling These structures were docked to
asparagine to calculate binding energy. To evaluate if the
binding energy could predict the relative efficacy of the
enzymes, Km and kcat values from the literature were tabulated
alongside binding energy (Table 2). A total of 10 Km values
were obtained from the literature for asnBs of different species.
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For the species with only 1 Km value—Escherichia coli,
Azobacter vinelandi, and Bacillus aryabhattai—comparison
between the relationship of Km and binding energy was easy.
When Km value increased, binding energy decreased. Species
with the highest binding energy, E coli, also had the lowest Km
value. Species with the lowest binding energy, Bacillus
aryabhattai, had the highest Km value.

However, six species contained two asparaginases. From the
literature, specific Km values could be assigned to specific
asnBs (ie, sequence of protein used to calculate the Km
experimentally and sequence of protein used to calculate the
binding energy were the same). Those asnBs are marked in the
table. Dickeya chrysanthami 2, Heliobacter pylori 1, and
Bacillus subtilis 1 had known Km values that were assigned
next to them on the table. Similarly, using docking, separate

binding energies could be calculated for each asnB protein. In
species where two asnBs are available, the Km value measured
for the species is assigned to asnB that most closely forms an
inverse relationship with the binding energy. For example,
Pseudomonas stutzeri has two asnBs with binding energies of
–5.1 Kcal/mol and –4.9 kcal/mol. Since its Km value is high,
the asnB with low binding energy was assigned this Km,
although this could not be verified experimentally. When all
values were assigned, a clear inverse relationship between Km
and binding energy emerged. The binding energies of asnB to
asparagine ranged from –5.1 kcal/mol to –4.4 kcal/mol, which
are relatively high values of binding in AutoDock Vina software.
No relationship could be discerned for kcat value and binding
energy. To be able to compare Km value to binding energies,
plots were drawn. A smooth curve was fitted (Figure 8).

Table 2. Km value, kcat value (retrieved from the literature), and binding energy (calculated by AutoDock Vina) of the enzyme, asnB, toward L-asparagine.

References
Binding affinity calculated
from docking (kcal/mol)

Measured kcat values from

literature (s–1)a
Michaelis constant value
from literature (mM)Organism

[48]–4.82.68 × 1030.014Bacillus licheniformis 1

[49]–5.12.4 × 1010.015Escherichia colib

[50]–5.1—c0.015Deftia acidovorousb

[51]–5.023.8 × 1030.058Dickeya chrysanthami 2b

[52]–4.9—0.11Azobacter vinelandib

[53]–4.9—0.14Pseudomonas stutzeri 2

[54]–4.8—0.257Bacillus aryabhattaib

[55]–4.819.26 +/– 0.560.29Helicobacter pylori 1b

[56]–4.5—0.43Bacillus subitilis 1b

[57]–4.42.751 × 1030.657Pectobacterium carotovorum 1

—–4.4——Dickeya chrysanthami 1

—–4.6——Bacillus licheniformis 2

—–5.1——Pseudomonas stutzeri 1

—–5.0——Deftia acidovorous 2

—–5.0——Bacillus subtilis 2

—–4.7——Pectobacterium carotovorum 2

—–5.1——Heliobacter pylori 2

akcat values demonstrate no relationship to the binding energy.
bFor 6 species, corresponding Km values and binding energies are known (ie, the sequence of protein used to calculate the Km experimentally and the
sequence of protein used to calculate the binding energy were the same). For four other species, the Km value that best fit the binding energy value was
randomly assigned. The six Km values are perfectly inversely correlated to binding energies.
cExperimental data is not available for these particular organisms in the literature.
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Figure 8. Relation between Km and binding energy of enzyme toward L-asparagine. The fitted line plot shows that Km and binding energy are inversely
proportional to each other. The more negative the binding energy, the less the Km value is. More negative binding energy and less Km signifies the
greater affinity of an enzyme toward the substrate. All the enzymes' Km and Binding energy shows how they are inversely proportional to each other
except one, which is the enzyme from Bacillus licheniformis 1 (0.014mM Km at –4.8 kcal/mol). We were also unable to confirm that the sequence of
the enzyme that was used to calculate the Km value [48] and the sequence of the enzyme used in this experiment was the same.

Finding an Optimal asnB
For 13 asnBs that are most distant from E coli and Erwinia
asparaginase, binding energies were calculated using docking
(Table 3). The proteins for which binding energy were calculated
are Streptomyces albidoflavus 1, 2, and 3; Streptomyces
aurantiacus; Stereptomyces collinus; Streptomyces fradiae 1
and 2; Streptomyces globisporus; Streptomyces griseus 1 and

2; Streptomcyces katrae; and Streptomyces venezuelae 1 and 2.
Out of these 13 proteins, 3 asnBs—Stereptomyces collinus,
Streptomyces griseus 1, and Streptomyces venezualae
2—showed biding energy of –5.3 kcal/mol, –5.3 kcal/mol, and
5.2 kcal/mol, respectively, higher than E coli anB. Docked
structures are shown in Figures 9-12. These asparaginases can
be further cloned and tested for Km and kcat values.

Figure 9. Docked structure of Escherichia coli asnB and L-asparagine. L-asparagine is seen to be completely impended in the catalytic pocket of the
enzymes.

Figure 10. Docked structure of Streptomyces griseus 1 asnB and L-asparagine. L-asparagine is seen to be completely impended in the catalytic pocket
of the enzymes.
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Figure 11. Docked structure of Streptomyces venezuelae 1 asnB and L-asparagine. L-asparagine is seen to be completely impended in the catalytic
pocket of the enzymes.

Figure 12. Docked structure of Streptomyces collinus asnB and L-asparagine. L-asparagine is seen to be completely impended in the catalytic pocket
of the enzymes.

Table 3. Binding energy of distant organism’s asnB and L-asparagine.

Binding affinity calculated from docking (kcal/mol)Organisms

–4.8Streptomyces albidoflavus 1

–4.8Streptomyces albidoflavus 2

–4.5Streptomyces albidoflavus 3

–4.2Streptomyces aurantiacus

–5.3Streptomyces collinus a

–4.9Streptomyces fradiae 1

–4.9Streptomyces fradiae 2

–4.2Streptomyces globisporus

–5.3Streptomyces griseus 1a

–4.6Streptomyces griseus 2

–4.9Streptomyces katrae

–4.8Streptomyces venezuelae 1

–5.2Streptomyces venezuelae 2a

aStreptomyces collinus, Streptomyces griseus 1, and Streptomyces venezuelae 2 asnBs have –5.3 kcal/mol, 5.3 kcal/mol, and 5.2 kcal/mol binding energy,
respectively, which is greater than the E coli and Dickeya chrysanthami –5.1 and –5.0 kcal/mol, respectively, which indicate that these organisms’ asnB
have a greater affinity toward the L-asparagine.

Pairwise Sequence Alignment
We also compared the amino acid sequence of the three optimal
asnBs selected with that of E coli asnB sequence. Streptomyces

venezuelae 2 showed the highest alignment score of 130 with
34% sequence identity to E coli asnB. Streptomyces collinus
showed 33% identity with E coli and an alignment score of 122.
Streptomyces griseus 1 had the lowest alignment score of 119

JMIRx Med 2021 | vol. 2 | iss. 3 | e29844 | p. 14https://med.jmirx.org/2021/3/e29844
(page number not for citation purposes)

Baral et alJMIRx Med

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


and sequence identity of 32% among the three optimal asnBs
selected. Conversely, Streptomyces griseus 1 had the lowest E

value (3 × 10–35) compared to Streptomyces venezuelae 2 (2 ×

10–39) and Streptomyces collinus (2 × 10–36). All of them had a
similar percentage of gaps when aligned with the query sequence
shown in Figure 13.

Figure 13. Sequence alignment results for Streptomyces collinus, Streptomyces griseus 1, and Streptomyces venezuelae 2 asnB sequences with the E
coli asnB sequence. The query sequence is displayed above the subject. Starting and ending amino acid positions for each row are given for both query
and subject. The score, E values, the percentage of positive hits, and the percentage of gaps are given above the alignment diagram.

Interaction With Active Sites
A LigPlot showing active site interactions of asnB and
asparagine was constructed and is shown in Figure 14. The
active site of E coli asnB contains all 5 active site residues. Four
of those residues—T(34), S(80), Q(81), and T(111)—form direct
hydrogen bonding with asparagine. D(112), unlike in the 1nns
active site predicted by pdb, does not form a hydrogen bond
and only stays in the active site as a hydrophobic interactor in
our LigPlot model. As 1nns is the structure complexed with
aspartic acid (D), a closer inspection of the active site
interactions in the 1nns predicted in the pdb website and our
LigPlot model show some similarities and some variations.

LigPlot showing active site interactions of asnB and asparagine
was constructed and shown in Figure 14. In Streptomyces
griseus 1 asnB, 3 amino acid residues—T(20), T(94), and
D(95)—of the pentad (out of five predicted residues) interacts
with asparagine (Figure 14). Out of three residues, only one
residue T(94) is involved in the formation of a hydrogen bond,
whereas two other residues form a hydrophobic interaction with

asparagine. Y(30) forms another hydrogen bond with asparagine.
Only 3 of the pentads were detected in Streptomyces venezuelae
2. All three amino acids form an H-bond with asparagine.
Additionally, R(107) forms a hydrogen bond with asparagine
(Figure 14).

As for Streptomyces collinus asnB, 4 of the catalytic pentad
residues—T(16), L(64), T(94), and D(95)—are absent at the
catalytic site interaction with asparagine. Only S(63) is present
in the active site. When the ligand was docked to the
Streptomyces collinus asnB predicted active site with the grid
box size 25 × 25 × 25 Å, AutoDock software automatically
detected that there was another catalytical pocket present
adjacent to the predicted one with almost the same interacting
residues (Figure 14) as predicted but with the different position
that gives the binding energy of –5.3 kcal/mol, where T(70) and
Q(92) contributes on hydrogen bonding and other residues are
involved in hydrophobic interaction. This binding site is shown
in Figure 14 and is visibly almost the same but in a different
position from all predicted active site residues.
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Figure 14. LigPlot of interacting atoms of E coli and selected three organisms. (a) Escherichia coli, (b) Streptomyces griseus 1, (c) Streptomyces
venezuelae 1, (d) Streptomyces collinus enzymes, and L-asparagine (Asn).

Discussion

Rapid and cost-effective screening of enzymes is a common
undertaking in enzymology. Industrially produced enzymes
have a role in a wide range of functions in pharmaceutical, food,
biofuel, and chemical industries. Such enzymes are often
screened from novel organisms in the soil, water, or other
resources. Many of the commercially useful enzymes have been

discovered through such screens. The fungus that produces
cellulase, Trichoderma reesei, was isolated from garments and
canvas that was degraded in the Solomon Islands during the
Second World War [58]. Similarly, most of the alpha amylases
used in the industry find their source in Bacillus [59].
Asparaginase that is used as an anticancer agent is derived from
E coli and Erwinia. Most of these microorganisms have been
discovered from simple screens developed for certain enzymes.
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This does not necessarily mean that these enzymes have the
most optimal sequences for activity. This is because the screen
could have easily missed out on better sequences that are not
as well expressed in native cells. If these better sequences could
be discovered, they would be easily cloned into amenable
expression systems, expressed in high numbers, and used for
industrial purposes.

In this paper, we have developed a method to in silico screen
for the sequence with the best enzymatic activity. Since asnB
is one of the most widely screened and studied enzymes, we
chose to in silico predict the optimal sequence for its production.
The first task was to collect a list of sequences from which
optimal sequences could be predicted. This task has been made
easier in recent years by an explosion in the number of genomes
of organisms sequenced. It has become easy to discover
homologous proteins in different phyla and in different domains
of life. We collected a total of 101 sequence homologs of asnB
from different phyla in bacteria, archaea, and eukarya. Using
these 101 sequences, an ML phylogenetic tree was constructed.
The tree served two purposes. First, it helped us predict the
evolution and history of the asnB protein. Since proteins from
the same phylum tend to congregate little in the tree, it can be
predicted that there was a lot of horizontal gene transfer during
the evolution of asnB. Less than half the species we searched
had asnB sequences, indicating the lack of the enzyme’s
universal presence in different organisms. Second, the tree
helped pick sequences that were most distant and hence least
likely to cause immunogenicity when both E coli and Erwinia
asnBs showed immunogenicity. E coli, being one of the most
studied model organisms, was the obvious first choice as a
source of asnB. There is no clear indication in the literature as
to why Erwinia was chosen as the second source of asnB, but
the tree we have drawn confirms that Erwinia as a source was
a wise choice since Erwinia asnB lies at one end of the tree
distant to E coli asnB that lies around the center of the tree. The
organisms we have zeroed in on are distant compared to Erwinia
and E coli, and mostly lie in the Streptomyces genus.

As we can see, phylogenetic analysis can provide valuable
insight about our protein of interest. Phylogenetic methods have
been previously used successfully for studying L-asparaginase
given its importance in the therapeutic setting. These methods
have proven useful in identifying similarities between asnBs
from different organisms based on the evolutionary relationship
of their sequences, allowing researchers to group together
organisms producing asnBs at a molecular level. This has led
to discoveries regarding important amino acids and sequences
of the L-asparaginase enzyme [60]. Information gleamed from
phylogenetic analysis is not only useful in understanding the
genetic variation and history of a protein across various
organisms but also for identifying organisms that may produce
more optimal proteins than those that are currently used,
especially for commercially important proteins. Researchers
have used them to identify clades with specific amino acid
sequences that are also found in E coli. This information was
then used to short list candidates for in silico screening for
alternative L-asparaginase using docking [61].

Molecular modeling and docking have proven adequate for
studies involving screening for alternative L-asparaginase

candidates and optimization of this enzyme. They have been
successfully used in previous studies for identifying alternative
organisms for higher production of L-asparaginase candidates.
These studies have also been validated using in vitro
experimental work on the identified candidates [62]. Similarly,
docking has been used in screening for L-asparaginase enzymes
that have better activity toward asparagine and reduce its
glutaminase side activity as well [63]. We used homology
modeling and virtual docking in our method to identify enzymes
with better binding energy than the commercially available
asnBs produced from E coli and Erwinia. The candidates we
zeroed in on using the phylogenetic tree were modeled using
homology modeling and their binding energy to our substrate,
asparagine, calculated using docking. Of the 13 potential
candidates we had identified from the tree, 3 of them,
Streptomyces griseus 1, Streptomyces venezuelae 2, and
Streptomyces collinus, were deemed to be better than the
commercially available option.

Additionally, we wanted to develop an in silico tool to predict
the reaction kinetics of individual enzymes. To that end, we
relied on molecular modeling and docking approaches. Although
reaction kinetics is defined by different parameters like Km,
kcat, maximum velocity (Vmax), and specificity constant
(kcat/Km), Km is often the most widely measured quantity. This
turned out to be the case for asnBs as well. From the literature,
10 Km values corresponding to asnBs from different species
were discovered, while only 4 kcat values were discovered. We
set out to discover if the sequence of asnB can predict Km value
without having to determine it experimentally. Through
homology modeling, we predicted the structures of asnBs with
known Km. After that, asparagine (the substrate) was docked
onto the predicted asnB structures, and the binding energy was
calculated. This binding energy was compared to the measured
Km values to detect a correlation. Out of 10 species for which
Km is known, only in 6 species (Escherichia coli, Deftia
acidovorous, Dickeya chrysanthami 2, Azobacter vinelandi,
Pseudomonas stutzeri, Bacillus aryabhattai, Helicobacter pylori
1, and Bacillus subitilis 1) could Km be definitely assigned to
a certain sequence. A clear inverse relationship between Km
value and binding energy emerged. A higher Km value
corresponded to lower binding energy.

This finding makes sense according to a definition of Km. The
Michaelis-Menten kinetics is derived using the following
equation:

Where E is the enzyme, S is the substrate, ES is the
enzyme-substrate complex, P is the product, k1 is the rate of
forward reaction during the formation of ES complex, k–1 is the
rate of backward reaction during ES dissociation into E and S,
and k2 is the rate of reaction for the dissociation of ES complex
into E and P. From this equation, Km is defined as (k2 + k–1) /
k1. When k2 << k–1 under the rapid equilibrium assumption, Km

= k–1 / k1. Thus, Km is equal to the dissociation constant. There
is also a relationship between the dissociation constant and
binding energy—deltaG (binding energy) is proportional to
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–lnKm. However, when lnKm is plotted against binding energy,
a linear fit graph was not obtained (data not shown). However,
the negative relationship between Km and binding energy makes
sense from this equation [64].

This result demonstrates that if binding energies can be
compared among homologs, the homolog with the highest
binding energy will give the lowest Km value. This can be used
to predict the enzyme sequence that will give the lowest Km
value. In this paper, the binding energies of asnBs from various
Streptomyces species were calculated to obtain the one with
the highest binding energy. Of the 13 asnBs, 3 give biding
energy of –5.3 kcal/mol and –5.2 kcal/mol with asparagine.
asnBs from Streptomyces griseus, Streptomyces collinus, and
Streptomyces venezuelae gave these values. These values are
higher than the binding energy of E coli and Erwinia asnBs.
We can expect the kinetics of the enzyme produced from
Streptomyces species to be better than those of commercially
available asparaginase, making it a valuable target for cloning.

For the three optimal asnBs and E coli asnB, a LigPlot diagram
of the active site along with interacting aspargine was drawn.
It was demonstrated in E coli that the catalytic pentad residues
were actively involved in bonding. Four of the five active-site
residues formed hydrogen bonds, whereas one stayed in the
active site forming hydrophobic interaction. Although the
residues interacting are the same in the active site published by
pdb site, different amino acid residues form hydrogen bonds
with asparagine at different locations from the one given in the
LigPlot in this paper. This is in line with the idea that the exact
mechanism of asparaginase catalysis is not figured out, though
it is predicted that the mechanism for type I and type II
asparaginases will be conserved [65]. Two different mechanisms
have been proposed for asparaginase catalysis. One mechanism
describes double displacement, where the ammonia in
asparagine is first displaced by the enzyme before the enzyme
attached to asparagine is again displaced by water. The second
mechanism describes the single displacement where water
directly displaces ammonia from asparagine. There are contrary

experimental and theoretical predictions for the validity of the
two models [65,66].

From the LigPlot of Streptomyces griseus 1 and Streptomyces
venezuelae 2, it can be demonstrated that three of the pentad
residues are present in the active site. This shows that the active
site in these distant species is conserved. It has been predicted
that one of the two threonines acts as a nucleophile in the double
displacement mechanism. Conservation of both threonines
suggests that this could indeed be the case. A dynamic
simulation modeling rather than the static docking modeling
we have carried out might give a clearer answer to the active
sites involved, the catalytic mechanism, and the relevant
nucleophiles and electrophiles.

Thus, we have devised an in silico method to predict the enzyme
kinetics (Km value) from a sequence of an enzyme along with
being able to screen for optimal alternative asnBs against acute
lymphoblastic leukemia. Our method uses sequence-based
phylogenetic analysis to zero in on a small number of candidates
on which virtual docking can be used to identify a set of optimal
enzymes that may be better than those that are commercially
used. In this paper, we have shown the effectiveness of our
method for identifying enzymes that are more optimal than a
known commercial variant. We have also validated the
effectiveness of this method to predict Km values of
asparaginase II with a high degree of accuracy. This method is
applicable not only to asparaginases but also to a slew of other
industrial proteins such as amylases, cellulases, and many others.
In the future, it will be worthwhile to apply this technique to
the prediction of Km and the selection of industrially valuable
sequences of other enzymes. We have predicted three possible
highly promising L-asparaginase II enzymes produced by three
Streptomyces species. The next step will be to verify using
cloning if these sequences give a low Km value.
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