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Abstract

Background: Researching people with herpes simplex virus (HSV) is challenging because of poor data quality, low user
engagement, and concerns around stigma and anonymity.

Objective: This project aimed to improve data collection for a real-world HSV registry by identifying predictors of HSV
infection and selecting a limited number of relevant questions to ask new registry users to determine their level of HSV infection
risk.

Methods: The US National Health and Nutrition Examination Survey (NHANES, 2015-2016) database includes the confirmed
HSV type 1 and type 2 (HSV-1 and HSV-2, respectively) status of American participants (14-49 years) and a wealth of demographic
and health-related data. The questionnaires and data sets from this survey were used to form two data sets: one for HSV-1 and
one for HSV-2. These data sets were used to train and test a model that used a random forest algorithm (devised using Python)
to minimize the number of anonymous lifestyle-based questions needed to identify risk groups for HSV.

Results: The model selected a reduced number of questions from the NHANES questionnaire that predicted HSV infection risk
with high accuracy scores of 0.91 and 0.96 and high recall scores of 0.88 and 0.98 for the HSV-1 and HSV-2 data sets, respectively.
The number of questions was reduced from 150 to an average of 40, depending on age and gender. The model, therefore, provided
high predictability of risk of infection with minimal required input.

Conclusions: This machine learning algorithm can be used in a real-world evidence registry to collect relevant lifestyle data
and identify individuals’ levels of risk of HSV infection. A limitation is the absence of real user data and integration with electronic
medical records, which would enable model learning and improvement. Future work will explore model adjustments, anonymization
options, explicit permissions, and a standardized data schema that meet the General Data Protection Regulation, Health Insurance
Portability and Accountability Act, and third-party interface connectivity requirements.
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Introduction

Background
Patient data in medical registries are an important source of
information for screening, treatment, and research purposes.
However, the value of these registries can be severely limited
by a lack of high-quality data, especially in diseases where there
are low patient engagement and concerns around stigma and
anonymity, such as herpes simplex virus (HSV) [1]. Improving
the quality and quantity of data collection from patients with
HSV and individuals who may be at risk of HSV would provide
significant benefits for research and clinical care. There is an
urgent need for a vaccine for HSV type 2 (HSV-2), and its
research relies on a collection of relevant data [2]. Large data
sets of high-quality data will enable researchers to gain new
insights into HSV and clinicians to personalize care plans to
improve individuals’ health outcomes and quality of life. HSV
registry database design poses unique data quality challenges
related to the stigma of the HSV condition, increased privacy
concern, and selection biases [3]. For example, the lack of data
on people who are living with HSV without symptoms calls to
a specific need to collect data outside of clinical settings from
populations who have not developed symptoms and are not
motivated to complete extensive questionnaires or, worse, take
offence at being asked to do so. Therefore, nonintrusive and
time-efficient methods are necessary to reliably identify
high-risk groups.

New technologies, such as machine learning and artificial
intelligence, are gaining traction in medical research as a means
of collecting and analyzing data [4,5]. Machine learning has
previously been applied to medical diagnosis and patient data
insights in oncology [6], for the diagnosis of heart, liver, and
diabetic diseases, as well as infectious diseases such as dengue,
and hepatitis [7], to predict suicidal behavior using longitudinal
electronic health record (EHR) data [8], and to classify whether
patients have Alzheimer disease [9]. However, current
applications of machine learning are usually limited to
pre-existing, structured data sets and do not address the problems
of first-person data collection from patients and the resulting
limitations of data completeness, quality, and validity.

Machine learning–based systems are particularly useful for
generating new knowledge and insights without having a priori
hypotheses. The concept of “data farming” or “evidence
farming” addresses the problems of collecting data directly from
users [10]. Data can be “organic” —grown and harvested—if
suitable environmental conditions are provided. These conditions
are often met by websites and online platforms where patients
provide their data, such as the online enterprise
PatientsLikeMe.com [11]. Data collected from these platforms
can include medical information like disease diagnosis and
laboratory results, medications the patients are taking, and
subjective data from self-report questionnaires.

Data generation platforms like these provide an opportunity to
gather the large amounts of data needed to develop machine
learning models. One type of decision support model, decision
trees, can be applied to analyze the flows of user-generated
content and to determine the strategy that is most efficient and
most likely to successfully achieve a certain goal [12]. Decision
tree analyses are widely used in health care, but primarily in a
basic way, on highly structured data, without applications in
real-time data collection situations [13]. A key limitation of
data tree analyses is that they are very sensitive to the data they
are trained on [14]. However, machine learning methods such
as random forest, which are based on a collection of individual
decision trees, can minimize the effect of this limitation [14].

Machine learning methods have great potential in the field of
real-world data [15]. They have particular promise for analyzing
large “data lakes” that have been created by aggregating
information from hospital EHRs, including unstructured and
semistructured patient-generated data. Machine learning
methods can explore this data to identify clinically meaningful
patterns. Because these data lakes can track patients
longitudinally, they provide a large body of data that would not
be available in the typical randomized controlled trial. Therefore,
the application of machine learning to these data sets could
reduce, or even eliminate, the need for certain traditionally
conducted late-phase trials. Drugs that have successfully
completed phase I and II trials, and have evidence supporting
their efficacy and safety, could be given to patients and
monitored in the context of patients’ real-world experiences
[16]. The application of machine learning methods to such
real-world databases also provides an opportunity to easily
identify potentially eligible patients for clinical trials, by filtering
the database based on relevant criteria. The potential value of
this real-world data highlights the importance of developing
ways of collecting high-quality data from patient registry
platforms.

Challenges of Developing Patient Registries
Patient registries collect longitudinal data about a specific
population of interest to provide real-world evidence and
insights into disease progression, factors affecting health
outcomes and quality of life, and the effectiveness of different
treatments [17,18]. Previously developed patient-focused digital
registries, such as ArthritisPower, have achieved significant
results in terms of patient engagement [19]. The ArthritisPower
registry platform has proven to be an effective means of
engaging patients to participate in research and enabling
patient-generated data capture; however, the registry is limited
to users who have already received a physician diagnosis and
are actively motivated to participate. In addition to increased
patient engagement with research, the growing focus on
patient-centered care led to new emphasis on the use of
patient-reported outcome measures in clinical care and research,
and patient-reported outcomes now constitute a key component
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of patient registries [20]. Validated questionnaires provide a
useful means of collecting standardized data, but the inclusion
of multiple questionnaires in a patient registry can result in a
long and arduous process for patients [21]. However,
self-reported registries have the benefit of privacy and
anonymization, which is particularly important for health
conditions that people are uncomfortable discussing with
clinicians or researchers, and they have significant potential for
developing large databases of evidence that can inform clinical
care and provide new insights into the condition in question
[22].

However, several challenges need to be addressed to develop
a usable and effective patient registry [3]:

1. Efficient use of data: collecting sufficient and high-quality
data is necessary to provide useful insights and allow for
more targeted clinical trial selection and recruitment.
However, this tends to require long patient questionnaires,
which often results in high drop-out rates. Therefore, a
critical challenge for digital patient data collection is to
maximize the usefulness, quality, and information content
of the collected data while reducing time and effort for
users.

2. Patient-centric design: to be usable and effective, patient
registry data collection processes need to serve the
expectations and needs of the patients. Therefore, another
key challenge is to ensure that patients, and their experience,
are considered from the early stages of patient registry
development.

3. Selection bias: direct data collection methods can increase
the risk of selection bias in the data because subsets of users
with certain characteristics are more likely to complete an
extensive questionnaire (eg, more computer-literate users),
have more time, have more frequent or severe symptoms,
and/or are keen to be informed of relevant clinical trials.
The challenge for patient registries is to minimize the risk
of selection bias by facilitating and simplifying the data
collection process.

4. Privacy concerns: common user concerns when it comes
to digital data collection are related to privacy and control
over data. This is especially true for sensitive or personally
identifiable information. This is a key challenge that must
be addressed to ensure the adoption and sustainability of
any digital solution.

Aim and Objectives
The resolution of the first of the four challenges described above
relies on the ability to reduce the drop-off rates by shortening
the time and effort required to complete the questionnaire
without critically affecting the quality and quantity of results.
Similarly, the patient-centric design (challenge 2) requires
consideration of user experience, which includes minimizing
participant burden. This may also ultimately reduce selection
bias (challenge 3) by increasing completion rates. Therefore,
this project is aimed primarily at addressing the challenges
associated with time-consuming questionnaires containing
sensitive questions by creating a prediction model to reliably
assess whether a particular person has an increased risk of HSV.
We explored the applications of innovative machine learning

methods to optimize the questions asked of participants while
maintaining the high quality and relevance of collected data.
The main objective was to use a random forest model to design
an HSV patient registry that can use various lifestyle predictors
for HSV infection (eg, sexual activity, number of partners) and
recurrences (eg, diet, exercise, sleep) to select the most relevant
questions for an HSV registry and improve data collection and
analysis in medical registries. For future studies, we suggest
integrating this approach with privacy-preserving and
trust-enabling solutions to more comprehensively address the
four challenges described above.

Review of Past Studies
Multiple studies in recent years have sought to create machine
learning models based on data from EHRs and other sources
applying the multifactor classification approach to assess and
predict risk groups for medical conditions and complications
and to identify major risk factors. Such targets include delirium
occurrences [23], alcohol use disorder [24], mortality in patients
with liver disease [25], cardio-cerebrovascular events [26],
suicide attempts [27], metabolic syndrome [28], and postpartum
depression [29]. Random forest has been discussed as one of
the most efficient methods for creating risk prediction models
[14,30,31] and has been applied in most of the studies reviewed.

However, the considerations of user-focused design in the
context of optimizing direct data collection for an HSV medical
registry introduce additional context to the classification
problem, including the emotional sensitivity of some questions
and the need to minimize the number of factors (questions) in
the ensemble to increase completion rates and address the other
limitations discussed above. This study aims to apply the random
forest classification approach to enable more efficient data
collection from the population while providing an effective tool
for HSV screening.

Overview of the Proposed Solution
We designed an algorithm to optimize data collection
questionnaires for an HSV patient registry and predict HSV
infection risk. Integrating a decision tree–based technology into
a patient registry can reduce the number of questions users have
to answer while increasing the data content and reducing
informational entropy for each user’s record. The model was
trained using a pre-existing data set so that the question sets
could be optimized to collect initial user data efficiently and
generate the most complete information to screen users’ HSV
risk. For nondiagnosed users, the model identifies risk groups
based on the data provided. Data from users who are clinically
diagnosed with HSV can be used to further train and improve
the model.

HSV screening was chosen as the goal for the prototype solution
to provide an efficient way of engaging users who otherwise
might not be willing to participate in research or log HSV
recurrence data. Three categories of users were considered when
designing the system: two types of patient users (new and
returning; external users) and HSV researchers (internal users).
Since the barriers to user engagement and data collection are
most pronounced when an external user starts using the system
for the first time, an HSV preliminary screening tool was
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included to serve as an incentive to answer the list of questions
and provide users with an assessment of their risk of HSV. The
anonymous questionnaire was optimized to reduce information

entropy and minimize the number of questions and their
complexity while obtaining the maximum amount of
information. The solution schema is represented in Figure 1.

Figure 1. Schema of the technological solution. HSV: herpes simplex virus, NHANES: US National Health and Nutrition Examination Survey, DB:
database, CDC: Centers for Disease Control and Prevention, Med reg: medical registry.

Methods

Agile Development
The HSV patient registry development followed the agile
framework defined by the UK Government Service Manual
[32]. The alpha phase aims to develop the ideas formed in the
previous discovery phase [3] and builds and tests prototype
solutions. This involves examining the scope of the solution
within the wider context of the users’ journey and developing
an online prototype that is accessible for various users.

Selection of a Database to Train and Test the Model
To develop and train the model, an initial data set that met the
following requirements was needed:

• Open access, available without application or payment.
This requirement is dictated by the fast iterative discovery
approach that aims to maximize the speed and efficiency
of the system development cycle

• A large number of patients included in the database; over
1000 rows are needed to provide sufficient data for machine
learning model training and testing

• Clinically verified HSV diagnostic data
• Cross-referenced interviews and physical examination data
• An extensive list of demographics, lifestyle, and dietary

variables
• High density of data points, meaning that most of the data

fields are populated
• Verifiable data quality and reliability

The initial search was conducted via Google and patient registry
lists using keywords related to human HSV patient databases
and data sets. The data found on HSV patients consisted mostly
of laboratory measurement data, which was not applicable for
building a lifestyle-focused questionnaire. The US National

Health and Nutrition Examination Survey (NHANES) was the
only database identified that met all of the above requirements.
Its data are in the public domain and can be used freely without
obtaining copyright permission [33].

The NHANES Database
The NHANES database was a major program conducted by the
US National Centre for Health Statistics (under the umbrella of
the Centers for Disease Control and Prevention). It provides
high-density population data, gathered by high-quality standards,
and details the methodology and data provenance [34], where
all data are anonymized and are open access for statistical
analysis. The data set used in this project was representative of
the US population in 2015-2016 [35]. Moreover, the NHANES
collected demographic information, enriched by detailed dietary,
examination, and laboratory data, all linked with unique
participant IDs. The survey is unique in that it combines
interviews and physical examinations. The NHANES interview
included demographic, socioeconomic, dietary, and
health-related questions. The examination component consisted
of medical, dental, and physiological measurements, as well as
laboratory tests administered by highly trained medical
personnel. All NHANES participants visited a physician. Dietary
interviews, body measurements, blood sampling, and dental
screening were included for all participants. Depending on the
age of the participant, the rest of the examination included tests
and procedures to assess the various aspects of health. HSV
diagnosis was confirmed using diagnostic tests by physicians.

HSV-1 and HSV-2 Data Sets
Two data sets—concerning HSV-1 (HSV type 1) and
HSV-2—were taken from the NHANES database and used to
train and validate the model. The demographics of the validation
data sets for HSV-1 and HSV-2 can be found in Figure 2. Males
and females, aged 14-49 years, were represented in the data set.
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The HSV-1 data set contains data from 3386 participants: 1840
confirmed positive for HSV-1 and 1546 confirmed negative.

The HSV-2 data set contains data from 2813 participants: 478
confirmed positive for HSV-2 and 2335 confirmed negative.

Figure 2. Demographics of the validation data set.

Data Set Preparation
A complete data set with questionnaires and results for the
period 2015-2016 is available on the National Center for Health
Statistics website [34]. The overall initial list of questions is
listed in Multimedia Appendix 1 and comprises over 600
questions. For the model, a smaller number of questions that
contained sufficient cross-referenced data points to allow for
analysis (n=150) was selected (Multimedia Appendix 2) to avoid
the influence of missing data on the prediction results and to
exclude some of the potentially sensitive questions. The value
distribution for the HSV diagnosis confirmation (y) is 2335
(negative) and 478 (positive).

Training and Testing Subsets
Using the data science method train_test_split from the sklearn
Python library [36], the confirmed negative or positive cases
reported in NHANES were randomly divided into two subdata
sets for training and validation of the model with a ratio of 0.8
to 0.2. This ratio was chosen to keep the variance low and to
leave enough data for training. The training data set was used
to train the model, and the validation data set was used for
accurate scoring. A threshold of 0.01 was experimentally defined
to keep the list of questions as short as possible while
maintaining good accuracy of the model. After checking feature
importance values and determining that a max_depth value of
9 yields a threshold of feature importance less than 0.01,
questions below the threshold were considered less relevant and
were excluded.
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Cross-validation With a Grit Search
GridSearchCV was employed on the training data with
cross-validation to tune the random forest parameters for
variable selection size, several trees to generate
(n_estimators=550), and maximum tree depth (max_depth=9).
GridSearchCV accuracy was compared to that of
RandomizedSearchCV (n_estimators=300, maximum tree depth
[max_depth]=9), with a better performance of GridSearchCV
on test accuracy—GridSearchCV train accuracy: 0.978, test
accuracy: 0.957; RandomizedSearchCV train accuracy: 0.978,
test accuracy: 0.954. Considering the higher speed of
performance for RandomizedSearchCV, it may be more
appropriate to use RandomizedSearchCV in the future
production implementations of the model.

Tools and Technology Stack for Model
A CART (classification and regression trees) random forest
model was used to generate the main questionnaire. XGBoost
approaches were also reviewed, but random forest performed
better than XGBoost and with fewer complexities of
implementation in production. Due to the high transparency
and interpretability of CART models, a sequence of decision
trees bagged into a random forest ensemble was chosen. The
average decision tree plot, together with feature importance,
was used to explore the full list of questions and define the
shortest chain of interdependencies leading to HSV screening
with the highest probability of accuracy.

The random forest ensemble was built from a sequence of
decision trees using a bagging method [37]. Bagged decision
tree ensembles are used to define entropy and information gain
from previously selected features or discriminants [38]. Binary
splitting on features with maximal informational gain leads to
fewer nodes in the trees (ie, fewer relevant questions for
diagnosing HSV). The model was designed to process the data
in the following way:

1. The initial data set was divided into two subsets based on
HSV type (1 or 2);

2. These data sets were randomly split by the data science
method train_test_split from the sklearn Python library into
a training set containing 80% of the samples and a
validation set containing the remaining 20%;

3. The HSV-1 and HSV-2 training sets were processed by
random forest classification estimators;

4. Accuracy on the training data sets was optimized by tuning
the max_depth parameter (controls the total depth of the
tree, that is, the number of binary splitting levels);

5. Accuracy was checked with validation subsets;
6. Values of max_depth gave the threshold of sufficient feature

importance, and all questions below that level were
excluded;

7. The final questions became the exhaustive list of features
for the trained random forest classifier and used for the
screening tool;

8. Given real-life data (questionnaire responses and clinical
diagnosis verification), the model can improve its precision.

In this study, we designed and tested an algorithm that follows
steps 1 to 7. Step 8, improvement of precision via integration

within a live data collection system, is intended as a direction
for future work.

Illustration of the Random Forest Decision Tree
The decision tree (here bagged into a random forest ensemble)
does sequences of binary splitting (splitting the sets of questions
into two subgroups that produce the greatest distinction between
positive and negative HSV diagnosis) until the resulting number
of splittings is sufficient to explain the general tendencies of
the data set (until the model has learned hidden patterns in data).
Splittings are performed on the most informative feature, that
is, the data feature having the highest information gain. In this
particular case, a depth of 9 hierarchical levels of splitting was
enough for the model to learn the connections between the data
features and HSV-1/HSV-2 diagnosis.

The decision trees in Multimedia Appendices 3 and 4 show the
final iteration of the random forest training process. The best
results were achieved after 9 levels of branching, and further
learning (splitting) brought no meaningful improvements in
classification.

Model Evaluation Metrics
The reduction in the number of questions needed to achieve
high accuracy is an important success metric of the model. It
can show the feasibility of using the model to reduce information
entropy and encourage participants to complete the
questionnaire. To validate the performance of the model, two
key metrics were used: accuracy and recall score. Accuracy is
the overall precision of the model in identifying HSV-positive
patients from the questionnaire, whereas recall is a measure of
the model’s capability to identify true positives.

Recall score is an important metric because it is preferable to
identify a noninfected as being in the risk group than vice versa.
The lowest possible score is 0 (0%), the highest is 1 (100%
probability of true prediction). The recall was calculated using
the equation:

The resulting code can be found in a GitHub repository [39].

Results

Stage 1 Testing: NHANES Questions
The initial results of the random forest model computations are
outlined in Table 1. As a result of the first stage of model
development and testing, the number of questions was reduced
from 150 to 62. The model selected a set of 62 questions that
form shorter sequences for each user based on their age and
gender. On average, a user would be asked 40 questions, with
a minimum of 21 and a maximum of 62. It was estimated that
it would take on average 25 minutes to answer all 150 questions
depending on language and cognitive abilities, with the increased
time required for sensitive questions. With only 40 questions,
that would be reduced 3.75 times to less than 7 minutes. The
final list of questions that could be presented to a user and the
questionnaire flow can be found in Multimedia Appendix 5.
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The confusion matrix for HSV-1 yielded 459 true positives, 81 true negatives, 8 false positives, and 15 false negatives.

Table 1. Stages 1 and 2 accuracy and recall scores.

RecallAccuracyData set

Stage 2Stage 1Stage 2Stage 1

0.880.830.910.61HSVa type 1

0.980.900.960.83HSV type 2

aHSV: herpes simplex virus.

Stage 2 Testing: NHANES Questions With Added
Features
A lower accuracy score was found for the HSV-1 data set
compared to the HSV-2 data set in stage 1. This meant that
latent features inherited from NHANES were not strong enough
to predict HSV-1 (Table 1). For example, the data set had limited
symptom-related interview questions. Therefore, further research
into HSV-1 and HSV-2 symptoms was conducted so that
additional features could be introduced to the model and tested.
A sample feature was added into the model based on literature
suggesting that a significant proportion of people infected with
HSV-1/HSV-2 virus types (up to 80%, depending on gender
and virus type [40]) may experience more general symptoms
like fever, muscle aches, and nausea. Therefore, a new question
was added to the questionnaire for both HSV-1 and HSV-2
types: Is your general feeling of discomfort or illness followed
by one or more symptoms: fever, nausea, headaches, muscle
pain, swollen lymph nodes, or malaise? This additional feature
was engineered for the data set, with a positive label in the 80%
cases of the infected population. An additional question about
symptoms with a high presence in HSV-infected people was
introduced and improved the ability of the random forest model
to train and test data predictions (Table 1).

Once the tool is in operation and is collecting real-world data
(such that a significant number of participants answer the
questionnaire and have their HSV status confirmed clinically),
the model will gradually verify whether flu-like symptoms are
a strong predictor of HSV. The model is intended to readjust
the scoring method to exclude it as an important factor if this
question turns out not to improve model accuracy.

Discussion

Principal Findings
This project has developed and successfully tested an
optimization algorithm that minimizes the number of
user-generated data points needed to accurately assess the risk
of HSV-1 and HSV-2 infection. As a result of the
implementation of the developed machine learning model, the
algorithm was able to predict the HSV risk group attribution
with high accuracy and recall scores, while the number of
questions was reduced from 150 to 62. In the first stage of
testing, the system was prototyped on the publicly available
data of a small population of US citizens published in the
NHANES database [3]. The second stage demonstrated how
the same procedure could be repeated with additional variables

(that are determined to be strongly linked to HSV infection) to
achieve greater model accuracy.

Strengths and Limitations
A strength of the study is that it was conducted following the
UK Government Service Manual for agile delivery [32] and
was based on the principles established in a previously published
discovery phase paper [3]. The project conducted fast technical
prototyping to test the innovation’s assumptions, for example,
that it is possible to use machine learning methods to improve
direct patient data collection for sensitive topics. The results of
this study will therefore provide inputs for further development
and beta system design improvements.

One limitation of the project is that the model was tested and
trained using precollected survey data. These data are limited
in both size and dimensionality and were relatively sparsely
populated. Access to larger data sets with more symptom-related
information would have been beneficial and likely would have
enabled greater model accuracy.

Another limitation is that the model has not yet been trained
and tested on real user data in the context of a patient registry
or online questionnaire. It was designed to be used in a machine
learning system with a feedback loop that enables verification
of the predicted HSV risk level with subsequent clinically
confirmed diagnoses. Without real-world data, this function
could not be tested in this study.

Relation to Other Works
Many studies are applying decision trees and random forest
machine learning models to patient databases to predict a variety
of clinical risks [41-45]. However, there is only limited research
into the application of machine learning algorithms to produce
or deliver adaptive or optimized questionnaires [46,47]. While
adaptive questionnaires do already have a place in clinical
evaluations, these tend to be based on predetermined rules [20].
However, these papers do not consider the implications of these
models for the development of patient registries to support
ongoing data collection that will enable model
self-improvement.

Future Directions
The ultimate aim of this project is to increase the quality and
quantity of data collected and improve the probability of users
disclosing sensitive information and volunteering for clinical
trials. The next step toward achieving a patient registry that
meets these aims is to integrate the model into an independent
backend module and connect it with a question-outputting and
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answer-collecting front end. This will enable further
improvement of the model and testing of its self-improvement
capabilities on real-world data. Once real users start using the
screening tool and the tool predictions are verified by a clinician
through diagnostic tests, the model will self-learn and verify or
discard assumptions about relationships between the questions
and HSV status. The model could also be improved by
integrating more user data from EHRs to generate more insights
regarding what questions can be more predictive of an
individual’s risk level.

Anonymization options, explicit permissions, and a standardized
data schema that address the General Data Protection Regulation
(GDPR), the Health Insurance Portability and Accountability
Act (HIPAA), and the requirements of third-party interfaces
(such as the Fast Healthcare Interoperability Resources [FHIR])
will be essential components for a platform based on the HSV
screening tool. Some of the additional functionalities that could
be considered for future research and system improvement are:

• Multiclass classification, where HSV-1 and HSV-2 data
would be treated simultaneously: machine learning
assembling would help researchers find additional patterns
in the habits of patients with HSV in the generated response
database;

• Adding descriptive user segmentation to the model: by
defining the most recurring patient behavior and patients’
profile type, the probability of gathering more relevant data
could be improved.

Suggested Success Metrics for Future Work
According to the Gov.uk Service Design guidelines [32], the
beta stage of the project will introduce and track key quantitative
metrics of system performance. This tracking should include
the following key metrics:

• Conversion rate: patients who visit the registry and proceed
to start the questionnaire;

• Drop-off rate: patients who start the questionnaire and
proceed to complete it;

• Retention rate: patients who complete the questionnaire
and proceed to sign up to share personal data;

• Number of users who completed the screening
questionnaire.

These metrics can be tracked by integrated database analytics
and Google Analytics, which will also be important for
accumulating user behavior data for future analytics and
development.

Intended User Journey
The platform will be tailored for the two main groups of users:
researchers and members of the public (which includes patients
with a confirmed diagnosis and users who may wish to
participate in the study or have concerns regarding the risks of
HSV). Members of the public will be able to get an assessment
of their risk of having HSV and will be encouraged to engage

with further data sharing to obtain further health insights and
support research endeavors. The system will be designed so
that after new users receive the results from the screening tool,
they will be asked whether or not they want to register and be
added to the database. If they decide not to be added, their
responses will be saved anonymously in the database and can
be used as an additional source of insights into populations that
would not provide any data that required registration, which
will help address the challenge of selection bias.

If they do opt to register, users would receive access to
dashboards that help them track their health and provide
personalized insights, news, and advice. Consent processes
would allow users to agree to notifications, give consent for
trial involvement and use of data, and communicate with a
clinician. The user responses will be recorded in the database
and the model will self-improve based on the incoming data as
each HSV screening tool result is compared to a clinically
confirmed diagnosis.

Researchers will be able to use the registry to complement
clinical research and facilitate patient recruitment for clinical
trials. Researchers will need to register, be verified by the system
administrator, and log in to their account before accessing
pseudo-anonymized data (ie, data where personally identifiable
information has been removed, but links to the original personal
data are preserved). They will be able to filter user data to
identify subsets of users with the characteristics they are
investigating, send invitations to trial and research groups, and
create further questions to identify trial eligibility. Introducing
other potentially relevant variables into the questionnaire and
model would also provide a means for researchers to test other
assumptions of HSV on real users. The various user flows
identified for the platform are listed in Multimedia Appendix
6.

Conclusion
This project successfully developed, trained, and tested a model
to predict individuals’ risk of HSV-1 and HSV-2 infection based
on an optimized set of questions on demographics, lifestyle,
and symptoms. Using machine learning to determine the
questions with the best predictive value means that patients
need to answer fewer survey questions. This solution will
improve the user-centricity of patient registry systems and will
address the challenge of collecting relevant, high-quality data
from patients with a stigmatized health condition such as HSV.
In the context of using the model within a patient registry
platform that would enable ongoing data collection and feedback
process, the improved data collection process would lead to
better research and patient outcomes by addressing the issues
associated with data incompleteness, including selection bias
and stigma. Future research and development of the system will
use real-world data to improve the model, examine important
anonymity, consent, interoperability, and data security concerns,
and develop and evaluate a holistic patient registry system (with
a front-end user interface and a back-end data architecture).

JMIRx Med 2021 | vol. 2 | iss. 2 | e25560 | p. 8https://xmed.jmir.org/2021/2/e25560
(page number not for citation purposes)

Surodina et alJMIRx Med

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Acknowledgments
This work was supported in part by EIT Health (grant 18654), which is supported by the European Institute of Innovation &
Technology, a body of the European Commission. The funders had no role in the design of the study; in the collection, analysis,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Authors' Contributions
CL and EM conceived the study topic. SS and SG conducted the research and prototyped the model. SS prepared the first draft
of the paper with revisions from MvV, EM, and CL, and the draft was revised and finalized by MM-I. All authors read and
approved the final manuscript.

Conflicts of Interest
EM is the Editor-in-Chief of JMIRx Med.

Multimedia Appendix 1
Initial set of questions from NHANES.
[PDF File (Adobe PDF File), 346 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Questions selected to develop and train the model.
[PDF File (Adobe PDF File), 107 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Random forest decision tree for HSV-1.
[PNG File , 920 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Random forest decision tree for HSV-2.
[PNG File , 411 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Flow diagram and final selected questions.
[DOCX File , 56 KB-Multimedia Appendix 5]

Multimedia Appendix 6
The schema of user journeys.
[PDF File (Adobe PDF File), 20297 KB-Multimedia Appendix 6]

References

1. Wang K, Merin A, Rendina HJ, Pachankis JE. Genital herpes stigma: Toward the Measurement and Validation of a highly
prevalent yet hidden public health problem. Stigma Health 2018 Feb;3(1):27-34 [FREE Full text] [doi: 10.1037/sah0000067]
[Medline: 29629409]

2. Jørgensen LK, Dalgaard L, Østergaard LJ, Andersen NS, Nørgaard M, Mogensen TH. Validity of the coding for herpes
simplex encephalitis in the Danish National Patient Registry. CLEP 2016 May:133. [doi: 10.2147/clep.s104379]

3. Surodina S, Lam C, de Cock C, van Velthoven M, Milne-Ives M, Meinert E. Engineering Requirements of a Herpes Simplex
Virus Patient Registry: Discovery Phase of a Real-World Evidence Platform to Advance Pharmacogenomics and Personalized
Medicine. Biomedicines 2019 Dec 15;7(4) [FREE Full text] [doi: 10.3390/biomedicines7040100] [Medline: 31847458]

4. Yu K, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng 2018 Oct;2(10):719-731 [FREE Full
text] [doi: 10.1038/s41551-018-0305-z] [Medline: 31015651]

5. Zhavoronkov A, Mamoshina P. Deep Aging Clocks: The Emergence of AI-Based Biomarkers of Aging and Longevity.
Trends in Pharmacological Sciences 2019 Aug;40(8):546-549. [doi: 10.1016/j.tips.2019.05.004]

6. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis
and prediction. Comput Struct Biotechnol J 2015;13:8-17 [FREE Full text] [doi: 10.1016/j.csbj.2014.11.005] [Medline:
25750696]

JMIRx Med 2021 | vol. 2 | iss. 2 | e25560 | p. 9https://xmed.jmir.org/2021/2/e25560
(page number not for citation purposes)

Surodina et alJMIRx Med

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=xmed_v2i2e25560_app1.pdf&filename=2a63287ec094c8ac144ce20e1253df83.pdf
https://jmir.org/api/download?alt_name=xmed_v2i2e25560_app1.pdf&filename=2a63287ec094c8ac144ce20e1253df83.pdf
https://jmir.org/api/download?alt_name=xmed_v2i2e25560_app2.pdf&filename=2409343de9e1a76415a83662a0b26321.pdf
https://jmir.org/api/download?alt_name=xmed_v2i2e25560_app2.pdf&filename=2409343de9e1a76415a83662a0b26321.pdf
https://jmir.org/api/download?alt_name=xmed_v2i2e25560_app3.png&filename=06aeb809ff3f984f937a7c68e8cecc9e.png
https://jmir.org/api/download?alt_name=xmed_v2i2e25560_app3.png&filename=06aeb809ff3f984f937a7c68e8cecc9e.png
https://jmir.org/api/download?alt_name=xmed_v2i2e25560_app4.png&filename=dbe3abad9721bf5c3fb8d47e1492927f.png
https://jmir.org/api/download?alt_name=xmed_v2i2e25560_app4.png&filename=dbe3abad9721bf5c3fb8d47e1492927f.png
https://jmir.org/api/download?alt_name=xmed_v2i2e25560_app5.docx&filename=7dcee9e3a84b14e783007f4e427dbd2c.docx
https://jmir.org/api/download?alt_name=xmed_v2i2e25560_app5.docx&filename=7dcee9e3a84b14e783007f4e427dbd2c.docx
https://jmir.org/api/download?alt_name=xmed_v2i2e25560_app6.pdf&filename=3b9701367159c2ba335673e38d662be9.pdf
https://jmir.org/api/download?alt_name=xmed_v2i2e25560_app6.pdf&filename=3b9701367159c2ba335673e38d662be9.pdf
http://europepmc.org/abstract/MED/29629409
http://dx.doi.org/10.1037/sah0000067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29629409&dopt=Abstract
http://dx.doi.org/10.2147/clep.s104379
https://www.mdpi.com/resolver?pii=biomedicines7040100
http://dx.doi.org/10.3390/biomedicines7040100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31847458&dopt=Abstract
https://doi.org/10.1038/s41551-018-0305-z
https://doi.org/10.1038/s41551-018-0305-z
http://dx.doi.org/10.1038/s41551-018-0305-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31015651&dopt=Abstract
http://dx.doi.org/10.1016/j.tips.2019.05.004
https://linkinghub.elsevier.com/retrieve/pii/S2001-0370(14)00046-4
http://dx.doi.org/10.1016/j.csbj.2014.11.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25750696&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


7. Fatima M, Pasha M. Survey of Machine Learning Algorithms for Disease Diagnostic. JILSA 2017;09(01):1-16. [doi:
10.4236/jilsa.2017.91001]

8. Barak-Corren Y, Castro VM, Javitt S, Hoffnagle AG, Dai Y, Perlis RH, et al. Predicting Suicidal Behavior From Longitudinal
Electronic Health Records. Am J Psychiatry 2017 Feb 01;174(2):154-162. [doi: 10.1176/appi.ajp.2016.16010077] [Medline:
27609239]

9. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, et al. Classification and prediction of clinical
Alzheimer's diagnosis based on plasma signaling proteins. Nat Med 2007 Nov;13(11):1359-1362. [doi: 10.1038/nm1653]
[Medline: 17934472]

10. Oquendo MA, Baca-Garcia E, Artés-Rodríguez A, Perez-Cruz F, Galfalvy HC, Blasco-Fontecilla H, et al. Machine learning
and data mining: strategies for hypothesis generation. Mol Psychiatry 2012 Oct;17(10):956-959. [doi: 10.1038/mp.2011.173]
[Medline: 22230882]

11. PatientsLikeMe. URL: https://www.patientslikeme.com/ [accessed 2020-11-05]
12. Lee J, Jung Y, Shin S, Yoon T. Analysis of HSV-1 and HSV-2 that cause herpes simplex with Apriori algorithm, decision

tree, and support vector machine. 2017 Presented at: 19th International Conference on Advanced Communication Technology
(ICACT); Feb 19-22; PyeongChang, South Korea. [doi: 10.23919/icact.2017.7890179]

13. Rau C, Wu S, Chien P, Kuo P, Chen Y, Hsieh H, et al. Prediction of Mortality in Patients with Isolated Traumatic
Subarachnoid Hemorrhage Using a Decision Tree Classifier: A Retrospective Analysis Based on a Trauma Registry System.
Int J Environ Res Public Health 2017 Nov 22;14(11) [FREE Full text] [doi: 10.3390/ijerph14111420] [Medline: 29165330]

14. Yiu T. Understanding random forest. Towards Data Science. 2019 Jun 12. URL: https://towardsdatascience.com/
understanding-random-forest-58381e0602d2 [accessed 2020-11-05]

15. Panesar A. Machine Learning and AI for Healthcare: Big Data for Improved Health Outcomes. Conventry, UK: Apress;
2019.

16. Shah P, Kendall F, Khozin S, Goosen R, Hu J, Laramie J, et al. Artificial intelligence and machine learning in clinical
development: a translational perspective. NPJ Digit Med 2019;2:69 [FREE Full text] [doi: 10.1038/s41746-019-0148-3]
[Medline: 31372505]

17. Patient registries. European Medicines Agency. URL: https://www.ema.europa.eu/en/human-regulatory/post-authorisation/
patient-registries [accessed 2020-10-23]

18. Gliklich R, Leavy M, Dreyer N. Patient Registries. In: Registries for Evaluating Patient Outcomes: A User's Guide. 4th
edition. Rockville, MD: Agency for Healthcare Research and Quality; 2020.

19. Nowell WB, Curtis D, Thai M, Wiedmeyer C, Gavigan K, Venkatachalam S, et al. Digital Interventions to Build a Patient
Registry for Rheumatology Research. Rheum Dis Clin North Am 2019 May;45(2):173-186. [doi: 10.1016/j.rdc.2019.01.009]
[Medline: 30952391]

20. Gliklich R, Dreyer N, Leavy M. Use of Patient-Reported Outcomes in Registries. In: Registries for Evaluating Patient
Outcomes: A User's Guide. 3rd edition. Rockville, MD: Agency for Healthcare Research and Quality; 2014.

21. Granan L, Reme SE, Jacobsen HB, Stubhaug A, Ljoså TM. The Oslo University Hospital Pain Registry: development of
a digital chronic pain registry and baseline data from 1,712 patients. Scand J Pain 2019 Apr 24;19(2):365-373. [doi:
10.1515/sjpain-2017-0160] [Medline: 30699072]

22. Osara Y, Coakley K, Devarajan A, Singh RH. Development of newborn screening connect (NBS connect): a self-reported
patient registry and its role in improvement of care for patients with inherited metabolic disorders. Orphanet J Rare Dis
2017 Jul 19;12(1):132 [FREE Full text] [doi: 10.1186/s13023-017-0684-3] [Medline: 28724394]

23. Corradi JP, Thompson S, Mather JF, Waszynski CM, Dicks RS. Prediction of Incident Delirium Using a Random Forest
classifier. J Med Syst 2018 Nov 14;42(12):261. [doi: 10.1007/s10916-018-1109-0] [Medline: 30430256]

24. Kinreich S, Meyers JL, Maron-Katz A, Kamarajan C, Pandey AK, Chorlian DB, et al. Predicting risk for Alcohol Use
Disorder using longitudinal data with multimodal biomarkers and family history: a machine learning study. Mol Psychiatry
2021 Apr 08;26(4):1133-1141. [doi: 10.1038/s41380-019-0534-x] [Medline: 31595034]

25. Lin Y, Chen R, Tang J, Yu C, Wu JL, Chen L, et al. Machine-Learning Monitoring System for Predicting Mortality Among
Patients With Noncancer End-Stage Liver Disease: Retrospective Study. JMIR Med Inform 2020 Oct 30;8(10):e24305.
[doi: 10.2196/24305]

26. Park J, Kim J, Ryu B, Heo E, Jung SY, Yoo S. Patient-Level Prediction of Cardio-Cerebrovascular Events in Hypertension
Using Nationwide Claims Data. J Med Internet Res 2019 Feb 15;21(2):e11757 [FREE Full text] [doi: 10.2196/11757]
[Medline: 30767907]

27. Walsh CG, Ribeiro JD, Franklin JC. Predicting Risk of Suicide Attempts Over Time Through Machine Learning. Clinical
Psychological Science 2017 Apr 11;5(3):457-469. [doi: 10.1177/2167702617691560]

28. Yu C, Lin Y, Lin C, Wang S, Lin S, Lin SH, et al. Predicting Metabolic Syndrome With Machine Learning Models Using
a Decision Tree Algorithm: Retrospective Cohort Study. JMIR Med Inform 2020 Mar 23;8(3):e17110 [FREE Full text]
[doi: 10.2196/17110] [Medline: 32202504]

29. Zhang W, Liu H, Silenzio VMB, Qiu P, Gong W. Machine Learning Models for the Prediction of Postpartum Depression:
Application and Comparison Based on a Cohort Study. JMIR Med Inform 2020 Apr 30;8(4):e15516 [FREE Full text] [doi:
10.2196/15516] [Medline: 32352387]

JMIRx Med 2021 | vol. 2 | iss. 2 | e25560 | p. 10https://xmed.jmir.org/2021/2/e25560
(page number not for citation purposes)

Surodina et alJMIRx Med

XSL•FO
RenderX

http://dx.doi.org/10.4236/jilsa.2017.91001
http://dx.doi.org/10.1176/appi.ajp.2016.16010077
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27609239&dopt=Abstract
http://dx.doi.org/10.1038/nm1653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17934472&dopt=Abstract
http://dx.doi.org/10.1038/mp.2011.173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22230882&dopt=Abstract
https://www.patientslikeme.com/
http://dx.doi.org/10.23919/icact.2017.7890179
https://www.mdpi.com/resolver?pii=ijerph14111420
http://dx.doi.org/10.3390/ijerph14111420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29165330&dopt=Abstract
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://doi.org/10.1038/s41746-019-0148-3
http://dx.doi.org/10.1038/s41746-019-0148-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31372505&dopt=Abstract
https://www.ema.europa.eu/en/human-regulatory/post-authorisation/patient-registries
https://www.ema.europa.eu/en/human-regulatory/post-authorisation/patient-registries
http://dx.doi.org/10.1016/j.rdc.2019.01.009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30952391&dopt=Abstract
http://dx.doi.org/10.1515/sjpain-2017-0160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30699072&dopt=Abstract
https://ojrd.biomedcentral.com/articles/10.1186/s13023-017-0684-3
http://dx.doi.org/10.1186/s13023-017-0684-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28724394&dopt=Abstract
http://dx.doi.org/10.1007/s10916-018-1109-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30430256&dopt=Abstract
http://dx.doi.org/10.1038/s41380-019-0534-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31595034&dopt=Abstract
http://dx.doi.org/10.2196/24305
https://www.jmir.org/2019/2/e11757/
http://dx.doi.org/10.2196/11757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30767907&dopt=Abstract
http://dx.doi.org/10.1177/2167702617691560
https://medinform.jmir.org/2020/3/e17110/
http://dx.doi.org/10.2196/17110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32202504&dopt=Abstract
https://medinform.jmir.org/2020/4/e15516/
http://dx.doi.org/10.2196/15516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32352387&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


30. Cafri G, Li L, Paxton EW, Fan J. Predicting risk for adverse health events using random forest. Journal of Applied Statistics
2017 Dec 18;45(12):2279-2294. [doi: 10.1080/02664763.2017.1414166]

31. Fabris F, Doherty A, Palmer D, de Magalhães JP, Freitas AA. A new approach for interpreting Random Forest models and
its application to the biology of ageing. Bioinformatics 2018 Jul 15;34(14):2449-2456 [FREE Full text] [doi:
10.1093/bioinformatics/bty087] [Medline: 29462247]

32. Agile delivery. Gov.uk Service Manual. URL: https://www.gov.uk/service-manual/agile-delivery [accessed 2020-10-23]
33. Use of Agency Materials. Centers for Disease Control and Prevention. 2019. URL: https://www.cdc.gov/other/

agencymaterials.html [accessed 2020-11-04]
34. NHANES Questionnaires, Data sets, and Related Documentation. CDC National Center for Health Statistics. 2016. URL:

https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/Default.aspx?BeginYear=2015 [accessed 2020-11-04]
35. NHANES Response Rates and Population Totals. CDC National Center for Health Statistics. URL: https://wwwn.cdc.gov/

nchs/nhanes/responserates.aspx [accessed 2020-11-04]
36. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python.

J Mach Learn Res 2011;12(85):2825-2830 [FREE Full text]
37. 1.11. Ensemble methods. scikit-learn. URL: https://scikit-learn.org/stable/modules/ensemble.html [accessed 2020-11-04]
38. T S. Entropy: How Decision Trees Make Decisions. Towards data science. 2019 Jan 11. URL: https://towardsdatascience.

com/entropy-how-decision-trees-make-decisions-2946b9c18c8 [accessed 2020-11-04]
39. Denvert/HSV_Alpha_Public. GitHub. URL: https://github.com/Denvert/HSV_Alpha_Public [accessed 2021-05-28]
40. Kimberlin DW, Rouse DJ. Genital Herpes. N Engl J Med 2004 May 06;350(19):1970-1977. [doi: 10.1056/nejmcp023065]
41. Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, et al. Machine learning for prediction of

all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis.
Eur Heart J 2017 Feb 14;38(7):500-507 [FREE Full text] [doi: 10.1093/eurheartj/ehw188] [Medline: 27252451]

42. Nanayakkara S, Fogarty S, Tremeer M, Ross K, Richards B, Bergmeir C, et al. Characterising risk of in-hospital mortality
following cardiac arrest using machine learning: A retrospective international registry study. PLoS Med 2018
Nov;15(11):e1002709 [FREE Full text] [doi: 10.1371/journal.pmed.1002709] [Medline: 30500816]

43. Ahmad T, Lund LH, Rao P, Ghosh R, Warier P, Vaccaro B, et al. Machine Learning Methods Improve Prognostication,
Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart
Failure Patients. J Am Heart Assoc 2018 Apr 12;7(8) [FREE Full text] [doi: 10.1161/JAHA.117.008081] [Medline:
29650709]

44. van Rosendael AR, Maliakal G, Kolli KK, Beecy A, Al'Aref SJ, Dwivedi A, et al. Maximization of the usage of coronary
CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the
CONFIRM registry. J Cardiovasc Comput Tomogr 2018;12(3):204-209. [doi: 10.1016/j.jcct.2018.04.011] [Medline:
29753765]

45. Salmanpour MR, Shamsaei M, Saberi A, Setayeshi S, Klyuzhin IS, Sossi V, et al. Optimized machine learning methods
for prediction of cognitive outcome in Parkinson's disease. Comput Biol Med 2019 Aug;111:103347. [doi:
10.1016/j.compbiomed.2019.103347] [Medline: 31284154]

46. Kortum X, Grigull L, Lechner W, Klawonn F. A Dynamic Adaptive Questionnaire for Improved Disease Diagnostics. In:
Adams N, Tucker A, Weston D, editors. Advances in Intelligent Data Analysis XVI. Cham: Springer; 2017:162-172.

47. Lötsch J, Sipilä R, Dimova V, Kalso E. Machine-learned selection of psychological questionnaire items relevant to the
development of persistent pain after breast cancer surgery. Br J Anaesth 2018 Nov;121(5):1123-1132 [FREE Full text]
[doi: 10.1016/j.bja.2018.06.007] [Medline: 30336857]

Abbreviations
CART: classification and regression trees
EHR: electronic health record
FHIR: Fast Healthcare Interoperability Resources
GDPR: General Data Protection Regulation
HIPAA: Health Insurance Portability and Accountability Act
HSV: herpes simplex virus
HSV-1: herpes simplex virus, type 1
HSV-2: herpes simplex virus, type 2
NHANES: US National Health and Nutrition Examination Survey

JMIRx Med 2021 | vol. 2 | iss. 2 | e25560 | p. 11https://xmed.jmir.org/2021/2/e25560
(page number not for citation purposes)

Surodina et alJMIRx Med

XSL•FO
RenderX

http://dx.doi.org/10.1080/02664763.2017.1414166
http://europepmc.org/abstract/MED/29462247
http://dx.doi.org/10.1093/bioinformatics/bty087
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29462247&dopt=Abstract
https://www.gov.uk/service-manual/agile-delivery
https://www.cdc.gov/other/agencymaterials.html
https://www.cdc.gov/other/agencymaterials.html
https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/Default.aspx?BeginYear=2015
https://wwwn.cdc.gov/nchs/nhanes/responserates.aspx
https://wwwn.cdc.gov/nchs/nhanes/responserates.aspx
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://scikit-learn.org/stable/modules/ensemble.html
https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8
https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8
https://github.com/Denvert/HSV_Alpha_Public
http://dx.doi.org/10.1056/nejmcp023065
http://europepmc.org/abstract/MED/27252451
http://dx.doi.org/10.1093/eurheartj/ehw188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27252451&dopt=Abstract
http://dx.plos.org/10.1371/journal.pmed.1002709
http://dx.doi.org/10.1371/journal.pmed.1002709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30500816&dopt=Abstract
https://www.ahajournals.org/doi/10.1161/JAHA.117.008081?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
http://dx.doi.org/10.1161/JAHA.117.008081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29650709&dopt=Abstract
http://dx.doi.org/10.1016/j.jcct.2018.04.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29753765&dopt=Abstract
http://dx.doi.org/10.1016/j.compbiomed.2019.103347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31284154&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0007-0912(18)30513-0
http://dx.doi.org/10.1016/j.bja.2018.06.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30336857&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Edited by G Eysenbach; submitted 06.11.20; peer-reviewed by W Nowell, JA Benítez-Andrades; comments to author 26.11.20; revised
version received 04.02.21; accepted 12.03.21; published 11.06.21

Please cite as:
Surodina S, Lam C, Grbich S, Milne-Ives M, van Velthoven M, Meinert E
Machine Learning for Risk Group Identification and User Data Collection in a Herpes Simplex Virus Patient Registry: Algorithm
Development and Validation Study
JMIRx Med 2021;2(2):e25560
URL: https://xmed.jmir.org/2021/2/e25560
doi: 10.2196/25560
PMID:

©Svitlana Surodina, Ching Lam, Svetislav Grbich, Madison Milne-Ives, Michelle van Velthoven, Edward Meinert. Originally
published in JMIRx Med (https://med.jmirx.org), 11.06.2021. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work, first published in JMIRx Med, is properly cited. The complete
bibliographic information, a link to the original publication on https://med.jmirx.org/, as well as this copyright and license
information must be included.

JMIRx Med 2021 | vol. 2 | iss. 2 | e25560 | p. 12https://xmed.jmir.org/2021/2/e25560
(page number not for citation purposes)

Surodina et alJMIRx Med

XSL•FO
RenderX

https://xmed.jmir.org/2021/2/e25560
http://dx.doi.org/10.2196/25560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

