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Abstract

Background: Since the beginning of the COVID-19 pandemic, researchers and health authorities have sought to identify the
different parameters that drive its local transmission cycles to make better decisions regarding prevention and control measures.
Different modeling approaches have been proposed in an attempt to predict the behavior of these local cycles.

Objective: This paper presents a framework to characterize the different variables that drive the local, or epidemic, cycles of
the COVID-19 pandemic, in order to provide a set of relatively simple, yet efficient, statistical tools to be used by local health
authorities to support decision making.

Methods: Virtually closed cycles were compared to cycles in progress from different locations that present similar patterns in
the figures that describe them. With the aim to compare populations of different sizes at different periods of time and locations,
the cycles were normalized, allowing an analysis based on the core behavior of the numerical series. A model for the reproduction
number was derived from the experimental data, and its performance was presented, including the effect of subnotification (ie,
underreporting). A variation of the logistic model was used together with an innovative inventory model to calculate the actual
number of infected persons, analyze the incubation period, and determine the actual onset of local epidemic cycles.

Results: The similarities among cycles were demonstrated. A pattern between the cycles studied, which took on a triangular
shape, was identified and used to make predictions about the duration of future cycles. Analyses on effective reproduction number
(Rt) and subnotification effects for Germany, Italy, and Sweden were presented to show the performance of the framework
introduced here. After comparing data from the three countries, it was possible to determine the probable dates of the actual onset
of the epidemic cycles for each country, the typical duration of the incubation period for the disease, and the total number of
infected persons during each cycle. In general terms, a probable average incubation time of 5 days was found, and the method
used here was able to estimate the end of the cycles up to 34 days in advance, while demonstrating that the impact of the
subnotification level (ie, error) on the effective reproduction number was <5%.

Conclusions: It was demonstrated that, with relatively simple mathematical tools, it is possible to obtain a reliable understanding
of the behavior of COVID-19 local epidemic cycles, by introducing an integrated framework for identifying cycle patterns and
calculating the variables that drive it, namely: the Rt, the subnotification effects on estimations, the most probable actual cycles
start dates, the total number of infected, and the most likely incubation period for SARS-CoV-2.
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Introduction

The analysis of the life cycles of any epidemic involves the
analysis of a series of quantitative parameters that govern these
cycles and which, given the inherent uncertainty of these events,
are generally treated by statistical models. For a number of
practical reasons, the registration of deaths and of infections
are inevitably imprecise, although these numbers can be
corrected over time. Therefore, with the COVID-19 pandemic,
a subject that immediately became the center of debates and
different studies was the characterization of the different local
epidemic cycles and their corresponding variables. Local cycles
are those that have occurred or occur in specific countries,
regions, or cities, and not the pandemic cycle as a whole, as the
virus does not spread instantly across continents. Thus, it can
be seen that some countries were in more advanced epidemic
stages than others whose first infections were detected later. In
other words, as expected, different “infection windows” coexist
in parallel in different locations, with some locations at a more
advanced stage, while others present more “delayed” cycles.
Thus, numerically analyzing the behavior of early cycles was
the measure undertaken by a series of researchers.

Although it is not the only one, as will be seen in this paper, the
reproduction number is considered the central variable in the
analysis of epidemic cycles. In order to determine the
reproduction number, different categories of models have been
proposed: artificial neural networks [1], Poisson [2,3],
exponential [4], Markov chain [5], Gaussian [6,7], Weibull [8],
Logistic-S [9], and moving averages [10]. Most research tries
to frame the local epidemic cycles into Gaussian and/or Weibull
behaviors, creating complex models that still led to errors in
predictions, as we now know. More importantly, Park et al [11]
showed that the initial models, most based on the Gaussian
distribution and its derivatives, failed to make their predictions.
After observing these findings, we saw that there was room to
propose a framework that would provide an efficient and more
comprehensive analysis of the epidemic cycles, going beyond
the calculation of the reproduction number. Moreover, it would
be both easy to understand and to compute, since local
authorities, especially in low-income countries, do not always
have statistical experts at their disposal to propose, calibrate,
and analyze the results of complex models. Thus, based on
experimental and publicly available data, we produced a series
of studies that initially dealt with the identification of patterns
in epidemic cycles and their use for predicting deaths [12],
time-dependent effective reproduction number (Rt) and
subnotification effect estimation modeling [13], and finally,
estimation of the actual onset of local epidemic cycles,
determination of the total number of infected, and the duration
of the incubation period [14]. In this paper, these findings are
integrated and summarized in a coherent framework.

Methods

Based on experimental data, the framework proposed here is
divided into four parts: (1) applying the moving averages method
and identifying the parameters of the epidemic cycle patterns,
which are used to predict the number of future deaths in local
epidemics, (2) modeling the Rt and (3) the effects of
subnotification, and (4) applying the logistic model associated
to a novel inventory model to obtain the final count for the total
infected, the daily infection rate and lag time, and the incubation
period.

Patterns of Epidemic Cycles
Our method began with the observation of several cycles in
western countries where the pandemic hit earlier, especially in
Europe. From there, patterns were identified and predictions
were applied. The attempt to describe the different epidemic
cycles that make up the current pandemic often comes up against
the quality of the data that is made public. Most data made
public are based on “date of recording,” which is different of
“day of death,” meaning that the date that a given set of deaths
are recorded in the public health statistics systems is not
necessarily the date they occurred on; given the usual
bureaucratic procedures, recording may be delayed.

The fact is that the distribution of fatalities suffers a distortion
that generates a “saw” appearance in graphs such that on
weekends there is a clear absence of death records, followed by
an explosion of values at the beginning of the week. A simple
technique that softens this effect is to apply the so-called moving
average method (MAM), in which the daily value of deaths is
replaced by the sum of the previous 6 days with the current day,
divided by 7; in other words, the average of the week ended in
the current day. In particular, MAMI (MAM with initial value)
will be used here, which entails assigning the average of the 7
days to the first day of the week (Sunday).

In the period in which the data were obtained and analyzed (first
week of July 2020), several cities, regions, states, and countries
had already completed what will be called here the most lethal
cycle of the epidemic (MLCE), which is when the number of
deaths increases daily, on average, until it reaches a peak and
then begins to decrease continuously until it reaches a minimum
value. After this period, the occurrence of deaths continues
intermittently, but relatively small and oscillating, decreasing
to certain levels of daily deaths, where it then becomes
apparently chronic and presents relatively low values, but
remains greater than zero.

In order to show numerical cases of the application of the
proposed model, data from three European countries with
different cycles were analyzed: Germany, a country that was
reported as exemplary in terms of application of
nonpharmaceutical interventions (NPIs); Italy, which stayed at
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the center of the initial crisis; and Sweden, which generally did
not apply any strong NPIs. The data for this part of the study
were obtained from the Worldometer’s COVID-19 portal [15]
as of July 9, 2020, and is presented, together with the
calculations, in Multimedia Appendix 1.

Germany
Described from the beginning of the pandemic as a country that
managed the crisis in an exemplary way, testing significant
portions of its population and controlling and lifting restrictions

on public movement based on well-known numbers and
percentages of cases. Figure 1 shows the evolution of deaths in
Germany. This framework points to the existence of the
so-called false peaks. These are local maximums that were
recorded during the cycle of rising or falling in the trend of
deaths, but they are not inflection points. In order for a point to
be considered as a (real) peak, it is necessary to register a
tendency of decline in the number of deaths. This fall will not
be linear, but there is an obvious, numerical, and visual trend
that indicates such a pattern.

Figure 1. The cycle in Germany. MLCE: most lethal cycle of the epidemic. Source: Worldometer [15].

Italy
A country that was at the European epicenter of the crisis, Italy
experienced an evolution in the number of deaths (Figure 2),
which indicates the overcoming of the MLCE.
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Figure 2. The cycle in Italy. MLCE: most lethal cycle of the epidemic. Source: Worldometer [15].

Sweden
Sweden, an European country that has not adopted the practices
of radical social isolation like its neighbors, has a cycle of aspect

not unlike that of all other European countries. Figure 3 shows
the values of deaths that have already been corrected for the
dates on which they actually occurred and not the date of
registration.

Figure 3. The cycle in Sweden. MLCE: most lethal cycle of the epidemic. Source: Worldometer [15].
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Nondimensional Characteristics of Epidemic Cycles
In general, the epidemic cycles described here have some
common geometric characteristics, the main one being a
triangular aspect (Figure 4), where a smaller side is formed,
which corresponds to an average daily increase in the number
of deaths until a peak is reached. This peak may be easily
identifiable or require extrapolation of a line because the values
oscillate naturally and some spurious points (false peaks) may
appear. The peak is followed by a period where the number of
deaths occurring daily tends to decrease on average. This period,
for the observed cases, is longer than the previous one.
According to Kotz and Rene van Dorp [16], the triangular
distribution is used when there is no exact idea of what the
distribution is, although there is an idea of the minimum and

maximum values for the variable. Therefore, this distribution
was chosen given its particular nature and use in situations
where the description of a given population is uncertain, as is
in this case. This distribution is based on the minimum and
maximum estimates. Hence, Table 1 gathers values of the
so-called triangular cycles presented earlier.

The values listed in Table 1 indicate that the period of rise of
the disease in countries of relatively small sizes or in big cities
is about 21 days, ranging from 19 to 25 days before reaching
the so-called peak. From then until the end of this critical period,
about 60 days pass, ranging from 45 to 81 days. The ratio
between the two periods oscillates between 2.1 and 3.3, with
an average of 2.8. Table 2 shows the number of deaths in the
periods described above.

Figure 4. The generic shape of COVID-19 lethal cycles.

Table 1. Proportions between the time of ascent until the peak of deaths and descent to the end of the most severe cycle of COVID-19.

Proportion between ascent and descentDays to the
end

Days to the
peak

EndPeakStartCountry

2.95720May 24March 27March 7Italy

3.28125July 1April 11March 17Sweden

3.36921June 14April 8March 18Germany

Table 2. Proportions between the number of deaths associated with the cycle of rising to the peak and of descending to the end of the most severe cycle
of COVID-19.

Proportion between ascent and descentDeaths to the
end

Deaths to the
peak

EndPeakStartPlace

2.724,0828937May 24March 27March 7Italy

3.341411255July 1April 11March 17Sweden

2.865212323June 14April 8March 18Germany

The values listed in Table 2 indicate that the number of deaths
during the period of ascent of the disease in countries of
relatively small sizes or cities is about 5791 (range 1255-10,293)

before reaching the peak. From then until the end of this critical
period, about 12,673 (range 4141-24,082) deaths occur. The
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ratio of death figures ranges from 1.6 to 3.3, with an average
of 2.4.

Therefore, it is possible to identify that once the scale effects
are removed, what remains is a spectrum of proportions of the
epidemic cycle. Then, when submitting the data to the moving
average method with the initial value (MAMI), there is a
minimization of the effect of seasonality in the registration of
deaths, caused by weekends, holidays, and other local
peculiarities. After dividing all the values previously
transformed by the peak of the series (peak now determined by
MAMI), the values start to be dimensionless and fall between
0 and 1. In this way, the epidemic cycles can be compared with
each other, since what remains are the proportions between the
ascent, the peak, and the descent of the cycle. The time period
does not change. One clear limitation of this method is the
necessity of identifying the real peak. Then, a hypothesis arises
that different locations may, under different behavioral rules,
present the same behavior.

Algorithm for Cycle Predictions
After identifying the triangular pattern and through successful
application in several cases, a prediction algorithm was
developed, described by the following steps:

1. MAMI is calculated for the daily figures on the number of
deaths.

2. The set of values is normalized and MAMI is also applied
on that.

3. A continuous curve is generated on a graph with the x axis
as the number of consecutive days of the epidemic cycle
and the y axis as the dimensionless range from 0 to 1 (some
points, the false peaks, can go beyond this).

4. Among countries or localities, we seek those that have
already ended their critical epidemic cycle (MLCE) and
that are visually similar to the curve obtained in step 3,
although obviously on a different scale, becoming the
locality of reference.

5. MAMI is applied to the locality of reference.

6. Data of the locality of reference are normalized.
7. Repeat step 3 for the data of the locality of reference.
8. Considering that the cycle of the locality of reference is

finished, it will be positioned previously on the graph, in
relation to the place where it is desired to estimate the
probable end date of the critical cycle. One should then
numerically superimpose the peak of the case under study
with the reference.

9. Once the superposition is made, always moving the
reference case, an extrapolation can be made using the
reference case as a guide to the value to be determined. As
the scale of the case studied has not been changed, it is
enough to consult what day it would be in the future to
know the probable date.

10. If there is no similar case, you can eliminate the last days,
as discussed above, and extrapolate directly from the values
obtained in the public databases.

Effective Reproduction Number
After identifying the similarities between cycles, the next step
is to calculate the Rt, which is done on the experimental behavior
of the curve. First, however, it is necessary to understand the
effect of MAMI on the reproduction number.

MAMI Effect on Reproduction Numbers
The impact of MAMI applied to registered numbers can be
better understood by analyzing Figure 5, where MAMI bears
the greatest effect at the very beginning of the epidemic cycle;
however, after a brief period, the average and actual data tend
to yield to the same value as the cycles progress. It will be
shown along this paper that the reproduction number varies
most in the early stages, and the use of MAMI is plainly justified
to avoid numbers that are registered in batches and not into a
smooth daily fashion. Daily figures for total cases collected
from the Johns Hopkins University’s website [17] on July 22,
2020, together with the calculations, are presented in Multimedia
Appendix 2. The analysis of the Rt for the three European
countries are represented in Figures 6-8.
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Figure 5. MAMI (moving average method–initial value) effect on reproduction numbers (Rt) expressed for two different countries, South Korea (SK)
and Italy. South Korea: the blue line is Rt obtained from MAMI applied to registered data; the red line is Rt determined for registered data. Italy: the
yellow line is Rt for registered data; the green line is for MAMI applied to registered data. Source: Johns Hopkins University [17].

Figure 6. Number of COVID-19 cases reported for Germany. The black line represents the daily reported numbers, the blue bars their MAMI (moving
average method–initial value), and the red line the total cases to date, using the right-hand axis as reference. Source: Johns Hopkins University [17].
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Figure 7. Number of COVID-19 cases reported for Italy. The black line represents the daily reported numbers, the blue bars their MAMI (moving
average method–initial value), and the red line the total cases to date, using the right-hand axis as reference. Source: Johns Hopkins University [17].

Figure 8. Number of COVID-19 cases reported for Sweden. The black line represents the daily reported numbers, the blue bars their MAMI (moving
average method–initial value), and the red line the total cases to date, using the right-hand axis as reference.
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Deriving the Effective Reproduction Number
With the effect of moving averages measured, it is possible to
proceed to an experimental method for calculating the daily
number of infected and then an effective, time-varying
reproduction number, calculating its value by means of
experimental data outlined below.

The total number of infected daily (Id), during a period of time
t, can be described as a function of the daily increase rate factor
(1+b) multiplied by a scale factor, as shown in equation 1:

Id=a (1+b)t (1)

In equation 1, a is the scale factor and b is the absolute daily
increase rate, or instantaneous rate, and is defined as:

where Id,n+1 is the current day and Id,n is the previous day.

Equation 1 can be written as:

Id=Ct (3)

where C is the time-dependent effective reproduction number,
Re(t), or Rt for short, which is obtained from experimental data.
For the reproduction number determination, it is necessary to
determine the scale factor a. Therefore, a takes the following
form:

Finally, from equations 3 and 4:

In order to map the interpretation proposed from equations 1 to
5 to the classical mathematical interpretation for the

reproduction number (R0), an equivalence transformation will
be described as follows. From the classical definition of R0, let:

where β is infection-producing contacts per unit time
(instantaneous rate), with a mean infectious period of τ. Equation
6 can be transformed into:

R0=ekτ(7)

From equations 5 and 7:

In equation 8, all dimensional units are compatible, therefore
our transformations to obtain Rt in equation 5 are valid. Equation
5 was obtained from experimental data, and it is at the core of
the model proposed here. From this point onward, Rt must be
interpreted as Re(t) as explained before, in the interpretation of
equation 3.

During the data analysis, we noted that the daily increase rate
factor (1+b) is not enough to describe the number of
contaminated cases registered in a given day, because it simply
informs the absolute increase ratio that occurred from one day
to the next. The reproduction number coefficient needs more
numerical information in order to be able to express correctly
the magnitude of daily numbers. It needs the scale factor a to
bring more information on the phenomenon. As an example of
this finding, Figure 9 shows that while the (1+b) factor varies
rapidly, Rt drops steadily, changing slowly as the exponential
time grows. The same behavior is displayed by the total daily
registered number of deaths, which keeps growing smoothly.
This is the numerical evidence that the factor (1+b) alone cannot
describe the total number of deaths.
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Figure 9. Behaviors of (1+b) and effective reproduction number (Rt) factors for the first 20 days in the epidemic cycle of Germany. MAMI: moving
average method–initial value.

Subnotification Effect on the Reproduction Number
When it comes to analyzing the number of cases of infection
in the COVID-19 epidemic, an issue that always arises is
underreporting or subnotification and its importance in
predicting the behavior of the epidemic cycle. Thus, the third
part of the framework is dedicated to the study of subnotification
and its effects on prediction. Subnotification is understood as
the fact that counts of infected persons are only estimated by
public health authorities. Given that many people exposed to
the virus do not display any sign of infection or the symptoms
are very mild, therefore going unnoticed and unregistered by
local bureaus of health statistics, the development of evaluation
tools of the impact of these nonnotified cases is necessary. If it
is assumed that subnotification is a constant factor (eg, 10 times
the registered number of cases) during the whole epidemic cycle,
it does not change the absolute daily increase rate b or the (1+b)
factor. However, it does affect the scale factor a, therefore
changing Rt.

Subnotification Impact Estimation Method
The impact of subnotification on Rt may be estimated by initially
assuming that the actual registered figures for daily infected
persons are no longer their actual values, but “real” ones
multiplied by a factor—the subnotification factor. After that,
the scale factor a is calculated. The term (1+b) remains constant,
once the ratio (equation 3) remains constant. Then a and (1+b)
are applied to equation 5, thus recalculating Rt, now reflecting
the effect of the imposed subnotification factor. This new Rt

value would have been the correct one, in case all subnotified
cases were suddenly registered. The percentage difference

between this new, recalculated Rt and the actual one provides
an estimate for the impact of subnotification on the reproduction
number for a given population. Therefore, multiplying the values
for registered cases by a factor of 10 will not cause a tenfold
increase in Rt. The true impact must be therefore calculated as
described. It is also observed that subnotification mostly affects
the very beginning of the critical cycle. After a certain amount
of time, errors drop to insignificant values, below 5%.

Total Number of Infected, Daily Infection Rate, Lag
Time, and Incubation Period
The fourth component of the framework is the application of
the logistic model to estimate three parameters: the total count
of infected individuals; the daily infection rate; and the lag,
which defines when the cycle actually started. An innovative
model, based on the concept of inventory formation, is used to
determine a fourth parameter—the most likely incubation period
for the virus.

Considered by many authors as a good fit for modeling epidemic
episodes [18-20], the logistic model describes three typical
phases for this type of episode: the slow start, the steady growth,
and finally the asymptotic behavior of the end. There are several
ways to implement this function, and this work will use the
so-called Richard growth model to describe the accumulated
number of infection cases. The generalized logistic function has
the following form:
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By selecting the highest r2 among several variations of equation
9, through curve-fitting, a particular form for equation 9 is:

where N(t) is the number of infected persons at a given period
of time t, a is the final count for the total infected, b is the daily
infection rate, c is the lag phase, and d is a positive real number.
It can be shown that:

The constants a, b, c, and d will be used to estimate x1, the
maximum number of infected people in a given location; x2 is
the daily infection rate, or the average absolute daily increase
in the number of infected, which can be used to determine the
reproduction number (and to estimate the incubation period).
Finally, x3 is used to estimate the lag time, or the actual moment
when the first case occurred.

Incubation Period Estimation
Although there is a series of studies on the incubation period
for SARS-CoV-2, in order to maintain consistency within the
framework, we sought to develop a model that could also
estimate what would be the best incubation period estimation
method to consider when modeling epidemic cycles. For that,
we defined a model of inventory of infected people similar to
the one used in productive systems, as shown in equation 12:

It = It–1 + Dt – Dt–n (12)

where It is the inventory of people infected in day t, or the total
of infected in day t; It-1 is the inventory of people infected in
the previous day; Dt is the number of people detected with the
disease in day t; and Dt-n is the number of people detected with
the disease n days before t.

Equation 12 should be interpreted as follows: the number of
people who are infectious on a given day is equal to the number
of people who were infectious the day before, plus the number
of infected detected on the same day, and minus the number of
people who have left the N-day incubation period. This
reasoning therefore assumes that as soon as a person finds out
he or she is infected, that is, when this person leaves the
incubation period, enters perfect isolation and stops infecting.
Although this assumption is not completely realistic—since it
depends not only on individual responsibility, but also on the

implementation of efficient isolation measures—at the same
time it must also be considered that not every infected person
effectively infects others, given that isolation is not the only
way to avoid viral contamination. Thus, we consider this
assumption to be reasonable enough to be applied statistically.

Other basic assumptions are that of all people susceptible (not
vaccinated, sufficiently exposed to the pathogen, etc), not all
will expose or develop the disease in a form severe enough to
be noticed. Accordingly, the recorded number of daily cases
does not reflect the total number of infected, but those who seek
medical attention and therefore were diagnosed as contaminated.
Hence, this is the number of infected in a given day, or the
“inventory” of people that can infect other people in a given
day. With the formulation defined in equation 12 and the
assumptions described previously, we carried out the analysis
and simulations for the three countries.

Results

General Findings
The epidemic cycles observed were subjected to the numerical
methods present in the framework and described in the previous
section. The first data transformation was the application of the
MAMI value. The second transformation was normalization,
where all the values were divided by cycle peak value, causing
most of the values to fit between 0 and 1, except for the false
peaks. These two consecutive transformations allowed for a
comparison of behaviors among cycles and proved that several
epidemic cycles, within the pandemic, have similarities. With
these first steps, it is possible to estimate the duration and
general behavior of a local episode, even though this, in absolute
terms, does not present the same number of deaths or duration
as a similar cycle. What remains approximately constant are
the proportions of similar cycles. This technique has been
applied with great success in the performance prediction of
professional athletes and teams [21].

By the time the analyses were done, the three countries
considered in this paper presented more advanced cycles, so no
predictions were made for them; instead, their cycles were used
to perform analysis on other countries, regions, and cities. For
instance, Figure 10 presents the similarity of the United States’
and Sweden’s cycles. A complete set of predictions for Brazil,
the state of Rio de Janeiro, and the city of Rio de Janeiro, as
well as a measurement of the performance of the model, are
presented in Multimedia Appendix 3. In addition, as seen in De
Carvalho and De Carvalho [12], it is possible to find many other
comparisons and predictions between cities, regions, and
countries using this method.
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Figure 10. Comparison of epidemic cycles: Sweden and the United States. Source: Worldometer [15].

The analyses of the other variables considered in the framework
for Germany, Italy, and Sweden are presented in the next
sections. The data for this part of the study were also collected
from the Johns Hopkins University’s website [17] on the
declared dates.

The expressions developed in equations 1 to 5 do not explicitly
take into account the incubation period, with the instantaneous
rate of change, or daily increase in number of registered infected
individuals, calculated as defined in equation 5. For the sake of
thoroughness, three simulations were performed, for an
incubation period of 5, 10, and 15 days. This was achieved by
redefining the expression (1+b) for a new set of parameters,
basically dividing the total number of reported cases for a given
day by the values registered in 5, 10, and 15 days before. In that
way, the term (1+b) would now reflect the incubation period
over Rt. All simulations yielded zero (0%) change, to the fourth
significant figure. Therefore, it is assumed that the described
method is inherently insensitive to incubation period variations
or influence, reinforcing its simplicity and robustness. The data
and calculations are in Multimedia Appendix 4.

Germany

Reproduction Numbers
In Figure 11, three distinct zones are formed. Zone “a” is in the
very beginning of the cycle, and the reproduction number varies
from 1.10 to 1.48 from one day to the next; this is probably only
the reflection of large initial variation in numbers but only if
we limit this zone to no more than 5% of the MAMI peak value.
It is easy to notice that the figures bear small influence on the
overall disease behavior. Zone “b” describes the transmission
during the critical disease cycle (from March 6 to June 7), where
a rapid increase in daily cases stops only around the peak than
drops steadily toward the end. This is the most lethal period of
the epidemic cycle, and it is considered over once a 5% peak
level is reached again. The remaining time, zone “c,” is the
residual cycle that appears in all countries and places facing the
COVID-19 crisis. In absolute values, the reproduction number
for the critical period starts with a value of 1.30 and drops
continuously toward 1.00, although never quite reaching it (at
the time this paper was written).
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Figure 11. Total epidemic cycle in Germany, using the daily number of infected people. Source: Johns Hopkins University [17].

Subnotification
An arbitrary threshold line representing a 5% error was drawn
in Figure 12. This limit shows that after the 50th day into the
German critical cycle (the one between 5% of the peak value,
before and after it), regardless of the amount of subnotification,
the error of the calculated reproduction number is no greater
than 5%, as presented in Table 3. At the other extreme, a 3x
subnotification essentially does not induce errors greater than

5% on the reproduction number, at any time during the critical
cycle. A maximum error of 16.84% is estimated for the worst
case scenario simulated here, a 40x subnotification, and the first
day into the cycle. In overall, subnotification appears to have
no significant impact in Germany’s official infected numbers.
Subnotification also seems to have more impact in the very
beginning of a given cycle but becomes irrelevant toward the
end.
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Figure 12. Subnotification effect on reproduction number in Germany during the critical epidemic cycle. Source: Johns Hopkins University [17].

Table 3. Errors associated with ignoring the existence of subnotification in the epidemic cycle.

Error (%) at peak dayDays until ≤5%Min error (%)Max error (%)Subnotification

2.6420.975.343x

3.85121.417.735x

5.46252.0210.8710x

6.39332.3712.6615x

7.05392.6213.9120x

7.55432.8114.8725x

7.96472.9715.6430x

8.60523.2116.8440x

Total Number of Infected
Data collected for Germany from February 15 to July 20 were
plotted in Figure 13. The blue dots represent the daily registered

infected cases submitted to MAMI, and the red continuous line
represents the Richard growth model curve, drawn using
parameters determined by the MAMI data.
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Figure 13. Total number of infected (moving average method–initial value [MAMI]) compared to the Richard growth model prediction for Germany.
Source: Johns Hopkins University [17].

As discussed previously, the German critical epidemic cycle
started on March 6. Using curve-fitting data from Table 4, Table
5 shows that the first case must be recorded 89 days before that,

with X3 indicating that the first case of the total epidemic cycle
occurred around December 8, 2019.

Table 4. Curve-fitting data.

ValueParameter

197,372.97a

–5.2260b

0.0587c

4.4208×10-4d

Table 5. Epidemic parameters determined using curve-fitting data from Table 4.

ValueEpidemic parameter

197,373X1

5.87aX2

89X3

0.9958r2

aPercent.

Impact of Incubation Period
In this section, we approach the model of formation of an
infected persons inventory for the three countries considered.

Simulations were made for incubation cycles of 3, 5, 7, 9, and
11 days. Inventories were calculated according to equation 12
and plotted together with the MAMI of detected cases. Figure
14 presents the subnotification study for Germany.
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Figure 14. Infected person inventories for 3, 5, 7, 9, and 11 days of incubation, compared to MAMI (moving average method–initial value) for Germany.
Source: Johns Hopkins University [17].

Italy

Reproduction Numbers
It can be seem in Figure 15 that three distinct zones are formed.
Zone “a” is in the beginning of the cycle, and the reproduction
number varies from 1.78 to 1.44 from one day to the next; once
again this is probably simply the reflection of large initial
variation in number, but this zone is limited to no more than

5% of the MAMI peak value. It is easy to notice that the figures
bear small influence in the overall disease behavior. Zone “b”
describes the transmission during the critical disease cycle (from
February 25 to June 15). This is the most lethal period of the
epidemic cycle, and it is considered over once a 5% peak level
is reached again. The remaining time, zone “c,” is the residual
cycle. In absolute values, the reproduction number for the critical
period starts with a value of 1.44 and drops continuously toward
1.12.
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Figure 15. Total epidemic cycle in Italy, using the daily number of infected people. Source: Johns Hopkins University [17].

Subnotification
Subnotification in Italy is presented in Figure 16. The 5% limit
tells that after the 44th day into the Italian critical cycle,
regardless the amount of subnotification, the error of the
calculated reproduction number is no greater than 5%, as shown
in Table 6. At the other extreme, a 3x subnotification essentially
induces no errors larger than 5% on the reproduction number,

in any time during the critical cycle, and 5x barely disturbs it.
A maximum error of 12.34% is estimated for the worst case
scenario simulated here, a 40x subnotification, and the first day
into the cycle. Overall, subnotification appears to have no
significant impact on Italy’s official infected numbers, as in the
previous two cases. Subnotification also has more impact in the
very beginning of a given cycle but becomes irrelevant toward
the end of it.
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Figure 16. Subnotification effect on reproduction number in Italy during the critical epidemic cycle. Source: Johns Hopkins University [17].

Table 6. Errors associated with ignoring the existence of subnotification in the epidemic cycle for Italy.

Error (%) at peak dayDays until ≤5%Min error (%)Max error (%)Subnotification

2.09N/Aa0.853.853x

3.0541.255.595x

4.33171.787.8910x

5.07252.099.2215x

5.60312.3110.1520x

6.00352.4810.8625x

6.33392.6211.4430x

6.85442.8412.3440x

aN/A: not applicable.

Total Number of Infected
Data collected for Italy from February 15 to July 20 were plotted
in Figure 17. The blue dots represent the daily registered infected

cases submitted to MAMI, and the red continuous line represents
the Richard growth model curve, drawn using parameters
determined by the MAMI data.
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Figure 17. Total number of infected (MAMI [moving average method–initial value]) compared to the Richard growth model prediction for Italy.
Source: Johns Hopkins University [17].

The Italian critical epidemic cycle started on February 25. Using
curve-fitting data from Table 7, Table 8 shows that the first case
must be recorded 86 days before that, with X3 indicating that

the first case of the total epidemic cycle occurred around
December 1, 2019.

Table 7. Curve-fitting data.

ValueParameter

241,148.81a

–4.8623b

0.0562c

8.4600×10-4d

Table 8. Epidemic parameters determined using curve-fitting data from Table 7.

ValueEpidemic parameter

241,149X1

5.62aX2

86X3

0.9995r2

aPercent.

Impact of Incubation Period
Using the same reasoning applied to Germany, Figure 18
presents the inventories of infected persons for Italy.
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Figure 18. Infected person inventories for 3, 5, 7, 9, and 11 days of incubation, compared to MAMI (moving average method–initial value) for Italy.
Source: Johns Hopkins University [17].

Sweden

Reproduction Numbers
It can be seen in Figure 19 that two distinct zones are formed,
once Sweden is considered, by the 5% criteria an “ongoing”
epidemic cycle, although in the present date, close to the end.
Zone “a” is in the beginning of the cycle, and the reproduction
number varies from circa 1.33 to 1.16 from one day to the next;
once again this probably is just the reflection of large initial

variation in number, but this zone is limited to no more than
5% of the MAMI peak value. It is easy to notice that the figures
bear small influence in the overall disease behavior. Zone “b”
describes the transmission during the critical disease cycle (from
March 4 onward). This is the most lethal period of the epidemic
cycle, and it is considered over once a <5% peak level is reached
again. In absolute values, the reproduction number for the
critical period starts with a value of 1.16 and drops continuously
toward 1.07.
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Figure 19. Epidemic cycle in Sweden, using the daily number of infected people. Source: Johns Hopkins University [17].

Subnotification
The subnotification effect in Sweden is presented in Figure 20.
The calculated limit tells that after the 54th day into the Swedish
critical cycle, regardless the amount of subnotification, the error
of the calculated reproduction number is no greater than 5%.
On the other extreme, a 3x subnotification essentially induces
no errors larger than 5% on the reproduction number, after the

fourth day during the critical cycle, as shown in Table 9. A
maximum error of 18.53% is estimated for the worst case
scenario simulated here, a 40x subnotification, and the first day
into the cycle. Overall, subnotification appears to have no
significant impact in Sweden. Subnotification also has more
impact in the very beginning of a given cycle but becomes
irrelevant toward the end of it.
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Figure 20. Subnotification effect on reproduction number in Sweden during the critical epidemic cycle. Source: Johns Hopkins University [17].

Table 9. Errors associated with ignoring the existence of subnotification in the epidemic cycle for Sweden.

Error (%) at peak dayDays until ≤5%Min error (%)Max error (%)Subnotification

0.8540.695.923x

1.24141.018.555x

1.77271.4512.0110x

2.08351.7013.9715x

2.30411.8815.3320x

2.46452.0216.3725x

2.60492.1317.2230x

2.82542.3118.5340x

Total Number of Infected
Data collected for Sweden from February 15 to July 20 were
plotted in Figure 21. The blue dots represent the daily registered

infected cases submitted to MAMI, and the red continuous line
represents the Richard growth model curve, drawn using
parameters determined by the MAMI data.
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Figure 21. Total number of infected (MAMI [moving average method–initial value]) compared to Richard growth model prediction for Sweden. Source:
Johns Hopkins University [17].

Previously, it was shown that the Swedish critical epidemic
cycle started on March 4. Using curve-fitting data from Table
10, Table 11 shows that the first case must be recorded 98 days

before that, with X3 indicating that the first case of the total
epidemic cycle occurred around November 27, 2019.

Table 10. Curve-fitting data.

ValueParameter

92,538.59a

3.4050b

0.0348c

7.5514×10-1d

Table 11. Epidemic parameters determined using curve-fitting data from Table 10.

ValueEpidemic parameter

92,539X1

3.48aX2

98X3

0.9958r2

aPercent.

Impact of Incubation Period
Accordingly, Figure 22 presents the predicted inventories of
infected persons for Sweden.
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Figure 22. Infected person inventories for 3, 5, 7, 9, and 11 days of incubation, compared to MAMI (moving average method–initial value) for Sweden.
Source: Johns Hopkins University [17].

One cannot take the assumptions used to derive equation 12 as
deterministic, considering that it describes a perfect “production”
system. However, there is no biological system that behaves in
such a perfect and deterministic way. Therefore, the data shown
in Figures 9, 13, and 17 are not conclusive by themselves, given
the imperfections of the contamination paths, or the considered
“production system,” should be taken into account. In other
words, the efficiency of the transmission system must be
evaluated, as done in the Discussion session.

Discussion

MLCE Control Performance
Using the definition of MLCE, a comparison of the three studied
countries was performed. As parameters, it were applied an

interval within the 5% limits and the nondimensional time
calculated by dividing the day numbers by the total MLCE
duration, for each country. For the reproduction number, all the
values were divided by the largest value found in the MLCE
interval. All these transformations allow us to estimate how
efficient the disease control measures used in each country were.
In order to enrich the comparative analysis, Figure 23 presents
the data from the three countries studied here and also from the
United Kingdom, South Korea, and the state of New York.
Additional details on this and other comparisons can be found
in De Carvalho and De Carvalho [13]. Sweden and New York
State were considered as still having an open MLCE by the time
of the data analysis; therefore, the end of the cycle considered
was the day of data collection (July 22, 2020).
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Figure 23. Nondimensional critical epidemic cycle for Germany, Italy, Sweden, South Korea, the United Kingdom, and New York State (NYS). MAMI:
moving average method–initial value. Source: Johns Hopkins University [17].

Figure 23 shows that Italy was, in relative terms, the most
unsuccessful place in reducing reproduction numbers, although
not by a large margin. Germany and the United Kingdom
exhibited the same performance where the Rt fell slowly but
steadily. South Korea and New York State achieved a large
drop in the early stages of the critical cycle, but after that the
Rt became more or less constant.

Efficiency of the Infection System
According to the experimental data obtained, the efficiency, or
the capacity for spread, of the biological system here described,

that is, SARS-CoV-2, has a power function form, as shown in
Figure 19. Although the three countries analyzed here present
very different epidemic cycles, the percentage of people infected
compared to the incubation period varies very little. This
probably reflects that the incubation period is in fact a constant
value. Figure 24 shows that, for example, for a 5-day incubation
period, the percentage of people who were exposed to the virus
and displayed symptoms severe enough to prompt them to obtain
medical care was around 20%. At the other extreme, if the virus
had a 11-day incubation period, the numbers of actual cases
registered would have indicated a 10% rate of infection in the
general population.
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Figure 24. Number of days of incubation versus the percentage of serious and severe COVID-19 infections. Source: Johns Hopkins University [17].

This curve, although restricted to only these three countries,
covers nations with quite different NPI policies, population
sizes, and land masses. It shows that, according to registered
cases, SARS-CoV-2 affected a small segment of these
populations and at the same proportions. The subnotification
effect does not interfere with this curve behavior significantly,
as shown by the calculations.

One conclusion is that, putting together equation 12 with the
efficiency measurement in Figure 24, the reported
subnotification rate of 80% [22], or 20% of people with more
serious symptoms, represents 1 in 5 of the infected persons
inventory. In other words, there is 5 times more persons in the

infective state than detected and reported by the MAMI figures,
leading to a 5-day incubation period. The next step is calculating
the subnotification estimation, which then becomes
straightforward: given the incubation period, how many times
should the registered amount be multiplied to correctly express
the estimated subnotification? For example, for a 5-day
incubation period in Germany, a subnotification around 4 times
the registered number of cases in any given day is expected, if
100 were registered as infected and 400 were not. With this
rationale, it is possible to compare the subnotification factor
with the incubation period for the three studied countries, as
presented in Figure 25.
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Figure 25. Subnotification factor for the studied countries. Source: Johns Hopkins University [17].

Other Findings and Conclusions
The early predictions on the progress of the local epidemic
cycles of COVID-19 based on Gaussian distribution models
and their derivatives, such as the beta distribution, failed to
obtain values close to reality, sometimes being very pessimistic,
other times being too optimistic. In addition, the nature of the
data available for studies requires preliminary numerical
treatment, since most of them present the number of daily deaths
that occurred on the dates on which they were recorded by the
health system and not on those that the deaths actually occurred.
Moreover, countries with vast territories and populations should
not be treated as a single case, but should be studied regionally,
so that the evolution of disease cycles can be clearly understood.

Through the observation of some early cycles, where a peak
had already been reached, associated with a consistent reduction
in the number of infections, it was possible to identify a
triangular shape in these distributions. With the information on
the approximate behavior of the variable in question
(reproduction number) and the identification of a minimum and
maximum, the use of the triangular distribution became clear.
After applying this distribution over several local cycles, it was
possible to identify similarities between pairs of cycles of
localities and regions apparently without direct demographic
correlation. Normalization allows you to use an already
completed cycle to estimate the behavior of a cycle that is still
evolving. The method using the similarity of cycles was able
to estimate the end of the cycle up to 34 days before the actual

end of the cycle, but requires that there exist a similar cycle.
These similarities were confirmed by Kolmogorov-Smirnov
tests applied to the data series (Multimedia Appendix 1),
demonstrating the hypothesis that the triangular distribution
applies to these comparisons and, therefore, is applicable to the
prediction of the dimensionless behavior of these cycles.
Additionally, understanding the basic behavior of local epidemic
cycles allowed for the assessment of the impact of
subnotification on calculations.

It is important to note that starting dates influence all the
parameters that govern every statistical model used for
characterizing the infection. The logistic model together with
the model based on the concept of an infected persons inventory
can be used to obtain three parameters of the epidemic cycle:
the number of total infected, the daily infection rate, and the
lag phase, which determines the actual probable onset of the
epidemic for the studied countries, thereby solving the problem
of noise generation in other parameters by wrongly determined
onset dates.

Hence, the experimental framework proposed here offers a set
of simple and efficient methods for calculating not only the
reproduction number, but also other variables that influence the
epidemic cycles and supporting the decision-making process
of health authorities, being an interesting tool especially for
those places where mass testing is not available. Currently, as
the second wave of infections by SARS-CoV-2 emerges, this
framework is being applied again in order to definitively
demonstrate its efficacy and efficiency.
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