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Peer-Review Report

Peer Review of “Evaluating Population Density as a Parameter
for Optimizing COVID-19 Testing: Statistical Analysis”

Anonymous

Related Articles:
 
Companion article: https://preprints.jmir.org/preprint/22195
 
Companion article: https://med.jmirx.org/2021/1/e27258/
 
Companion article: https://med.jmirx.org/2021/1/e22195/
 

(JMIRx Med 2021;2(1):e27103)   doi:10.2196/27103

KEYWORDS

infectious diseases; testing; population density; policy; coronavirus; COVID-19; SARS-CoV-2

This is a peer review submitted for the paper “Evaluating
Population Density as a Parameter for Optimizing COVID-19
Testing: Statistical Analysis.”

Round 1 Review

General Comments
This paper [1] signals the need for a more nuanced COVID-19
testing strategy. The authors propose using population
density–driven testing to help address this need. Testing
strategies certainly have room for improvement and continuous
assessment, especially in emergent situations like COVID-19.
Maps are great visualization tools.

Specific Comments

Major Comments
This paper communicates that adjusting testing strategies by
population density will save lives and livelihoods. While I think
there is merit to finding effective ways to account for population
density, especially in contexts with high-quality census and

robust public health surveillance data, there is a host of other
dynamic factors that play into the complicated pathway between
population density, testing, and saving lives and livelihoods
that are not accounted for in the current version of this paper.

This draft also uses absolute terms and expressions that do not
seem appropriate given the scope of the study. The authors
might benefit from speaking in less absolute terms, remove
anecdotal examples such as the elevator vs football field in
exchange for more standardized epidemiological measures, and
include in the paper a discussion about the limitations of using
their proposed population density–driven testing. The paper
should also speak more to the nature (eg, challenges) of public
health data, monitoring and surveillance, and the role of testing
in this context. As a policy-oriented paper, it should also discuss
more of the potential impacts of modifying a testing strategy
(pros and cons), including the costs associated with changing
the current testing strategy. The paper might also want to address
whether or not adjusted testing strategies based on population
density (or similar measures) have successfully been done
elsewhere.
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KEYWORDS
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This is a peer review submitted for the paper “Evaluating
Population Density as a Parameter for Optimizing COVID-19
Testing: Statistical Analysis.”

Round 1 Review

General Comments
In this paper [1], the authors prospectively analyzed COVID-19
data obtained from 67 Alabama counties using testing
realignment along population density instead of density agnostic
per capita. They concluded that adjusting the distribution of

testing capacity to also account for population density will
improve monitoring and response to blunt the speed and spread
of the virus.

Generally, the manuscript is properly structured and well
understood.

Specific Comments

Minor Comments
1. Change the subtitle “Policy Proposal” to “Introduction” or

“Background.”
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Related Articles:
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KEYWORDS
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This is a peer review submitted for the paper “A Framework
for a Statistical Characterization of Epidemic Cycles:
COVID-19 Case Study.”

Round 1 Review

General Comments
It seems that the aim of this submission [1] is to report a study
conducted to show an approach for normalization epidemic
curves from various countries using retrospective data,
particularly from the city of Rio de Janeiro. The submission
lacks a recognized structure to present a study with its aim and
details of data sources. Furthermore, the submission includes
some terms that are not appropriate for describing infectious
disease in a population such as contamination and contamination
cycle instead of exposure and infection rates.

Specific Comments
1. The aim of the study should be stated in a precise statement

with supportive ways to test the underlying hypothesis;
2. Details of the analytical approach should be given with its

assumptions and limitations;
3. Sources of the data with overall reliability can be detailed;
4. Use the appropriate and conventional terms of infectious

diseases by checking the contents of the submission with
reliable epidemiologists.

Round 2 Review

I am satisfied with the modifications to the new version. Almost
all of my concerns were addressed in the new version. I will let
the readers decide about the validity of the model since the
authors elaborated on the approach.
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KEYWORDS
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This is a peer review submitted for the paper “A Framework
for a Statistical Characterization of Epidemic Cycles:
COVID-19 Case Study.”

Round 1 Review

General Comments
This paper [1] attempts to make some interesting comparisons
in epidemic curves but is far too long, requires a thorough copy
edit by a native English speaker, and does not appear to be very
scientific in nature—it would require a substantial overhaul in
both methods and write-up to be suitable for publication in this
journal.

Specific Comments

Major Comments
1. I think the paper would benefit from focusing on the central

point, with only a minor description of any methods
necessary to make that point. For example, most of section
2 (“On the Nature of the Observed Data”) includes a lengthy

description of the use of moving averages and R2 values,
which readers can be expected to understand (and those
who do not could learn via appropriate citations). Certainly,

the formula for R2 is not necessary to include. These types
of revisions would make the paper a more readable length.

2. The authors claim the Chinese epidemic cycle has a
Gaussian shape, but even in their own drawing it appears
much more like a gamma distribution (as would be
expected) than Gaussian. They may want to reconsider this
section.

3. The crux of this paper seems to be looking for epidemic
curves that appear similarly shaped in various countries,
and using that to predict the curves for countries where the
cycle has not yet reached what the authors term the “MLCE
end.” I have never heard of epidemic predictions using a
method such as this, and it seems there are many far
superior methods for estimating trajectory, so this is a
curious choice.

4. Citations require appropriate formatting for journal
publications.
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This is a peer review submitted for the paper “The
Psychological Impact of Hypertension During COVID-19
Restrictions: Retrospective Case-Control Study.”

Round 1 Review

General Comments
This study [1] aimed to investigate whether Australians with
hypertension have higher risk perceptions, anxiety, and
prevention intentions than Australians without hypertension
during COVID-19 restrictions in April and June 2020. The
authors used a national survey subsample (those who reported
hypertension and not other comorbidities). They matched them
with controls using age, gender, education, and health literacy.
This is a nationally representative sample that includes several
dimensions of an individual’s mental health. The question is
relevant for future public health interventions.

Overall, the study has several weaknesses and does not
appropriately answer the study aim because the reported results
are not consistent with the proposed methods. The authors also
failed to address alternative explanations to their findings. Please
see my detailed feedback after the minor comments.

Specific Comments

Major Comments
1. There is a major disconnect between the proposed methods
and the results. Moreover, the authors need to clarify the
assumptions that led to the selection of their methods.

2. The overall organization can improve. Some methods are
presented in the Results or Discussion section, and some
discussion points are introduced in the Results section.

3. The authors need to rewrite the Introduction section to better
contextualize the potential mediators between exposure and
outcome with relevant literature.

4. The authors need to rewrite the discussion emphasizing their
findings and addressing their limitations and alternative
explanations to their study results.

Minor Comments
1. The tables need to be reworked to not confuse multiple
regression and marginal mean difference (MMD).

2. Tables are stand-alone pieces. Some of the methodologies
need to be incorporated as a footnote.

3. Some typos need to be fixed across the manuscript.

4. Ethics need to be clarified (not a main concern as this is a
secondary analysis).

Detailed Feedback:

Title/Abstract and References

1. Ideally, the title needs to include the study design, the
population (Australia), and the study’s specific outcomes. Please
consider changing it to better reflect your primary exposure:
hypertension (eg, “The Impact of Hypertension on Adults’
Anxiety During COVID-19 Restrictions”).

2. The paper has relatively few references (15); some are press
articles (3). The authors could strengthen their writing by
considering some of these references:

• https://doi.org/10.1093/eurpub/cky114
• https://doi.org/10.1586/14760584.2015.964212
• https://apps.who.int/iris/bitstream/handle/10665/

251671/WHO-HIS-TTi-GAP-16.2-eng.pdf
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Introduction

1. The introduction is just one paragraph long. It discusses why
hypertensive people could experience increased levels of
COVID-19–related anxiety. However, it misses critical points
at the center of this debate during the pandemic’s early stages
(time of the survey). For instance, the role of antihypertensive
medication as a potential risk factor on those infected by
SARS-CoV-2:

• https://pubmed.ncbi.nlm.nih.gov/32737124/
• https://doi.org/10.1056/NEJMoa2007621

and existing studies on risk perception among people with
chronic disease:

• https://journals.plos.org/plosone/article?id=10.1371/
journal.pone.0237296

2. The research question would be clear and justified if the
points considered above are included. I suggest adding details
about the population (country).

Methods

1. The data selection process is clear after one reads the whole
paper but not after reading the Methods section. I suggest
mentioning early on that subjects with additional comorbidities
were excluded from the sample. There is no mention of the
matching method used and whether this was done manually or
automatically (“randomly matched” is mentioned, but what type
of randomization was used?). I would also add a line about (a)
why you selected these covariates and (b) the test used to assess
an adequate balance between the matched pairs.

2. There is no mention of ethics approval for this study. I
understand the original survey was approved by the University
of Sydney Human Research Ethics Committee (2020/212).
Please mention whether this study is covered under the same
authorization.

3. There is no mention of the absence or presence of systematic
differences between the followed-up sample and those who
decided not to participate for a second time. Was this tested? If
there are differences, what are the potential implications?

4. Exposure: Please mention the definition of exposure in the
Methods (self-reported).

5. Covariates: The Methods section reports using the health
literacy single-item screener and the Consumer Health
Activation Index patient activation measure. I understand these
are validated tools. Please add a line about what these tools
measure and why they are relevant to the current analysis.

6. Outcomes: Please detail more about risk perceptions and
prevention behaviors in the Methods section.

7. Statistical analysis: (a) The use of “linear models for
continuous outcomes, generalized linear models with modified
Poisson approach for dichotomous outcomes, [and] ordinal
logistic regression for ordered categorical outcomes” is
mentioned. However, maximum mean discrepancy is reported.
This method was not described in the appropriate section.

(b) An explanation as to why a modified Poisson approach was
used instead of a logistic or log-binomial regression is needed.

Similarly, the Results section shows an adjusted relative risk.
However, this is a cross-sectional sample. The use of relative
risk needs to be justified.

8. Data availability: Consider mentioning something regarding
data availability.

Results

1. Tables are supposed to be stand-alone. Please add a footnote
to Table 1 indicating your matching methodology. Consider
adding the standardized mean difference to check the balance
between cases and controls. Please tell the reader what you
meant by the social distancing score scale. Please explain what
is meant by patient activation. Please indicate whether the
prescription is specific to hypertension.

2. Consider adding a supplementary table with the results from
the follow-up period.

3. Table 2 results are not consistent with the proposed methods
nor with the title of the table. Regression models result in
exponentiated coefficients presented as odds ratios. In contrast,
Table 2 shows MMD (or “MDD” for the social distancing
score). Please present your MMD distributions in a separate
table (or in the text) and introduce the appropriate methods in
the previous section. Consider reporting IQR instead of 95%
CI.

4. Please review the following numbers as they do not add up
to 1005: “On average the hypertension sample thought that 7%
of people who get COVID-19 would die as a result, and 63%
would only experience mild symptoms.”

5. “On average the mean STAI was 1.90 units higher (95% CI
0.19-3.61, P=.03, Cohen d=0.13) for those with hypertension
(40.75) than matched controls (38.85), with both groups higher
than normal range, but below clinical levels.” The interpretation
should be moved to the Discussion section. Please explain what
you mean by “below clinical levels” as well as your reference
scale.

6. Please clarify whether you adjusted for baseline characteristics
in these analyses: “At follow-up, there was no longer a
significant difference between the hypertension and control
groups for influenza vaccination.”

Discussion and Conclusions

1. The discussion does not start by stating the study’s main
findings (the influence of hypertension in the selected
outcomes). Instead, it starts by comparing the overall sample
with previous results in the same reference population.

2. The results are not discussed from multiple angles. For
instance, the authors write, “Those with hypertension were more
likely to take up the influenza vaccine during lockdown
compared to healthy controls.” Could this be an effect of
requiring care more often than healthy individuals? Patient
activation is different from patient engagement.

3. The authors do not differentiate between willingness to get
a vaccine and those who have already gotten a vaccine. Were
there active vaccination campaigns between the two survey
waves?
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4. The authors mention several limitations of the study without
detailing why they are limitations and how they were addressed.
For instance, the authors write, “The sample was recruited via
an online panel and social media, and has a low proportion of
culturally and linguistically diverse participants.” What is the
implication of this on the interpretation of your results? Did
you do something to address such a shortcoming? Also, what
are other implications?

5. Are people online more likely to be exposed to news
generating anxiety or promoting vaccination? While this is just
an example, most limitations lack this broader consideration.

6. Finally, conclusions are overextended and assume a causal
effect: “Anxiety was above normal levels for all groups during
the COVID-19 lockdown. This was higher in the hypertension
group and appeared to translate to higher influenza vaccination
intentions”; this is not consistent with the variable measured
(intentions + uptake).

Round 2 Review

Specific Comments
The authors have addressed most if not all of the comments. I
think the paper needs some proofreading, but that should not
prevent its acceptance.
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This is a peer review submitted for the paper “The
Psychological Impact of Hypertension During COVID-19
Restrictions: Retrospective Case-Control Study.”

Round 1 Review

The paper written by Bonner et al [1], describing the impact of
COVID-19 restrictions on people with hypertension, provides
important information comparing the current status of risk
perceptions, anxiety, and prevention intentions among
hypertensive patients compared to healthy controls. The paper
is well written, the methods are described well, and the results
are presented clearly. I think the manuscript will benefit a lot
if the authors consider my comments below.

Title
I suggest changing the title so that it is clear and informative
and reflects the study’s aim and approach. For example: “Risk
Perceptions, Anxiety, and Prevention Intentions Among
Hypertensive Patient Due to COVID-19 Restrictions in
Australia: A Case-Control Study”

Abstract
Conclusion, second line: Who are vulnerable groups? Have you
not reported that there is no difference between cases and
controls for the majority of outcome variables? Does this not
mean mental health screening should be required for all? I
suggest the authors revisit the sentence below in the abstract
and conclusion: “…may require targeted psychological
screening for vulnerable groups.”

Methods
1. Is it possible to add a description of the sample size and
response rate? This is currently missing in the Methods section.

2. Although the reasons for using a linear model, generalized
linear model, and ordinal logistic regression are described, it is
unclear from the text which test was applied for which estimate.
Elaborating on this in the Methods section will help readers to
understand the methods more appropriately.

Results
1. Table 1: 42% of participants in the control group indicated
that they were taking prescription medicine. What type of
medicines were they using? Did you not include healthy
controls?

2. Risk perception: What statistical test was applied to calculate
the MMD coefficient? I hope you have checked the normality
assumptions as the data only have a score range of 0-10. I would
be cautious to apply linear regression for such types of data.

3. I suggest adding a table (similar to Table 2) for the follow-up
results.

Discussion
I think the Discussion section can be expanded a little bit. The
Results section has some salient points that warrant discussion.
A few suggestions:

a. Why is only the willingness to get the influenza vaccine
significant? What could be the possible reasons?

b. Why is there no statistically significant difference for risk
perception? Any literature to support this?

c. I think people with hypertension must be more cautious for
adopting preventive measures such as social distancing
because their mortality and morbidity are often high.
However, the results indicate that people with hypertension
also have a similar social distancing score. Is this because
the score is too high for both groups, or could there be other
potential reasons (eg, the same level of access to preventive
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measures/knowledge, lack of awareness that people with
underlying conditions have a high level of mortality, etc)?

Limitations
Hypertension often presents with other chronic conditions.
Including people with other chronic conditions might produce

different results since people with both hypertension and other
chronic conditions may perceive COVID-19 more severely than
people who only have hypertension. The study also has a
limitation in terms of residual confounding and long-term
impact. I think this has to be reflected in the Limitations section.
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This is a peer review submitted for the paper "Forecasting the
COVID-19 Pandemic in Saudi Arabia Using a Modified
Singular Spectrum Analysis Approach: Model Development
and Data Analysis".

Round 1 Review

Dear Author,

Thank you for the opportunity to review your paper [1].

I believe your manuscript would benefit from an editorial review
prior to resubmission. This should include several elements:
semantic and syntax review, native speaker edits, and formatting.
Some of the words are illegible: modified presents as “modi
ed”, different reads “di erent”, and many more. There are many
words that appear incomplete or fragmented, which generally
renders the manuscript illegible. This may have been due to a
formatting bug during submission.

At this point, the paper should be reworked and then resubmitted
so that an appropriate content review can take place.

Thank you and best.

Round 2 Review

Dear Author,

Thank you for addressing the formatting issue in your
manuscript. However, I believe your manuscript would still
benefit from an editorial review with respect to language prior
to resubmission. This should include several elements: semantic
review, syntax review, and native speaker edits (words such as
“glop”). Also, I suggest removing references from the Abstract
and adding them to the Introduction section of your paper.

Otherwise, I believe your paper will add an interesting viewpoint
from a statistical perspective to COVID-19 modeling.

Thank you and best.
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This is a peer review submitted for the paper "Forecasting the
COVID-19 Pandemic in Saudi Arabia Using a Modified
Singular Spectrum Analysis Approach: Model Development
and Data Analysis".

Round 1 Review

The paper is very interesting and very timely. I would suggest
publishing it after minor revision.

Some information on the singular spectrum analysis technique
could be added. Some additional information on COVID-19
cases could also be provided.

When one model outperforms another, it should be statistically
tested. Considering the explanation of various parts as well as
forecasting error, it is advisable to use a test that does not depend
on the normality of error as well as h-step ahead forecasting.
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Authors' response to peer reviews for “Evaluating Population
Density as a Parameter for Optimizing COVID-19 Testing:
Statistical Analysis.”

Response to Round 1 Reviews

Reviewer: Anonymous

General Comments
Dear anonymous reviewer [1], we would like to begin by
conveying to you our deep appreciation for your assistance in
refining this short paper [2] so that it is suitable for broader
consumption. It is our aspiration that this paper will contribute
positively to advancing knowledge in this domain. We have
fully addressed all your recommendations and are pleased to
submit a revised manuscript. Thank you for your expert
assistance in this endeavor.

Specific Comments

Major Comments

You raise excellent points. We are happy to note that some of
these points are a result of automatically transferring our
manuscript from the preprint server. We submitted our
manuscript originally to a preprint server with the goal of
sharing our analysis and viewpoint in a timely and
nonintimidating manner by way of a short report. The title,
format, and manuscript text were rapidly copied from the general
preprint server edition during the automatic transfer process.

The revised manuscript addresses the following:

1. The title has been updated to “Evaluating Population
Density as a Parameter for Optimizing COVID-19 Testing:
Statistical Analysis.”

2. Absolute terms from the preprint report have been modified.
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3. The elevator vs football field “visual” expression was
included deliberately in the original report as a means to
make the role of density in SARS-CoV-2 viral transmission
readily apparent to a broad audience. In order to address
your concern, we have removed a reference to this
expression in the Results section; however, in keeping with
the original intent of reaching a broader audience, we would
prefer to retain the expression in the Introduction.

4. We have included statements on limitations. Thank you for
noting this gap.

5. We agree that a cost-effectiveness analysis is warranted
after feasibility and acceptability have been established,
but due in part to the word limit for short papers, we are
unable to explore these differences. We believe that a paper
on the costs and financial consequences of different testing
strategies is warranted, potentially in follow-up analyses.
Thank you for this recommendation.

6. In response to whether or not adjusted testing strategies
based on population density (or similar measures) have
been successfully done elsewhere: population density–based
testing is novel, having (to our knowledge) only been
employed in HIV research through network tracing in urban
metropolitan areas. This gap in knowledge in terms of the

benefit of population density testing is likely because we
have not encountered many agents that are as infectious
and persistent as SARS-CoV-2. This short paper is an initial
step to illustrate to the scientific community that targeted
approaches may be warranted when community spread
occurs through close contact that is more likely in tightly
packed communities.

Reviewer: AAA

General Comments
Dear reviewer AAA [3], we would like to begin by conveying
to you our deep appreciation for your assistance in refining this
short paper so that it is suitable for broader consumption. It is
our aspiration that this paper will contribute positively to
advancing knowledge in this domain. We have fully addressed
all your recommendations and are pleased to submit a revised
manuscript. Thank you for your expert assistance in this
endeavor.

Specific Comments

Minor Comments
1. Your recommended heading change has been made in the

revised manuscript.
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Response to Round 1 Reviews:

Dear Editor, we want to thank you for the opportunity offered
by this prestigious journal.

Reviewer H:

General Comments
We appreciate the comments on our paper [1] from Reviewer
H [2], which we address point by point. Regarding the size of
the paper, we selected the most significant cases and the results
obtained for Brazil, reducing the length in general. Regarding
the wording, the paper underwent an initial edit after the first
review round and was completely reviewed after its final
acceptance. In order to highlight its scientific contribution, a
bibliographical review on similar and recent articles was carried

out, pointing out the need to provide a simple and at the same
time effective model for analyzing epidemic curves.
Additionally, we reorganized the paper to make its
methodological section clearer and added statistical tests that
provide support to our claims.

Specific Comments

Major Comments
1. As explained before, we focused on the most significant

cases and removed the items cited by the reviewer as
excessive.

2. We cited in the review an article that shows how often the
Gaussian models failed in the predictions [3]. That section
was removed, contributing to the reduction in the length of
the paper.

3. As answered in the previous item, other authors already
show that classic models have failed in their predictions.
What we are looking for is a simple model that can be used
by health authorities, and at the same time be
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computationally efficient. In the text, using the appropriate
reference [4], we show that the triangular distribution can
replace the Gaussian distribution and its derivatives. In
addition, we carried out the appropriate
Kolmogorov-Smirnov tests, which prove this hypothesis
mathematically for the cases studied. Therefore, we believe
that we are contributing to the expansion of knowledge by
including a frequency distribution that is still relatively
unused in the field.

4. Citations have been properly formatted and organized.

Reviewer X:

General Comments
The authors are grateful for the comments of Reviewer X [5],
which were all addressed point by point below. Regarding the
structure of the paper, it now follows a format that includes a
structured abstract, introduction, methods, results, and
conclusions, highlighting its scientific aspects. Additionally, a
brief bibliographic review was included that contributes to the
justification of the paper’s scientific contribution; statistical
tests to assess the quality of the proposed model were also
provided. In relation to the correct use of the terms of the field,
the authors conducted a review and corrected them accordingly.

Specific Comments
1. The aim of the study is now clearly stated in the first two

paragraphs of the Introduction section. A hypothesis was
successfully tested using the Kolmogorov-Smirnov method
in the Results section.

2. The subtopic “Nondimensional Characteristics of Epidemic
Cycles” introduces the triangular distribution, its
assumptions, and its limitations in the context of the
COVID-19 pandemic. It is complemented by the subtopic
“Predictability by Similarity.”

3. In the Methods section, the source and date of data
collection are explicitly stated (Worldometer’s COVID-19
portal, as of July 9, 2020). A copy of this data has now been
provided in a separate Excel spreadsheet.

4. The terms were checked and fixed; to the best of our
knowledge, they now match those used by experts in the
field.

Response to Round 2 Reviews:

Regarding the journal instructions: “Using the structure used
in this paper, please consolidate manuscript 23997 and 23998
into one cohesive narrative, taking into account peer-review
feedback provided by the reviewers on those submissions. This
way, we can present one paper with your aggregated findings
in JMIRx.” We followed these recommendations and integrated
the three articles originally called “Identification of Patterns in
Epidemic Cycles and Methods for Estimating Their Duration:
COVID-19 Case Study,” “COVID-19: Time-Dependent
Effective Reproduction Number and Sub-notification Effect
Estimation Modeling,” and “COVID-19: Estimation of the
Actual Onset of Local Epidemic Cycles, Determination of Total
Number of Infective, and Duration of the Incubation Period”
into a single narrative. The resulting paper represents not only
the combination of the content of the three others but an
integrated narrative that describes the statistical framework
developed by us to analyze the epidemic cycles. Thus, given
that the resulting content reflects this integrated work, we find
it more coherent to change the title of the article to “A
Framework for a Statistical Characterization of Epidemic
Cycles: COVID-19 Case Study.” In order to make the resulting
text more fluid, we concentrated on the data analyzed in three
countries (Germany, Italy, and Sweden), leaving the case studies
related to Brazil to Multimedia Appendix 3. Other cases
originally studied during the development of the statistical
framework can still be found in the preprints duly referenced
in the text. In addition, all the data obtained from the referred
public databases, as well as all the calculations carried out both
in the main paper and in Multimedia Appendix 3, are organized
in three different worksheets (Multimedia Appendices 2-4), in
order to facilitate the verification and reproduction of the results
by readers.
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Response to Reviews

The authors of the manuscript [1] are grateful to the editor and
reviewers [2,3] for their invaluable input and feedback.

Reviewer G

Round 1

Specific Comments: Major

Thank you for your review [2]. We wrote this as a brief
correspondence piece for rapid publication as a preprint because
COVID-19 research and public health communications were
rapidly evolving at this time. However, we have now rewritten
the paper in standard paper format to address your concerns—
this includes a much more detailed introduction and rationale,
more explanations in the Methods section including assumptions,
and an expanded discussion. Please see our detailed responses
below.
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Specific Comments: Minor

We have addressed the issues highlighted in the rewritten
manuscript. Please see our detailed responses below.

Detailed Responses

Title/Abstract and References

1. We have changed the title to better reflect our methodology.

2. We have rewritten our work as a full paper rather than a short
correspondence, including suggested references and other
research that has emerged since the publication of our rapid
preprint. The media references are important as they provide
context for the study during a rapidly changing COVID-19
response.

Introduction

1 and 2. We have included the references/points mentioned by
the reviewer and a summary of other research that has emerged
since the publication of our rapid preprint. Please note the New
England Journal of Medicine paper has been retracted so we
have not included this.

Methods

1. We have included more details on methods to address the
reviewer’s points. This includes new sections on the setting,
matching, and analysis.

2. We confirm that the original ethics approval covers all
subsequent surveys and amendments. We have clarified this in
the manuscript.

3. Another preprint from our study [4] that describes the sample
at different time point shows it is comparable between April
and June. We acknowledge that the respondents who remained
in the study were likely more motivated and interested in
COVID-19 prevention than those who dropped out. This is
mentioned in the Discussion section. However, since the study
design is not a randomized controlled trial, cases were matched
to controls at the same time point, with demographic
characteristics controlled for in the analyses, so our key
comparison findings should not be affected by those differences.

We have also now performed exploratory analyses of the
hypertension subsample by whether they were invited and
returned for follow-up, compared to those who were not invited
or did not return. We have included a text summary in the paper:
“Those who were invited and returned for follow-up were
similar for age and gender but had higher levels of education
(P=.02) and were more likely to have adequate health literacy
(P=.009).”

4. We have added more details about measures. This followed
a US study published in the Annals of Internal Medicine [5],
with whose authors we are collaborating on an international
comparison.

“Participants were asked if they had any of the following
conditions: asthma, chronic obstructive pulmonary disease, high
blood pressure (hypertension), cancer, heart disease, stroke,
diabetes, depression, anxiety.”

5. We have added more details in the new Methods section.

6. We have added more details in the new Methods section.

7. (a) The estimates referred to as “MMDs” from the linear
models are marginal mean differences, not maximum mean
discrepancy. This abbreviation is noted in the first row of Table
2. We have now added the abbreviations to the footnote of the
table to avoid confusion and clarified the first use of MMD
when reporting results in text.

(b) In regard to the use of a modified Poisson approach and
reporting of relative risks: with increasing event rates, the
difference between an odds ratio (as estimated by logistic
regression) and the risk ratio (as estimated from a log-binomial
or modified Poisson model) also increases, with odds ratios
often incorrectly interpreted as if they are risks. As the reviewer
points out, the study design is cross-sectional, so a
risk/prevalence ratio is typically considered more appropriate
and conceptually easier to interpret than an odds ratio. Although
log-binomial regression can also be used to estimate the risk
ratio, it is often criticized for producing confidence intervals
that are narrower than they should be (ie, due to smaller than
expected standard errors) and may also fail to converge. For
this reason, we have employed a modified Poisson approach
[6], which generates coefficients that, when exponentiated,
represent the risk ratio, with corresponding confidence intervals
of an appropriate width. As for reporting relative risk,
numerically, the risk ratio/relative risk and prevalence ratio are
identical, differing only in their interpretation based on the study
design. In line with the reviewer’s comment, we have changed
the language used and describe the effect as an adjusted
prevalence ratio rather than adjusted relative risk to better reflect
the study design.

8. We have added a statement on this.

Results

1. We have added the footnote. Pairwise comparisons showed
no statistically significant differences in age, gender, education,
or health literacy between the hypertension and control groups
(see the section on matching). We have explained social
distancing and patient activation, and clarified the prescription
question in the Methods section.

2. We have added this.

3. Please see our response above regarding MMD (marginal
mean differences from linear regression models). As for the
social distancing score, this is a typographical error and has
been corrected.

4. We have clarified that these are two separate questions.

5. We have moved this to the Discussion section with additional
explanations.

6. We have clarified this.

Discussion and Conclusions

1-6. We have rewritten the article as a full paper rather than a
short correspondence, including a more expansive discussion
to address the points mentioned. We have highlighted key
findings upfront, discussed different perspectives including
access to care, clarified that we only measured vaccination
intentions throughout, discussed the implications of the
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limitations, included points about misinformation on social
media, and have more carefully explained our conclusions.

Reviewer AM

Round 1
Thank you for your review [3]. We have addressed the
comments as follows.

Title

We have revised the title to better reflect the study methods.

Abstract

We have revised this as suggested.

Methods

1. We have added this.

2. We have expanded the Methods section to clarify this.

Results

1. Our controls were defined as not having comorbidities thought
to be relevant to COVID-19 outcomes at the time of the study.
Other medications (eg, contraception or unrelated conditions)
could have been taken, but we did not ask for these details in
this survey.

2. Per our previous responses, we have now expanded our
Methods and Statistical Analysis sections, clarifying that the
MMD was calculated for continuous outcomes using linear
regression models.

Although the risk perception measure has a restricted range of
0-10, the normality assumption of a general linear model relates

to the distribution of the residuals (which should also be
homogenous across the fitted values). These assumptions were
explored graphically (via a histogram of residuals with
superimposed normal density and a plot of the residuals against
the fitted values with a superimposed smoothed lowess line),
and was deemed to be sufficiently satisfied.

Notably, an alternative analysis approach for ordinal Likert-scale
data would be to apply an ordinal logistic regression model. We
have explored this option given the reviewer’s comment; this
elicited comparable outcomes. However, there was substantially
more difficulty associated with the interpretation given the
outcome of such a model is the adjusted odds ratio of responding
one unit higher on the response scale for cases relative to
controls. As such, we feel the application of linear regression
remains a more suitable option for this outcome variable.

3. We have added this.

Discussion/Limitations

We have included a more expansive introduction and discussion
to address the reviewer’s points. Our COVID-19 risk perception
and vaccination intention scores were very high across groups,
indicating a possible ceiling effect, but this is consistent with
other Australian surveys, which is explained in our discussion.
We have explained why we isolated the effect of hypertension
from other comorbidities in the expanded paper with more
details in the Introduction and Methods sections.

Round 2
We have added the ethics review/approval number in this
version of the manuscript as requested.
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Abstract

Background: SARS-CoV-2 transmission risk generally increases with the proximity of those shedding the virus to those
susceptible to infection. Thus, this risk is a function of both the number of people and the area they occupy. However, the latter
continues to evade the COVID-19 testing policy.

Objective: The aim of this study is to analyze per capita COVID-19 testing data reported for Alabama to evaluate whether
testing realignment along population density, rather than density agnostic per capita, would be more effective.

Methods: Descriptive statistical analyses were performed for population, density, COVID-19 tests administered, and positive
cases for all 67 Alabama counties.

Results: Tests reported per capita appeared to suggest widespread statewide testing. However, there was little correlation (r=0.28,
P=.02) between tests per capita and the number of cases. In terms of population density, new cases were higher in areas with a
higher population density, despite relatively lower test rates as a function of density.

Conclusions: Increased testing in areas with lower population density has the potential to induce a false sense of security even
as cases continue to rise sharply overall.

(JMIRx Med 2021;2(1):e22195)   doi:10.2196/22195
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Introduction

COVID-19 testing is typically measured per capita; tests and
cases are reported per million globally while local authorities
report counts per 100,000 people [1-3]. This approach is simple
and generally well accepted both in economic spheres and in
health care research. However, this simplicity may shroud an
underlying fallacy in applying per capita models to test the
transmission characteristics of SARS-CoV-2. The transmission
risk profile for 20 people in an elevator is substantially different
from that of 20 people spread across a football field; this was
the fundamental premise for social distancing and lockdowns
to “flatten the curve.” Moreover, population density can impede
[4] implementation of protective distancing measures.
Population density has also been implicated [5] in COVID-19
mortality. In this two-part study, we analyze per capita
COVID-19 testing data reported for Alabama to evaluate
whether testing realignment along population density, rather
than density agnostic per capita, would be more effective, as
Alabama is one of several states currently experiencing notable
increases in new cases.

Methods

Population characteristics and population density for all 67
Alabama counties were obtained from the 2018 American
Community Survey (US Census Bureau). The number of tests
administered and positive cases of COVID-19 are updated daily
by the Alabama Department of Public Health. These data were
obtained on May 18, 2020, for initial assessment and again on
June 15, 2020, for prospective analysis. Descriptive statistical

analyses were performed to calculate the total number of tests
per 100,000 people using the county population as the
denominator, and subsequently dividing this by county
population density, density squared, and square root of density
as illustrative proxies [6,7] of more complex population density
test rate models. All study data were publicly available, thereby
obviating institutional review board approval.

Results

The first heatmap presented in Figure 1 appears to indicate
widespread testing per 100,000 people [8] by county. However,
this heatmap does not distinguish sparsely populated areas that
could inherently provide spatial distancing from those that are
densely populated (Figure 1B) [9]. Overlaying the two (Figure
1C) provides a sense of magnitude by which we may be
overtesting in areas with a natural spatial defense against
transmission while severely undertesting in areas with an
elevated risk of transmission.

In the second part of the study, conducted during the phased
economic re-engagement, data were collected to prospectively
analyze the distribution of tests and cases vis-à-vis population
density. Tests reported per 100,000 during this period, once
again, appeared to indicate widespread statewide testing.
However, there was little correlation (r=0.28, P=.02) between
tests per capita and the number of cases. As anticipated [10],
new cases were disproportionately more prevalent in densely
populated areas (Figure 2), despite relatively fewer tests per
population density, suggesting that cases in these areas may be
understated.

Figure 1. Per capita and population density heatmaps for COVID-19 tests between April 1 and May 18, 2020. (A) Heatmap of tests per 100,000. (B)
Population density heatmap distinguishing sparsely populated areas from those that are densely populated. (C) Overlaying the two shows current testing
by population density. Without a population density–driven testing approach, the risk of deriving a false sense of security is greater.
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Figure 2. COVID-19 testing during the phased reopening of the Alabama economy from May 18 to June 15, 2020. Tests reported per 100,000 during
this period also appeared to indicate widespread statewide testing. However, there was little correlation (r=0.28, P=.02) between tests per capita and
the number of cases. In terms of population density, new cases were higher in areas with higher population density, despite relatively lower test rates
as a function of density. This suggests that a population density–driven testing strategy would not only allow for more effective allocation but could
also reduce the risk of understating cases in areas with high population density.

Discussion

The current standard of population density agnostic per capita
reporting could induce a sense of false security while
simultaneously accelerating infection in economic nerve centers.
The contrast among the heatmaps, as well as subsequent
prospective analysis of tests and cases, unveil the scale of testing
disparity. A robust testing strategy would presumably figure
prominently in the calculus for any phased reopening of
economies and associated near-term paths to societal normalcy
and economic recovery. Consequently, disparities in testing
induced by a density agnostic testing approach could undermine
balancing measures aimed at saving lives and livelihoods,
thereby leading to a prolonged recession, or dare we say, a
depression [11,12].

Although we use Alabama for illustration, most states report
statistics in this manner, making our processes replicable in

other states. This said, limitations of our approach should be
considered when extending findings. Namely, population
density–driven testing has not be extensively evaluated for
feasibility and acceptability, and, during this pandemic, gaps
in public health monitoring and surveillance data [5], particularly
from rural communities, have emerged, leading to concerns
related to data reliability.

On a positive note, resolving this is not intractable. Heatmaps
of retail and payroll activity are unsurprisingly similar to
population density. This is where the innate intertwining of
public health and economic well-being around the “location,
location, location” axis can be synergistic. For instance, by
adjusting the distribution of testing capacity to also account for
population density, we could improve monitoring and response
to blunt the speed and spread of the virus while also
safeguarding both retail activity and economic nerve centers
across the country.
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Abstract

Background: Since the beginning of the COVID-19 pandemic, researchers and health authorities have sought to identify the
different parameters that drive its local transmission cycles to make better decisions regarding prevention and control measures.
Different modeling approaches have been proposed in an attempt to predict the behavior of these local cycles.

Objective: This paper presents a framework to characterize the different variables that drive the local, or epidemic, cycles of
the COVID-19 pandemic, in order to provide a set of relatively simple, yet efficient, statistical tools to be used by local health
authorities to support decision making.

Methods: Virtually closed cycles were compared to cycles in progress from different locations that present similar patterns in
the figures that describe them. With the aim to compare populations of different sizes at different periods of time and locations,
the cycles were normalized, allowing an analysis based on the core behavior of the numerical series. A model for the reproduction
number was derived from the experimental data, and its performance was presented, including the effect of subnotification (ie,
underreporting). A variation of the logistic model was used together with an innovative inventory model to calculate the actual
number of infected persons, analyze the incubation period, and determine the actual onset of local epidemic cycles.

Results: The similarities among cycles were demonstrated. A pattern between the cycles studied, which took on a triangular
shape, was identified and used to make predictions about the duration of future cycles. Analyses on effective reproduction number
(Rt) and subnotification effects for Germany, Italy, and Sweden were presented to show the performance of the framework
introduced here. After comparing data from the three countries, it was possible to determine the probable dates of the actual onset
of the epidemic cycles for each country, the typical duration of the incubation period for the disease, and the total number of
infected persons during each cycle. In general terms, a probable average incubation time of 5 days was found, and the method
used here was able to estimate the end of the cycles up to 34 days in advance, while demonstrating that the impact of the
subnotification level (ie, error) on the effective reproduction number was <5%.
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Conclusions: It was demonstrated that, with relatively simple mathematical tools, it is possible to obtain a reliable understanding
of the behavior of COVID-19 local epidemic cycles, by introducing an integrated framework for identifying cycle patterns and
calculating the variables that drive it, namely: the Rt, the subnotification effects on estimations, the most probable actual cycles
start dates, the total number of infected, and the most likely incubation period for SARS-CoV-2.

(JMIRx Med 2021;2(1):e22617)   doi:10.2196/22617

KEYWORDS

COVID-19; SARS-CoV-2; pandemics; infection control; models; experimental; longitudinal studies; statistical modeling; epidemic
cycles

Introduction

The analysis of the life cycles of any epidemic involves the
analysis of a series of quantitative parameters that govern these
cycles and which, given the inherent uncertainty of these events,
are generally treated by statistical models. For a number of
practical reasons, the registration of deaths and of infections
are inevitably imprecise, although these numbers can be
corrected over time. Therefore, with the COVID-19 pandemic,
a subject that immediately became the center of debates and
different studies was the characterization of the different local
epidemic cycles and their corresponding variables. Local cycles
are those that have occurred or occur in specific countries,
regions, or cities, and not the pandemic cycle as a whole, as the
virus does not spread instantly across continents. Thus, it can
be seen that some countries were in more advanced epidemic
stages than others whose first infections were detected later. In
other words, as expected, different “infection windows” coexist
in parallel in different locations, with some locations at a more
advanced stage, while others present more “delayed” cycles.
Thus, numerically analyzing the behavior of early cycles was
the measure undertaken by a series of researchers.

Although it is not the only one, as will be seen in this paper, the
reproduction number is considered the central variable in the
analysis of epidemic cycles. In order to determine the
reproduction number, different categories of models have been
proposed: artificial neural networks [1], Poisson [2,3],
exponential [4], Markov chain [5], Gaussian [6,7], Weibull [8],
Logistic-S [9], and moving averages [10]. Most research tries
to frame the local epidemic cycles into Gaussian and/or Weibull
behaviors, creating complex models that still led to errors in
predictions, as we now know. More importantly, Park et al [11]
showed that the initial models, most based on the Gaussian
distribution and its derivatives, failed to make their predictions.
After observing these findings, we saw that there was room to
propose a framework that would provide an efficient and more
comprehensive analysis of the epidemic cycles, going beyond
the calculation of the reproduction number. Moreover, it would
be both easy to understand and to compute, since local
authorities, especially in low-income countries, do not always
have statistical experts at their disposal to propose, calibrate,
and analyze the results of complex models. Thus, based on
experimental and publicly available data, we produced a series
of studies that initially dealt with the identification of patterns
in epidemic cycles and their use for predicting deaths [12],
time-dependent effective reproduction number (Rt) and
subnotification effect estimation modeling [13], and finally,

estimation of the actual onset of local epidemic cycles,
determination of the total number of infected, and the duration
of the incubation period [14]. In this paper, these findings are
integrated and summarized in a coherent framework.

Methods

Based on experimental data, the framework proposed here is
divided into four parts: (1) applying the moving averages method
and identifying the parameters of the epidemic cycle patterns,
which are used to predict the number of future deaths in local
epidemics, (2) modeling the Rt and (3) the effects of
subnotification, and (4) applying the logistic model associated
to a novel inventory model to obtain the final count for the total
infected, the daily infection rate and lag time, and the incubation
period.

Patterns of Epidemic Cycles
Our method began with the observation of several cycles in
western countries where the pandemic hit earlier, especially in
Europe. From there, patterns were identified and predictions
were applied. The attempt to describe the different epidemic
cycles that make up the current pandemic often comes up against
the quality of the data that is made public. Most data made
public are based on “date of recording,” which is different of
“day of death,” meaning that the date that a given set of deaths
are recorded in the public health statistics systems is not
necessarily the date they occurred on; given the usual
bureaucratic procedures, recording may be delayed.

The fact is that the distribution of fatalities suffers a distortion
that generates a “saw” appearance in graphs such that on
weekends there is a clear absence of death records, followed by
an explosion of values at the beginning of the week. A simple
technique that softens this effect is to apply the so-called moving
average method (MAM), in which the daily value of deaths is
replaced by the sum of the previous 6 days with the current day,
divided by 7; in other words, the average of the week ended in
the current day. In particular, MAMI (MAM with initial value)
will be used here, which entails assigning the average of the 7
days to the first day of the week (Sunday).

In the period in which the data were obtained and analyzed (first
week of July 2020), several cities, regions, states, and countries
had already completed what will be called here the most lethal
cycle of the epidemic (MLCE), which is when the number of
deaths increases daily, on average, until it reaches a peak and
then begins to decrease continuously until it reaches a minimum
value. After this period, the occurrence of deaths continues
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intermittently, but relatively small and oscillating, decreasing
to certain levels of daily deaths, where it then becomes
apparently chronic and presents relatively low values, but
remains greater than zero.

In order to show numerical cases of the application of the
proposed model, data from three European countries with
different cycles were analyzed: Germany, a country that was
reported as exemplary in terms of application of
nonpharmaceutical interventions (NPIs); Italy, which stayed at
the center of the initial crisis; and Sweden, which generally did
not apply any strong NPIs. The data for this part of the study
were obtained from the Worldometer’s COVID-19 portal [15]
as of July 9, 2020, and is presented, together with the
calculations, in Multimedia Appendix 1.

Germany
Described from the beginning of the pandemic as a country that
managed the crisis in an exemplary way, testing significant
portions of its population and controlling and lifting restrictions
on public movement based on well-known numbers and
percentages of cases. Figure 1 shows the evolution of deaths in
Germany. This framework points to the existence of the
so-called false peaks. These are local maximums that were
recorded during the cycle of rising or falling in the trend of
deaths, but they are not inflection points. In order for a point to
be considered as a (real) peak, it is necessary to register a
tendency of decline in the number of deaths. This fall will not
be linear, but there is an obvious, numerical, and visual trend
that indicates such a pattern.

Figure 1. The cycle in Germany. MLCE: most lethal cycle of the epidemic. Source: Worldometer [15].

Italy
A country that was at the European epicenter of the crisis, Italy
experienced an evolution in the number of deaths (Figure 2),
which indicates the overcoming of the MLCE.
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Figure 2. The cycle in Italy. MLCE: most lethal cycle of the epidemic. Source: Worldometer [15].

Sweden
Sweden, an European country that has not adopted the practices
of radical social isolation like its neighbors, has a cycle of aspect

not unlike that of all other European countries. Figure 3 shows
the values of deaths that have already been corrected for the
dates on which they actually occurred and not the date of
registration.

Figure 3. The cycle in Sweden. MLCE: most lethal cycle of the epidemic. Source: Worldometer [15].
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Nondimensional Characteristics of Epidemic Cycles
In general, the epidemic cycles described here have some
common geometric characteristics, the main one being a
triangular aspect (Figure 4), where a smaller side is formed,
which corresponds to an average daily increase in the number
of deaths until a peak is reached. This peak may be easily
identifiable or require extrapolation of a line because the values
oscillate naturally and some spurious points (false peaks) may
appear. The peak is followed by a period where the number of
deaths occurring daily tends to decrease on average. This period,
for the observed cases, is longer than the previous one.
According to Kotz and Rene van Dorp [16], the triangular
distribution is used when there is no exact idea of what the
distribution is, although there is an idea of the minimum and

maximum values for the variable. Therefore, this distribution
was chosen given its particular nature and use in situations
where the description of a given population is uncertain, as is
in this case. This distribution is based on the minimum and
maximum estimates. Hence, Table 1 gathers values of the
so-called triangular cycles presented earlier.

The values listed in Table 1 indicate that the period of rise of
the disease in countries of relatively small sizes or in big cities
is about 21 days, ranging from 19 to 25 days before reaching
the so-called peak. From then until the end of this critical period,
about 60 days pass, ranging from 45 to 81 days. The ratio
between the two periods oscillates between 2.1 and 3.3, with
an average of 2.8. Table 2 shows the number of deaths in the
periods described above.

Figure 4. The generic shape of COVID-19 lethal cycles.

Table 1. Proportions between the time of ascent until the peak of deaths and descent to the end of the most severe cycle of COVID-19.

Proportion between ascent and descentDays to the
end

Days to the
peak

EndPeakStartCountry

2.95720May 24March 27March 7Italy

3.28125July 1April 11March 17Sweden

3.36921June 14April 8March 18Germany

Table 2. Proportions between the number of deaths associated with the cycle of rising to the peak and of descending to the end of the most severe cycle
of COVID-19.

Proportion between ascent and descentDeaths to the
end

Deaths to the
peak

EndPeakStartPlace

2.724,0828937May 24March 27March 7Italy

3.341411255July 1April 11March 17Sweden

2.865212323June 14April 8March 18Germany

The values listed in Table 2 indicate that the number of deaths
during the period of ascent of the disease in countries of
relatively small sizes or cities is about 5791 (range 1255-10,293)

before reaching the peak. From then until the end of this critical
period, about 12,673 (range 4141-24,082) deaths occur. The
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ratio of death figures ranges from 1.6 to 3.3, with an average
of 2.4.

Therefore, it is possible to identify that once the scale effects
are removed, what remains is a spectrum of proportions of the
epidemic cycle. Then, when submitting the data to the moving
average method with the initial value (MAMI), there is a
minimization of the effect of seasonality in the registration of
deaths, caused by weekends, holidays, and other local
peculiarities. After dividing all the values previously
transformed by the peak of the series (peak now determined by
MAMI), the values start to be dimensionless and fall between
0 and 1. In this way, the epidemic cycles can be compared with
each other, since what remains are the proportions between the
ascent, the peak, and the descent of the cycle. The time period
does not change. One clear limitation of this method is the
necessity of identifying the real peak. Then, a hypothesis arises
that different locations may, under different behavioral rules,
present the same behavior.

Algorithm for Cycle Predictions
After identifying the triangular pattern and through successful
application in several cases, a prediction algorithm was
developed, described by the following steps:

1. MAMI is calculated for the daily figures on the number of
deaths.

2. The set of values is normalized and MAMI is also applied
on that.

3. A continuous curve is generated on a graph with the x axis
as the number of consecutive days of the epidemic cycle
and the y axis as the dimensionless range from 0 to 1 (some
points, the false peaks, can go beyond this).

4. Among countries or localities, we seek those that have
already ended their critical epidemic cycle (MLCE) and
that are visually similar to the curve obtained in step 3,
although obviously on a different scale, becoming the
locality of reference.

5. MAMI is applied to the locality of reference.

6. Data of the locality of reference are normalized.
7. Repeat step 3 for the data of the locality of reference.
8. Considering that the cycle of the locality of reference is

finished, it will be positioned previously on the graph, in
relation to the place where it is desired to estimate the
probable end date of the critical cycle. One should then
numerically superimpose the peak of the case under study
with the reference.

9. Once the superposition is made, always moving the
reference case, an extrapolation can be made using the
reference case as a guide to the value to be determined. As
the scale of the case studied has not been changed, it is
enough to consult what day it would be in the future to
know the probable date.

10. If there is no similar case, you can eliminate the last days,
as discussed above, and extrapolate directly from the values
obtained in the public databases.

Effective Reproduction Number
After identifying the similarities between cycles, the next step
is to calculate the Rt, which is done on the experimental behavior
of the curve. First, however, it is necessary to understand the
effect of MAMI on the reproduction number.

MAMI Effect on Reproduction Numbers
The impact of MAMI applied to registered numbers can be
better understood by analyzing Figure 5, where MAMI bears
the greatest effect at the very beginning of the epidemic cycle;
however, after a brief period, the average and actual data tend
to yield to the same value as the cycles progress. It will be
shown along this paper that the reproduction number varies
most in the early stages, and the use of MAMI is plainly justified
to avoid numbers that are registered in batches and not into a
smooth daily fashion. Daily figures for total cases collected
from the Johns Hopkins University’s website [17] on July 22,
2020, together with the calculations, are presented in Multimedia
Appendix 2. The analysis of the Rt for the three European
countries are represented in Figures 6-8.
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Figure 5. MAMI (moving average method–initial value) effect on reproduction numbers (Rt) expressed for two different countries, South Korea (SK)
and Italy. South Korea: the blue line is Rt obtained from MAMI applied to registered data; the red line is Rt determined for registered data. Italy: the
yellow line is Rt for registered data; the green line is for MAMI applied to registered data. Source: Johns Hopkins University [17].

Figure 6. Number of COVID-19 cases reported for Germany. The black line represents the daily reported numbers, the blue bars their MAMI (moving
average method–initial value), and the red line the total cases to date, using the right-hand axis as reference. Source: Johns Hopkins University [17].
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Figure 7. Number of COVID-19 cases reported for Italy. The black line represents the daily reported numbers, the blue bars their MAMI (moving
average method–initial value), and the red line the total cases to date, using the right-hand axis as reference. Source: Johns Hopkins University [17].

Figure 8. Number of COVID-19 cases reported for Sweden. The black line represents the daily reported numbers, the blue bars their MAMI (moving
average method–initial value), and the red line the total cases to date, using the right-hand axis as reference.

JMIRx Med 2021 | vol. 2 | iss. 1 |e22617 | p.41https://xmed.jmir.org/2021/1/e22617
(page number not for citation purposes)

De Carvalho & De CarvalhoJMIRX MED

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Deriving the Effective Reproduction Number
With the effect of moving averages measured, it is possible to
proceed to an experimental method for calculating the daily
number of infected and then an effective, time-varying
reproduction number, calculating its value by means of
experimental data outlined below.

The total number of infected daily (Id), during a period of time
t, can be described as a function of the daily increase rate factor
(1+b) multiplied by a scale factor, as shown in equation 1:

Id=a (1+b)t (1)

In equation 1, a is the scale factor and b is the absolute daily
increase rate, or instantaneous rate, and is defined as:

where Id,n+1 is the current day and Id,n is the previous day.

Equation 1 can be written as:

Id=Ct (3)

where C is the time-dependent effective reproduction number,
Re(t), or Rt for short, which is obtained from experimental data.
For the reproduction number determination, it is necessary to
determine the scale factor a. Therefore, a takes the following
form:

Finally, from equations 3 and 4:

In order to map the interpretation proposed from equations 1 to
5 to the classical mathematical interpretation for the

reproduction number (R0), an equivalence transformation will
be described as follows. From the classical definition of R0, let:

where β is infection-producing contacts per unit time
(instantaneous rate), with a mean infectious period of τ. Equation
6 can be transformed into:

R0=ekτ(7)

From equations 5 and 7:

In equation 8, all dimensional units are compatible, therefore
our transformations to obtain Rt in equation 5 are valid. Equation
5 was obtained from experimental data, and it is at the core of
the model proposed here. From this point onward, Rt must be
interpreted as Re(t) as explained before, in the interpretation of
equation 3.

During the data analysis, we noted that the daily increase rate
factor (1+b) is not enough to describe the number of
contaminated cases registered in a given day, because it simply
informs the absolute increase ratio that occurred from one day
to the next. The reproduction number coefficient needs more
numerical information in order to be able to express correctly
the magnitude of daily numbers. It needs the scale factor a to
bring more information on the phenomenon. As an example of
this finding, Figure 9 shows that while the (1+b) factor varies
rapidly, Rt drops steadily, changing slowly as the exponential
time grows. The same behavior is displayed by the total daily
registered number of deaths, which keeps growing smoothly.
This is the numerical evidence that the factor (1+b) alone cannot
describe the total number of deaths.
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Figure 9. Behaviors of (1+b) and effective reproduction number (Rt) factors for the first 20 days in the epidemic cycle of Germany. MAMI: moving
average method–initial value.

Subnotification Effect on the Reproduction Number
When it comes to analyzing the number of cases of infection
in the COVID-19 epidemic, an issue that always arises is
underreporting or subnotification and its importance in
predicting the behavior of the epidemic cycle. Thus, the third
part of the framework is dedicated to the study of subnotification
and its effects on prediction. Subnotification is understood as
the fact that counts of infected persons are only estimated by
public health authorities. Given that many people exposed to
the virus do not display any sign of infection or the symptoms
are very mild, therefore going unnoticed and unregistered by
local bureaus of health statistics, the development of evaluation
tools of the impact of these nonnotified cases is necessary. If it
is assumed that subnotification is a constant factor (eg, 10 times
the registered number of cases) during the whole epidemic cycle,
it does not change the absolute daily increase rate b or the (1+b)
factor. However, it does affect the scale factor a, therefore
changing Rt.

Subnotification Impact Estimation Method
The impact of subnotification on Rt may be estimated by initially
assuming that the actual registered figures for daily infected
persons are no longer their actual values, but “real” ones
multiplied by a factor—the subnotification factor. After that,
the scale factor a is calculated. The term (1+b) remains constant,
once the ratio (equation 3) remains constant. Then a and (1+b)
are applied to equation 5, thus recalculating Rt, now reflecting
the effect of the imposed subnotification factor. This new Rt

value would have been the correct one, in case all subnotified
cases were suddenly registered. The percentage difference

between this new, recalculated Rt and the actual one provides
an estimate for the impact of subnotification on the reproduction
number for a given population. Therefore, multiplying the values
for registered cases by a factor of 10 will not cause a tenfold
increase in Rt. The true impact must be therefore calculated as
described. It is also observed that subnotification mostly affects
the very beginning of the critical cycle. After a certain amount
of time, errors drop to insignificant values, below 5%.

Total Number of Infected, Daily Infection Rate, Lag
Time, and Incubation Period
The fourth component of the framework is the application of
the logistic model to estimate three parameters: the total count
of infected individuals; the daily infection rate; and the lag,
which defines when the cycle actually started. An innovative
model, based on the concept of inventory formation, is used to
determine a fourth parameter—the most likely incubation period
for the virus.

Considered by many authors as a good fit for modeling epidemic
episodes [18-20], the logistic model describes three typical
phases for this type of episode: the slow start, the steady growth,
and finally the asymptotic behavior of the end. There are several
ways to implement this function, and this work will use the
so-called Richard growth model to describe the accumulated
number of infection cases. The generalized logistic function has
the following form:

By selecting the highest r2 among several variations of equation
9, through curve-fitting, a particular form for equation 9 is:
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where N(t) is the number of infected persons at a given period
of time t, a is the final count for the total infected, b is the daily
infection rate, c is the lag phase, and d is a positive real number.
It can be shown that:

The constants a, b, c, and d will be used to estimate x1, the
maximum number of infected people in a given location; x2 is
the daily infection rate, or the average absolute daily increase
in the number of infected, which can be used to determine the
reproduction number (and to estimate the incubation period).
Finally, x3 is used to estimate the lag time, or the actual moment
when the first case occurred.

Incubation Period Estimation
Although there is a series of studies on the incubation period
for SARS-CoV-2, in order to maintain consistency within the
framework, we sought to develop a model that could also
estimate what would be the best incubation period estimation
method to consider when modeling epidemic cycles. For that,
we defined a model of inventory of infected people similar to
the one used in productive systems, as shown in equation 12:

It = It–1 + Dt – Dt–n (12)

where It is the inventory of people infected in day t, or the total
of infected in day t; It-1 is the inventory of people infected in
the previous day; Dt is the number of people detected with the
disease in day t; and Dt-n is the number of people detected with
the disease n days before t.

Equation 12 should be interpreted as follows: the number of
people who are infectious on a given day is equal to the number
of people who were infectious the day before, plus the number
of infected detected on the same day, and minus the number of
people who have left the N-day incubation period. This
reasoning therefore assumes that as soon as a person finds out
he or she is infected, that is, when this person leaves the
incubation period, enters perfect isolation and stops infecting.
Although this assumption is not completely realistic—since it
depends not only on individual responsibility, but also on the
implementation of efficient isolation measures—at the same
time it must also be considered that not every infected person
effectively infects others, given that isolation is not the only

way to avoid viral contamination. Thus, we consider this
assumption to be reasonable enough to be applied statistically.

Other basic assumptions are that of all people susceptible (not
vaccinated, sufficiently exposed to the pathogen, etc), not all
will expose or develop the disease in a form severe enough to
be noticed. Accordingly, the recorded number of daily cases
does not reflect the total number of infected, but those who seek
medical attention and therefore were diagnosed as contaminated.
Hence, this is the number of infected in a given day, or the
“inventory” of people that can infect other people in a given
day. With the formulation defined in equation 12 and the
assumptions described previously, we carried out the analysis
and simulations for the three countries.

Results

General Findings
The epidemic cycles observed were subjected to the numerical
methods present in the framework and described in the previous
section. The first data transformation was the application of the
MAMI value. The second transformation was normalization,
where all the values were divided by cycle peak value, causing
most of the values to fit between 0 and 1, except for the false
peaks. These two consecutive transformations allowed for a
comparison of behaviors among cycles and proved that several
epidemic cycles, within the pandemic, have similarities. With
these first steps, it is possible to estimate the duration and
general behavior of a local episode, even though this, in absolute
terms, does not present the same number of deaths or duration
as a similar cycle. What remains approximately constant are
the proportions of similar cycles. This technique has been
applied with great success in the performance prediction of
professional athletes and teams [21].

By the time the analyses were done, the three countries
considered in this paper presented more advanced cycles, so no
predictions were made for them; instead, their cycles were used
to perform analysis on other countries, regions, and cities. For
instance, Figure 10 presents the similarity of the United States’
and Sweden’s cycles. A complete set of predictions for Brazil,
the state of Rio de Janeiro, and the city of Rio de Janeiro, as
well as a measurement of the performance of the model, are
presented in Multimedia Appendix 3. In addition, as seen in De
Carvalho and De Carvalho [12], it is possible to find many other
comparisons and predictions between cities, regions, and
countries using this method.
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Figure 10. Comparison of epidemic cycles: Sweden and the United States. Source: Worldometer [15].

The analyses of the other variables considered in the framework
for Germany, Italy, and Sweden are presented in the next
sections. The data for this part of the study were also collected
from the Johns Hopkins University’s website [17] on the
declared dates.

The expressions developed in equations 1 to 5 do not explicitly
take into account the incubation period, with the instantaneous
rate of change, or daily increase in number of registered infected
individuals, calculated as defined in equation 5. For the sake of
thoroughness, three simulations were performed, for an
incubation period of 5, 10, and 15 days. This was achieved by
redefining the expression (1+b) for a new set of parameters,
basically dividing the total number of reported cases for a given
day by the values registered in 5, 10, and 15 days before. In that
way, the term (1+b) would now reflect the incubation period
over Rt. All simulations yielded zero (0%) change, to the fourth
significant figure. Therefore, it is assumed that the described
method is inherently insensitive to incubation period variations
or influence, reinforcing its simplicity and robustness. The data
and calculations are in Multimedia Appendix 4.

Germany

Reproduction Numbers
In Figure 11, three distinct zones are formed. Zone “a” is in the
very beginning of the cycle, and the reproduction number varies
from 1.10 to 1.48 from one day to the next; this is probably only
the reflection of large initial variation in numbers but only if
we limit this zone to no more than 5% of the MAMI peak value.
It is easy to notice that the figures bear small influence on the
overall disease behavior. Zone “b” describes the transmission
during the critical disease cycle (from March 6 to June 7), where
a rapid increase in daily cases stops only around the peak than
drops steadily toward the end. This is the most lethal period of
the epidemic cycle, and it is considered over once a 5% peak
level is reached again. The remaining time, zone “c,” is the
residual cycle that appears in all countries and places facing the
COVID-19 crisis. In absolute values, the reproduction number
for the critical period starts with a value of 1.30 and drops
continuously toward 1.00, although never quite reaching it (at
the time this paper was written).
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Figure 11. Total epidemic cycle in Germany, using the daily number of infected people. Source: Johns Hopkins University [17].

Subnotification
An arbitrary threshold line representing a 5% error was drawn
in Figure 12. This limit shows that after the 50th day into the
German critical cycle (the one between 5% of the peak value,
before and after it), regardless of the amount of subnotification,
the error of the calculated reproduction number is no greater
than 5%, as presented in Table 3. At the other extreme, a 3x
subnotification essentially does not induce errors greater than

5% on the reproduction number, at any time during the critical
cycle. A maximum error of 16.84% is estimated for the worst
case scenario simulated here, a 40x subnotification, and the first
day into the cycle. In overall, subnotification appears to have
no significant impact in Germany’s official infected numbers.
Subnotification also seems to have more impact in the very
beginning of a given cycle but becomes irrelevant toward the
end.
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Figure 12. Subnotification effect on reproduction number in Germany during the critical epidemic cycle. Source: Johns Hopkins University [17].

Table 3. Errors associated with ignoring the existence of subnotification in the epidemic cycle.

Error (%) at peak dayDays until ≤5%Min error (%)Max error (%)Subnotification

2.6420.975.343x

3.85121.417.735x

5.46252.0210.8710x

6.39332.3712.6615x

7.05392.6213.9120x

7.55432.8114.8725x

7.96472.9715.6430x

8.60523.2116.8440x

Total Number of Infected
Data collected for Germany from February 15 to July 20 were
plotted in Figure 13. The blue dots represent the daily registered

infected cases submitted to MAMI, and the red continuous line
represents the Richard growth model curve, drawn using
parameters determined by the MAMI data.
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Figure 13. Total number of infected (moving average method–initial value [MAMI]) compared to the Richard growth model prediction for Germany.
Source: Johns Hopkins University [17].

As discussed previously, the German critical epidemic cycle
started on March 6. Using curve-fitting data from Table 4, Table
5 shows that the first case must be recorded 89 days before that,

with X3 indicating that the first case of the total epidemic cycle
occurred around December 8, 2019.

Table 4. Curve-fitting data.

ValueParameter

197,372.97a

–5.2260b

0.0587c

4.4208×10-4d

Table 5. Epidemic parameters determined using curve-fitting data from Table 4.

ValueEpidemic parameter

197,373X1

5.87aX2

89X3

0.9958r2

aPercent.

Impact of Incubation Period
In this section, we approach the model of formation of an
infected persons inventory for the three countries considered.

Simulations were made for incubation cycles of 3, 5, 7, 9, and
11 days. Inventories were calculated according to equation 12
and plotted together with the MAMI of detected cases. Figure
14 presents the subnotification study for Germany.
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Figure 14. Infected person inventories for 3, 5, 7, 9, and 11 days of incubation, compared to MAMI (moving average method–initial value) for Germany.
Source: Johns Hopkins University [17].

Italy

Reproduction Numbers
It can be seem in Figure 15 that three distinct zones are formed.
Zone “a” is in the beginning of the cycle, and the reproduction
number varies from 1.78 to 1.44 from one day to the next; once
again this is probably simply the reflection of large initial
variation in number, but this zone is limited to no more than

5% of the MAMI peak value. It is easy to notice that the figures
bear small influence in the overall disease behavior. Zone “b”
describes the transmission during the critical disease cycle (from
February 25 to June 15). This is the most lethal period of the
epidemic cycle, and it is considered over once a 5% peak level
is reached again. The remaining time, zone “c,” is the residual
cycle. In absolute values, the reproduction number for the critical
period starts with a value of 1.44 and drops continuously toward
1.12.
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Figure 15. Total epidemic cycle in Italy, using the daily number of infected people. Source: Johns Hopkins University [17].

Subnotification
Subnotification in Italy is presented in Figure 16. The 5% limit
tells that after the 44th day into the Italian critical cycle,
regardless the amount of subnotification, the error of the
calculated reproduction number is no greater than 5%, as shown
in Table 6. At the other extreme, a 3x subnotification essentially
induces no errors larger than 5% on the reproduction number,

in any time during the critical cycle, and 5x barely disturbs it.
A maximum error of 12.34% is estimated for the worst case
scenario simulated here, a 40x subnotification, and the first day
into the cycle. Overall, subnotification appears to have no
significant impact on Italy’s official infected numbers, as in the
previous two cases. Subnotification also has more impact in the
very beginning of a given cycle but becomes irrelevant toward
the end of it.
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Figure 16. Subnotification effect on reproduction number in Italy during the critical epidemic cycle. Source: Johns Hopkins University [17].

Table 6. Errors associated with ignoring the existence of subnotification in the epidemic cycle for Italy.

Error (%) at peak dayDays until ≤5%Min error (%)Max error (%)Subnotification

2.09N/Aa0.853.853x

3.0541.255.595x

4.33171.787.8910x

5.07252.099.2215x

5.60312.3110.1520x

6.00352.4810.8625x

6.33392.6211.4430x

6.85442.8412.3440x

aN/A: not applicable.

Total Number of Infected
Data collected for Italy from February 15 to July 20 were plotted
in Figure 17. The blue dots represent the daily registered infected

cases submitted to MAMI, and the red continuous line represents
the Richard growth model curve, drawn using parameters
determined by the MAMI data.
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Figure 17. Total number of infected (MAMI [moving average method–initial value]) compared to the Richard growth model prediction for Italy.
Source: Johns Hopkins University [17].

The Italian critical epidemic cycle started on February 25. Using
curve-fitting data from Table 7, Table 8 shows that the first case
must be recorded 86 days before that, with X3 indicating that

the first case of the total epidemic cycle occurred around
December 1, 2019.

Table 7. Curve-fitting data.

ValueParameter

241,148.81a

–4.8623b

0.0562c

8.4600×10-4d

Table 8. Epidemic parameters determined using curve-fitting data from Table 7.

ValueEpidemic parameter

241,149X1

5.62aX2

86X3

0.9995r2

aPercent.

Impact of Incubation Period
Using the same reasoning applied to Germany, Figure 18
presents the inventories of infected persons for Italy.
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Figure 18. Infected person inventories for 3, 5, 7, 9, and 11 days of incubation, compared to MAMI (moving average method–initial value) for Italy.
Source: Johns Hopkins University [17].

Sweden

Reproduction Numbers
It can be seen in Figure 19 that two distinct zones are formed,
once Sweden is considered, by the 5% criteria an “ongoing”
epidemic cycle, although in the present date, close to the end.
Zone “a” is in the beginning of the cycle, and the reproduction
number varies from circa 1.33 to 1.16 from one day to the next;
once again this probably is just the reflection of large initial

variation in number, but this zone is limited to no more than
5% of the MAMI peak value. It is easy to notice that the figures
bear small influence in the overall disease behavior. Zone “b”
describes the transmission during the critical disease cycle (from
March 4 onward). This is the most lethal period of the epidemic
cycle, and it is considered over once a <5% peak level is reached
again. In absolute values, the reproduction number for the
critical period starts with a value of 1.16 and drops continuously
toward 1.07.
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Figure 19. Epidemic cycle in Sweden, using the daily number of infected people. Source: Johns Hopkins University [17].

Subnotification
The subnotification effect in Sweden is presented in Figure 20.
The calculated limit tells that after the 54th day into the Swedish
critical cycle, regardless the amount of subnotification, the error
of the calculated reproduction number is no greater than 5%.
On the other extreme, a 3x subnotification essentially induces
no errors larger than 5% on the reproduction number, after the

fourth day during the critical cycle, as shown in Table 9. A
maximum error of 18.53% is estimated for the worst case
scenario simulated here, a 40x subnotification, and the first day
into the cycle. Overall, subnotification appears to have no
significant impact in Sweden. Subnotification also has more
impact in the very beginning of a given cycle but becomes
irrelevant toward the end of it.
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Figure 20. Subnotification effect on reproduction number in Sweden during the critical epidemic cycle. Source: Johns Hopkins University [17].

Table 9. Errors associated with ignoring the existence of subnotification in the epidemic cycle for Sweden.

Error (%) at peak dayDays until ≤5%Min error (%)Max error (%)Subnotification

0.8540.695.923x

1.24141.018.555x

1.77271.4512.0110x

2.08351.7013.9715x

2.30411.8815.3320x

2.46452.0216.3725x

2.60492.1317.2230x

2.82542.3118.5340x

Total Number of Infected
Data collected for Sweden from February 15 to July 20 were
plotted in Figure 21. The blue dots represent the daily registered

infected cases submitted to MAMI, and the red continuous line
represents the Richard growth model curve, drawn using
parameters determined by the MAMI data.
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Figure 21. Total number of infected (MAMI [moving average method–initial value]) compared to Richard growth model prediction for Sweden. Source:
Johns Hopkins University [17].

Previously, it was shown that the Swedish critical epidemic
cycle started on March 4. Using curve-fitting data from Table
10, Table 11 shows that the first case must be recorded 98 days

before that, with X3 indicating that the first case of the total
epidemic cycle occurred around November 27, 2019.

Table 10. Curve-fitting data.

ValueParameter

92,538.59a

3.4050b

0.0348c

7.5514×10-1d

Table 11. Epidemic parameters determined using curve-fitting data from Table 10.

ValueEpidemic parameter

92,539X1

3.48aX2

98X3

0.9958r2

aPercent.

Impact of Incubation Period
Accordingly, Figure 22 presents the predicted inventories of
infected persons for Sweden.
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Figure 22. Infected person inventories for 3, 5, 7, 9, and 11 days of incubation, compared to MAMI (moving average method–initial value) for Sweden.
Source: Johns Hopkins University [17].

One cannot take the assumptions used to derive equation 12 as
deterministic, considering that it describes a perfect “production”
system. However, there is no biological system that behaves in
such a perfect and deterministic way. Therefore, the data shown
in Figures 9, 13, and 17 are not conclusive by themselves, given
the imperfections of the contamination paths, or the considered
“production system,” should be taken into account. In other
words, the efficiency of the transmission system must be
evaluated, as done in the Discussion session.

Discussion

MLCE Control Performance
Using the definition of MLCE, a comparison of the three studied
countries was performed. As parameters, it were applied an

interval within the 5% limits and the nondimensional time
calculated by dividing the day numbers by the total MLCE
duration, for each country. For the reproduction number, all the
values were divided by the largest value found in the MLCE
interval. All these transformations allow us to estimate how
efficient the disease control measures used in each country were.
In order to enrich the comparative analysis, Figure 23 presents
the data from the three countries studied here and also from the
United Kingdom, South Korea, and the state of New York.
Additional details on this and other comparisons can be found
in De Carvalho and De Carvalho [13]. Sweden and New York
State were considered as still having an open MLCE by the time
of the data analysis; therefore, the end of the cycle considered
was the day of data collection (July 22, 2020).
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Figure 23. Nondimensional critical epidemic cycle for Germany, Italy, Sweden, South Korea, the United Kingdom, and New York State (NYS). MAMI:
moving average method–initial value. Source: Johns Hopkins University [17].

Figure 23 shows that Italy was, in relative terms, the most
unsuccessful place in reducing reproduction numbers, although
not by a large margin. Germany and the United Kingdom
exhibited the same performance where the Rt fell slowly but
steadily. South Korea and New York State achieved a large
drop in the early stages of the critical cycle, but after that the
Rt became more or less constant.

Efficiency of the Infection System
According to the experimental data obtained, the efficiency, or
the capacity for spread, of the biological system here described,

that is, SARS-CoV-2, has a power function form, as shown in
Figure 19. Although the three countries analyzed here present
very different epidemic cycles, the percentage of people infected
compared to the incubation period varies very little. This
probably reflects that the incubation period is in fact a constant
value. Figure 24 shows that, for example, for a 5-day incubation
period, the percentage of people who were exposed to the virus
and displayed symptoms severe enough to prompt them to obtain
medical care was around 20%. At the other extreme, if the virus
had a 11-day incubation period, the numbers of actual cases
registered would have indicated a 10% rate of infection in the
general population.
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Figure 24. Number of days of incubation versus the percentage of serious and severe COVID-19 infections. Source: Johns Hopkins University [17].

This curve, although restricted to only these three countries,
covers nations with quite different NPI policies, population
sizes, and land masses. It shows that, according to registered
cases, SARS-CoV-2 affected a small segment of these
populations and at the same proportions. The subnotification
effect does not interfere with this curve behavior significantly,
as shown by the calculations.

One conclusion is that, putting together equation 12 with the
efficiency measurement in Figure 24, the reported
subnotification rate of 80% [22], or 20% of people with more
serious symptoms, represents 1 in 5 of the infected persons
inventory. In other words, there is 5 times more persons in the

infective state than detected and reported by the MAMI figures,
leading to a 5-day incubation period. The next step is calculating
the subnotification estimation, which then becomes
straightforward: given the incubation period, how many times
should the registered amount be multiplied to correctly express
the estimated subnotification? For example, for a 5-day
incubation period in Germany, a subnotification around 4 times
the registered number of cases in any given day is expected, if
100 were registered as infected and 400 were not. With this
rationale, it is possible to compare the subnotification factor
with the incubation period for the three studied countries, as
presented in Figure 25.

JMIRx Med 2021 | vol. 2 | iss. 1 |e22617 | p.59https://xmed.jmir.org/2021/1/e22617
(page number not for citation purposes)

De Carvalho & De CarvalhoJMIRX MED

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 25. Subnotification factor for the studied countries. Source: Johns Hopkins University [17].

Other Findings and Conclusions
The early predictions on the progress of the local epidemic
cycles of COVID-19 based on Gaussian distribution models
and their derivatives, such as the beta distribution, failed to
obtain values close to reality, sometimes being very pessimistic,
other times being too optimistic. In addition, the nature of the
data available for studies requires preliminary numerical
treatment, since most of them present the number of daily deaths
that occurred on the dates on which they were recorded by the
health system and not on those that the deaths actually occurred.
Moreover, countries with vast territories and populations should
not be treated as a single case, but should be studied regionally,
so that the evolution of disease cycles can be clearly understood.

Through the observation of some early cycles, where a peak
had already been reached, associated with a consistent reduction
in the number of infections, it was possible to identify a
triangular shape in these distributions. With the information on
the approximate behavior of the variable in question
(reproduction number) and the identification of a minimum and
maximum, the use of the triangular distribution became clear.
After applying this distribution over several local cycles, it was
possible to identify similarities between pairs of cycles of
localities and regions apparently without direct demographic
correlation. Normalization allows you to use an already
completed cycle to estimate the behavior of a cycle that is still
evolving. The method using the similarity of cycles was able
to estimate the end of the cycle up to 34 days before the actual

end of the cycle, but requires that there exist a similar cycle.
These similarities were confirmed by Kolmogorov-Smirnov
tests applied to the data series (Multimedia Appendix 1),
demonstrating the hypothesis that the triangular distribution
applies to these comparisons and, therefore, is applicable to the
prediction of the dimensionless behavior of these cycles.
Additionally, understanding the basic behavior of local epidemic
cycles allowed for the assessment of the impact of
subnotification on calculations.

It is important to note that starting dates influence all the
parameters that govern every statistical model used for
characterizing the infection. The logistic model together with
the model based on the concept of an infected persons inventory
can be used to obtain three parameters of the epidemic cycle:
the number of total infected, the daily infection rate, and the
lag phase, which determines the actual probable onset of the
epidemic for the studied countries, thereby solving the problem
of noise generation in other parameters by wrongly determined
onset dates.

Hence, the experimental framework proposed here offers a set
of simple and efficient methods for calculating not only the
reproduction number, but also other variables that influence the
epidemic cycles and supporting the decision-making process
of health authorities, being an interesting tool especially for
those places where mass testing is not available. Currently, as
the second wave of infections by SARS-CoV-2 emerges, this
framework is being applied again in order to definitively
demonstrate its efficacy and efficiency.
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Abstract

Background: It is unclear how people with hypertension are responding to the COVID-19 pandemic given their increased risk,
and whether targeted public health strategies are needed.

Objective: This retrospective case-control study compared people with hypertension to matched healthy controls during the
COVID-19 lockdown to determine whether they have higher risk perceptions, anxiety, and vaccination intentions.

Methods: Baseline data from a national survey were collected in April 2020 during the COVID-19 lockdown in Australia.
People who reported hypertension with no other chronic conditions were randomly matched to healthy controls of similar age,
gender, education, and health literacy level. A subset including participants with hypertension was followed up at 2 months after
restrictions were eased. Risk perceptions, anxiety, and vaccination intentions were measured in April and June.

Results: Of the 4362 baseline participants, 466 (10.7%) reported hypertension with no other chronic conditions. A subset of
1369 people were followed up at 2 months, which included 147 (10.7%) participants with hypertension. At baseline, perceived
seriousness was high for both hypertension and control groups. The hypertension group reported greater anxiety compared to the
controls and were more willing to vaccinate against influenza, but COVID-19 vaccination intentions were similar. At follow-up,
these differences were no longer present in the longitudinal subsample. Perceived seriousness and anxiety had decreased, but
vaccination intentions for both influenza and COVID-19 remained high across groups (>80%).

Conclusions: Anxiety was above normal levels during the COVID-19 lockdown. It was higher in the hypertension group, which
also had higher vaccination intentions. Groups that are more vulnerable to COVID-19 may require targeted mental health screening
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during periods of greater risk. Despite a decrease in perceived risk and anxiety after 2 months of lockdown restrictions, vaccination
intentions remained high, which is encouraging for the future prevention of COVID-19.

(JMIRx Med 2021;2(1):e25610)   doi:10.2196/25610

KEYWORDS

public health; global health; COVID-19; hypertension; risk; strategy; mental health; behavior; response; anxiety; vaccine;
retrospective; perception; prevention; intention

Introduction

Although research on COVID-19 outcomes is constantly
evolving, there is consistent evidence that people with
cardiovascular disease (CVD) risk factors are more likely to
experience severe complications and are more likely to die if
they acquire COVID-19 [1]. People with CVD are more likely
to have risk factors that may complicate the response to
COVID-19, and COVID-19 can itself cause cardiovascular
damage [2]. During the early phase of the pandemic, there was
prominent media attention about the risk of hypertension in
particular, and there were concerns that people with CVD risk
factors were not presenting to general practitioners and hospitals
for management and new symptoms onset due to the fear of
contracting COVID-19 [3,4]. People with CVD risk factors or
established CVD can access prescriptions via telehealth in
Australia, but this was very new at the time of the study [5]. As
well as potential access issues, many people with chronic
conditions do not believe they are at increased risk, which may
affect their uptake of prevention measures [6]. This may be
reinforced by beliefs based on misinformation about the severity
of COVID-19, spread as part of antivaccination movements [7].

In addition to concern about increased risk for this population,
there has been debate in the medical community about whether
common medications used to manage risk for people with CVD,
hypertension, and diabetes contribute to worse COVID-19
outcomes [8,9]. At the time of this study, there was insufficient
evidence to cease their use, prompting the National Heart
Foundation to release a statement confirming this [10]. However,
there continues to be research on the role of angiotensin
converting enzyme inhibitors and angiotensin II type I receptor
blockers, with arguments both for and against the continued use
of such medications [11,12] during the COVID-19 pandemic
in different population groups.

There has also been debate about the respiratory versus
cardiovascular nature of COVID-19. Emerging research suggests
that virus complications and their treatment could be regarded
as cardiovascular in nature [13,14], which may explain the
devastating outcomes experienced by some people who contract
the virus. It is unclear what this means for managing people

with multiple CVD risk factors associated with worse
COVID-19 outcomes (eg, hypertension and diabetes) [8]. Initial
concerns promoted in national media included both respiratory
conditions, such as asthma [15], and cardiovascular conditions,
including hypertension [16], early in the Australian pandemic
response.

As a result of this evolving and conflicting research, as well as
widespread misinformation, people with hypertension in the
community may have received mixed messages in the media
about how they should manage both CVD risk and COVID-19
risk during the pandemic. It is unknown whether people with
hypertension responded differently to the pandemic and
associated restrictions compared to the general population and
whether a tailored communication approach is needed to address
the needs of this group.

This study investigated whether people with hypertension have
higher risk perceptions, anxiety, and prevention intentions during
COVID-19 restrictions to inform targeted public health
messaging for this group.

Methods

Setting
In Australia, the COVID-19 pandemic has been well controlled
compared to many other countries around the world. However,
in April 2020, cases and community transmissions had been
rising exponentially, and the country was placed under
lockdown, including closure of schools and workplaces and
restrictions on gatherings and movement. Citizens were required
to stay home except for essential purposes (eg, work, essential
shopping, exercise). In June 2020, cases were under control and
many regulations were eased, although some restrictions
remained, such as small gathering sizes, which varied from state
to state. A second wave occurred in the state of Victoria shortly
after this, requiring new restrictions such as mandatory masks
and curfews, but our data were collected prior to this. Thus, a
comparison of April and June data presents an opportunity to
look at the effect of a short-term lockdown between a time of
strong COVID-19 restrictions and good control (Figure 1).
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Figure 1. COVID-19 in Australia during the study period.

Data Collection
Data from a national Australian survey were used to conduct
retrospective case-control analyses comparing hypertension and
control groups. Baseline data were collected from all states and
territories in April 2020 during the COVID-19 lockdown, with
a subsample followed up in June 2020 when restrictions were
eased.

Ethics approval was obtained from the University of Sydney
Human Research Ethics Committee (2020/212).

Measures
The survey measures and full sample results are reported
elsewhere [17,18], including the Health Literacy single-item
screener [19], Consumer Health Activation Index (CHAI) patient
activation measure [20], and State-Trait Anxiety Inventory
(STAI) [21]. Participants were asked if they had any of the
following conditions: asthma, chronic obstructive pulmonary
disease, high blood pressure (hypertension), cancer, heart
disease, stroke, diabetes, depression, or anxiety; and whether
they take any prescription medication (not specified). The
single-item screener provides a brief measure of health literacy,
that is, the skills needed to engage in health [19]; and the CHAI
provides a measure of patient activation, that is, the extent that
a person actively involves themselves in decisions to manage
one’s health [20]. Risk perceptions and prevention behaviors
(including vaccination intentions) were measured using Likert
and categorical scales. Items pertaining to risk perception were
based on items developed for an earlier US COVID-19 study
[18]. The perceived seriousness of threat from COVID-19 was
captured using a 10-point scale (1=”no threat at all to” 10=”very
serious public health threat”). The social distancing score reflects
perceived importance of social distancing. This outcome is
based on 4 items, each answered using a 7-point Likert scale.
The items were adapted from existing vaccine attitude
instruments to instead reflect on social distancing (“social

distancing is important for my family’s health,” “social
distancing is important for the health of others in my
community,” “when everyone else is socially distancing, I don’t
need to,” “I socially distance to protect people with a weaker
immune system”). Perceived seriousness was asked generally
at baseline; at follow-up, participants were asked about the
public health risk from COVID-19 in general, globally, and in
Australia specifically, given the divergent pattern of control
across countries.

Matching Procedure
Individuals with hypertension and no other comorbidities
(n=466) were retrospectively matched without replacement to
healthy controls (with no comorbidities; n=2251) using the
calipmatch function in Stata (StataCorp) [22]. For each case,
potential controls were initially identified based on age (±3
years) and exactly matching on gender, education, and health
literacy adequacy (selected given observed differences as a
function of these variables in COVID-19–related knowledge,
attitudes, awareness, and behaviors in our baseline survey [17]).
One matching control is then randomly selected for the case
and removed from the list of available controls for subsequent
cases. Because the search strategy for controls is greedy (ie,
selecting cases for matching in random order and removing
controls without replacement for subsequent case matching),
some cases may be left unmatched. The initial matching run
resulted in 95.7% (446/466) of cases successfully matched to
a control. The constraints for matching were iteratively relaxed
(eg, allowing age to vary by ±10 years; education level to differ
by one category) until all remaining cases were paired to a
control. The matching procedure was repeated for the follow-up
sample.

Analysis
Analyses were conducted using Stata/IC v16.1 (StataCorp).
Pairwise comparisons of baseline demographic characteristics
were undertaken to confirm the appropriateness of the matching
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procedure of cases to controls, and to identify potential
differences in demographic characteristics between those who
were invited and returned for follow-up compared to those who
were not followed up. Regression models with robust error
variances to account for clustering within pairs, and adjusted
for matching variables (age, gender, education, and health
literacy adequacy), were used to analyze outcome variables.
Linear models were used for continuous outcomes (risk
perceptions, STAI anxiety, perceived importance of social
distancing) to estimate marginal mean differences (MMD).
Generalized linear models with a modified Poisson approach
[23] were used for the dichotomous outcome “not feeling
stressed due to COVID-19,” generating adjusted prevalence
ratios (aPR). Ordinal logistic regression models were used for
ordered categorical outcomes (frequency of leaving one’s home,
vaccination intentions), resulting in adjusted odds ratios (aOR).
Separate models were conducted for each time point. All
estimates are provided with 95% CI values. A P value of .05
was used as the threshold for statistical significance.

Data Availability
Data are available upon reasonable request subject to ethics
approval.

Results

Of the 4362 baseline participants, 466 (10.7%) reported
hypertension with no other chronic conditions. A subset of 1369
participants from the original survey cohort were followed up
after 2 months, comprising 147 (10.7%) participants with
hypertension only.

Table 1 describes the case versus control samples for all baseline
outcomes, and Table 2 shows details of the regression models
comparing the two groups at this timepoint. Table 3 provides
a description of cases and controls included in the follow-up
sample, with Table 4 detailing the outcome of the regression
models at follow-up.
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Table 1. Baseline descriptive statistics and unadjusted outcomes for hypertension cases versus matched healthy controls.

GroupaVariable

Control (n=466)Hypertension (n=466)

Sample description

52.5 (15.3)53.5 (15.5)Age (years), mean (SD)

Age group, n (%)

34 (7)26 (6)18-25 years

78 (17)83 (18)26-40 years

117 (25)105 (23)41-55 years

237 (51)252 (54)56-90 years

Gender, n (%)

220 (47)220 (47)Male

243 (52)243 (52)Female

3 (1)3 (1)Not specified/other

Education, n (%)

112 (24)115 (25)High school or less

69 (15)69 (15)Certificate I-IV

285 (61)282 (61)University

431 (92)427 (92)Adequate health literacyb, n (%)

195 (42)359 (77)Takes any prescription medicine, n (%)

77.17 (12.77)75.83 (14.19)Consumer Health Activation Index (score 0-100 where 100 is more active), mean
(SD)

Risk perception

7.66 (2.18)7.72 (2.25)Seriousness of threat (0=low, 10=high), mean (SD)

5.72 (12.45)6.50 (13.49)What percentage of people who get COVID-19 will die as a result? (open), mean
(SD)

62.37 (27.12)62.88 (26.36)What percentage of people who get COVID-19 will experience only mild symptoms?
(open), mean (SD)

Anxiety

38.98 (14.38)40.62 (14.95)State-Trait Anxiety Inventory (score range 20-80; normal 34-36), mean (SD)

115 (25)113 (24)Never (in the past week) felt nervous or stressed because of COVID-19 (categorical),
n (%)

Prevention behaviors

6.42 (0.82)6.48 (0.74)Perceived importance of social distancing (average of 4 items from 1-7, where 7 is
most important), mean (SD)

How often are you leaving home? n (%)

42 (9)45 (10)Less than once per week

53 (11)53 (11)Once per week

150 (32)176 (38)A few times per week

176 (38)154 (33)Once per day

45 (10)38 (8)Multiple times per day

I have or I will get the flu vaccine this year, n (%)

72 (15)50 (11)Strongly disagree/disagree

39 (8)30 (6)Neither agree nor disagree

355 (76)386 (83)Strongly agree/agree
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GroupaVariable

Control (n=466)Hypertension (n=466)

If a COVID-19 vaccine becomes available, I will get it, n (%)

29 (6)17 (4)Strongly disagree/disagree

42 (9)45 (10)Neither agree nor disagree

395 (85)404 (87)Strongly agree/agree

aPeople reporting high blood pressure and no other conditions were matched to healthy controls with no reported cardiovascular or respiratory conditions.
bBased on the single-item health literacy screener.

Table 2. Multivariablea regression model estimates comparing hypertension cases (n=466) versus matched healthy controls (n=466) at baseline.

P valueEstimate (95% CI)Variable

Risk perception

.710.05 (–0.23 to 0.34)Seriousness of threat, MMDb

.360.75 (–0.87 to 2.37)What percentage of people who get COVID-19 will die as a result? MMD

.690.71 (–2.77 to 4.18)What percentage of people who get COVID-19 will experience only mild symptoms? MMD

Anxiety

.031.90 (0.19 to 3.61)State-Trait Anxiety Inventory, MMD

.690.96 (0.77 to 1.19)Never (in the past week) felt nervous or stressed because of COVID-19, aPRc

Prevention behaviors

.210.06 (–0.04 to 0.17)Perceived importance of social distancing, MMD

.140.84 (0.66 to 1.06)How often are you leaving home? aORd

.011.52 (1.10 to 2.11)I have or I will get the flu vaccine this year, aOR

.311.21 (0.84 to 1.73)If a COVID-19 vaccine becomes available, I will get it, aOR

aAll multivariable models controlled for age (in years), gender, health literacy adequacy, and education.
bMMD: marginal mean difference (from the linear regression model).
caPR: adjusted prevalence ratio (from the generalized linear model using a modified Poisson approach).
daOR: adjusted odds ratio (from the ordinal logistic regression).
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Table 3. Follow-up descriptive statistics and unadjusted outcomes for hypertension cases versus matched healthy controls.

GroupaVariable

Control (n=147)Hypertension (n=147)

Sample descriptionb

52.8 (14.2)54.8 (14.9)Age (years), mean (SD)

Age group, n (%)

8 (5)7 (5)18-25 years

22 (15)22 (15)26-40 years

45 (31)36 (24)41-55 years

72 (49)82 (56)56-90 years

Gender, n (%)

61 (41)61 (41)Male

85 (58)85 (58)Female

1 (1)1 (1)Not specified/other

Education, n (%)

18 (12)26 (18)High school or less

21 (14)19 (13)Certificate I-IV

108 (73)102 (69)University

143 (97)142 (97)Adequate health literacyc, n (%)

56 (38)114 (78)Takes any prescription medicine, n (%)

77.10 (12.95)75.48 (14.32)Consumer Health Activation Index (score 0-100, where 100 is more active), mean
(SD)

Risk perception

7.03 (2.58)7.51 (2.42)Seriousness of threat in general (0=low to 10=high), mean (SD)

8.65 (1.81)8.74 (1.76)Seriousness of threat globally (0=low to 10=high), mean (SD)

5.50 (2.49)6.14 (2.38)Seriousness of threat in Australia (0=low to 10=high), mean (SD)

Anxiety

36.49 (13.93)36.94 (15.31)State-Trait Anxiety Inventory (score range 20-80; normal 34-36), mean (SD)

64 (44)58 (39)Never (in the past week) felt nervous or stressed because of COVID-19 (categorical),
n (%)

Prevention behaviors

6.34 (0.90)6.49 (0.78)Perceived importance of social distancing (average of 4 items from 1-7, where 7 is
more important), mean (SD)

I have or I will get the flu vaccine this year, n (%)

24 (16)13 (9)Strongly disagree/disagree

2 (1)2 (1)Neither agree nor disagree

121 (82)132 (90)Strongly agree/agree

If a COVID-19 vaccine becomes available, I will get it, n (%)

13 (9)7 (5)Strongly disagree/disagree

10 (7)9 (6)Neither agree nor disagree

124 (84)131 (89)Strongly agree/agree

aPeople reporting high blood pressure and no other conditions were matched to healthy controls with no reported cardiovascular or respiratory conditions.
bAs measured at baseline.
cBased on the single-item health literacy screener.

JMIRx Med 2021 | vol. 2 | iss. 1 |e25610 | p.69https://xmed.jmir.org/2021/1/e25610
(page number not for citation purposes)

Bonner et alJMIRX MED

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. Multivariablea regression model estimates comparing hypertension cases (n=147) versus matched healthy controls (n=147) at follow-up.

P valueEstimate (95% CI)Variable

Risk perception

.090.50 (–0.08 to 1.08)Seriousness of threat in general, MMDb

.710.07 (–0.31 to 0.46)Seriousness of threat globally, MMD

.030.60 (0.05 to 1.15)Seriousness of threat in Australia, MMD

Anxiety

.600.94 (–2.57 to 4.45)State-Trait Anxiety Inventory, MMD

.551.03 (0.94 to 1.12)Never (in the past week) felt nervous or stressed because of COVID-19, aPRc

Prevention behaviors

.110.16 (–0.03 to 0.35)Perceived importance of social distancing, MMD

.081.90 (0.93 to 3.90)I have or I will get the flu vaccine this year, aORd

.151.72 (0.82 to 3.58)If a COVID-19 vaccine becomes available, I will get it, aOR

aAll multivariable models controlled for age (in years), gender, health literacy adequacy, and education.
bMMD: marginal mean difference (from the linear regression model).
caPR: adjusted prevalence ratio (from the generalized linear model using a modified Poisson approach).
daOR: adjusted odds ratio (from the ordinal logistic regression).

Description of Sample
To isolate the effects of hypertension, the hypertension sample
included 466 people reporting only high blood pressure and no
other chronic health conditions. The mean age was 54 years
(SD 15.5), and the sample comprised 52% (n=243) female, 47%
(n=220) male, and 1% (n=3) unspecified. The majority had a
university degree (n=282, 61%) and adequate health literacy
(n=427, 92%). The average patient activation score was
comparable to other patient populations (mean scaled CHAI
74.9). Most were taking medications (n=359, 77%), with 45%
(n=163) obtaining a refill during the lockdown, 5% (n=19)
switching to a longer prescription, and only 1 person stopping
their medication. As seen in Table 1, the sample descriptive
characteristics were comparable between individuals with
hypertension and the matched controls. There was no statistical
difference across age (P=.33), gender (P>.99), education
(P=.97), or health literacy adequacy (P=.63) between cases and
controls. Cases who were invited and returned for follow-up
were of similar age and gender but had higher levels of
education (P=.02) and were more likely to have adequate health
literacy (P=.009) than those who were not followed up.

Risk Perceptions
At baseline, the perceived seriousness of threat from COVID-19
in the hypertension group was high (mean 7.72, out of 10) but
similar to controls (mean 7.66). On average, the hypertension
sample believed that 7% of people who get COVID-19 would
die as a result and 63% would experience only mild symptoms
(asked separately). There were no statistically significant
differences between the hypertension group and the matched
controls at baseline. At follow-up, those with hypertension
perceived a greater threat (mean 6.12) than controls (mean 5.52)
when asked about Australia (MMD 0.60, 95% CI 0.05-1.15;
P=.03) but not in general or globally.

Anxiety
At baseline, 76% (n=353) of the hypertension group had felt
nervous or stressed about COVID-19 in the past week at least
some of the time. On average, the mean STAI was 1.90 units
higher (95% CI 0.19 to 3.61; P=.03, Cohen d=0.13) for those
with hypertension (mean 40.75) than matched controls (mean
38.85). At follow-up, there was no longer a significant difference
between the hypertension (mean 37.02) and control (mean
36.08) groups (MMD 0.94, 95% CI –2.57 to 4.45; P=.60, Cohen
d=0.06).

Prevention Behaviors
At baseline, the hypertension group had a social distancing score
of 6.48 out of 7, indicating strong agreement with the importance
of social distancing for ones’ own health and the health of the
public; this was similar to the controls (6.42 out of 7). Most
people left home a few times a week (n=176, 38%) or once a
day (n=154, 33%) during the lockdown. Overall, 83% (n=386)
agreed they would get the influenza vaccine, and 87% (n=404)
would get the COVID-19 vaccine. Compared to healthy matched
controls, the hypertension group was more likely to agree that
they would (or have already) received the influenza vaccine this
year (aOR 1.52, 95% CI 1.10-2.11; P=.01). There were no
significant differences in willingness to vaccinate for COVID-19
(if it became available), perceived importance of social
distancing, or frequency of leaving one’s home. At follow-up,
there was no longer a significant difference between the
hypertension and control groups for influenza vaccination
intention (aOR 1.90, 95% CI 0.93-3.90; P=.08), with intentions
remaining high for both influenza and COVID-19 vaccination
(>80% for both groups).
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Discussion

Principal Findings
The main observation of this study was the significant difference
in anxiety levels between hypertension only and matched control
groups, with all groups reporting higher than “normal” levels.
This is consistent with the Australian Bureau of Statistics’
finding that the rate of anxiety in the general population had
doubled in April 2020 compared to a survey from 2017-18 [24].
Prioritizing mental health screening for more vulnerable clinical
groups with higher anxiety may be warranted when local
community transmission rates are high.

Overall, there were few differences between people with
hypertension and healthy matched controls. No significant
differences were found for COVID-19 risk perceptions or
perceived importance of social distancing behaviors. This is
consistent with another study, which found that 20% of people
with chronic conditions did not perceive greater risk [6], but
differs from other survey reports that indicate people with
different chronic conditions are more likely to engage in
COVID-19 prevention behaviors and perceive COVID-19 as a
serious threat [18,25]. This may be due to a close resemblance
between the hypertension and general populations in our study,
or it may be a result of our method of matching cases to controls
rather than comparing groups without such adjustment. Another
Australian survey found similarly high risk perceptions, so there
may also be a ceiling effect in Australia across community
groups [26].

Responses to flu vaccine uptake varied across the two groups,
whereby those with hypertension were more likely to intend to
vaccinate compared to healthy controls. It is possible this is due
to the former’s greater exposure to the health system where
doctors may mention the flu vaccine each year. This difference
does not appear to transfer to increased intent for COVID-19
vaccine uptake, but this may be due to a ceiling effect with high
acceptance rates in Australia [27] compared to other countries
such as France [28]. It should be noted that vaccine acceptance
rates are changing over time as new information (and
misinformation) becomes available about the various vaccines
[29] now being used around the world. No COVID-19
vaccinations were available to Australians at the time of the
study in 2020.

Differences in medication use were found between groups, but
this was to be expected given that preventive medication is
recommended for hypertension. Surprisingly, there were no
differences in access difficulties or changes to medication. The
Australian Bureau of Statistics reported in April 2020 that almost
half (47%) of respondents with a chronic condition had used
telehealth [24], including electronic prescriptions; this was not
a focus of our survey but may explain why little change was
detected.

Strengths and Limitations
The strengths of this study include a large national sample with
data during and after lockdown restrictions, which enabled
matched case-control analyses between participants with
self-reported hypertension and healthy controls and the use of
established, well-validated measures.

The sample was recruited via an online research panel and social
media, and has a low proportion of culturally and linguistically
diverse participants; hence, different results may be found in
other populations. We are currently conducting a separate survey
of these communities in their preferred language. The survey
involved nonstratified sampling without targeted recruitment
of specific health conditions, and only a subset were included
in the longitudinal substudy. Future research could explore the
influence of multimorbidity and differences between social
media users and other community members, given
misinformation concerns in Australia [30].

Conclusion
Anxiety was above normal levels for all groups during the
COVID-19 lockdown. This was higher among people with
hypertension, who also had higher influenza vaccination
intentions but similar COVID-19 vaccination intentions. In
Australia, where lockdown measures effectively reduced the
spread of COVID-19 and restrictions eased relatively quickly,
these differences dissipated after 2 months, but locations with
prolonged restrictions may require targeted psychological
screening for vulnerable groups. Despite a decrease in perceived
seriousness and anxiety after 2 months of lockdown restrictions,
vaccination intentions for both influenza and COVID-19
remained high (80%), which is encouraging for the future
prevention of COVID-19.
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Abstract

Background: Infectious disease is one of the main issues that threatens human health worldwide. The 2019 outbreak of the
new coronavirus SARS-CoV-2, which causes the disease COVID-19, has become a serious global pandemic. Many attempts
have been made to forecast the spread of the disease using various methods, including time series models. Among the attempts
to model the pandemic, to the best of our knowledge, no studies have used the singular spectrum analysis (SSA) technique to
forecast confirmed cases.

Objective: The primary objective of this paper is to construct a reliable, robust, and interpretable model for describing,
decomposing, and forecasting the number of confirmed cases of COVID-19 and predicting the peak of the pandemic in Saudi
Arabia.

Methods: A modified singular spectrum analysis (SSA) approach was applied for the analysis of the COVID-19 pandemic in
Saudi Arabia. We proposed this approach and developed it in our previous studies regarding the separability and grouping steps
in SSA, which play important roles in reconstruction and forecasting. The modified SSA approach mainly enables us to identify
the number of interpretable components required for separability, signal extraction, and noise reduction. The approach was
examined using different levels of simulated and real data with different structures and signal-to-noise ratios. In this study, we
examined the capability of the approach to analyze COVID-19 data. We then used vector SSA to predict new data points and the
peak of the pandemic in Saudi Arabia.

Results: In the first stage, the confirmed daily cases on the first 42 days (March 02 to April 12, 2020) were used and analyzed
to identify the value of the number of required eigenvalues (r) for separability between noise and signal. After obtaining the value
of r, which was 2, and extracting the signals, vector SSA was used to predict and determine the pandemic peak. In the second
stage, we updated the data and included 81 daily case values. We used the same window length and number of eigenvalues for
reconstruction and forecasting of the points 90 days ahead. The results of both forecasting scenarios indicated that the peak would
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occur around the end of May or June 2020 and that the crisis would end between the end of June and the middle of August 2020,
with a total number of infected people of approximately 330,000.

Conclusions: Our results confirm the impressive performance of modified SSA in analyzing COVID-19 data and selecting the
value of r for identifying the signal subspace from a noisy time series and then making a reliable prediction of daily confirmed
cases using the vector SSA method.

(JMIRx Med 2021;2(1):e21044)   doi:10.2196/21044

KEYWORDS

COVID-19; prediction; singular spectrum analysis; separability; eigenvalues; Saudi Arabia

Introduction

One of the main issues that threatens human health worldwide
is infectious diseases. Recently, the 2019 outbreak of the new
coronavirus, SARS-CoV-2, which causes the disease known as
COVID-19, has led to a global pandemic [1,2]. The first case
of the virus was recognized and reported on December 31, 2019,
in the city of Wuhan, the capital of Hubei Province in China
[3]. The virus then spread rapidly worldwide and has affected
more than 200 countries [4].

The number of cases and deaths from SARS-CoV-2 globally
are considered to be a serious problem [5,6]. As of May 12,
2020, the number of confirmed cases worldwide was more than
4 million, with approximately 200,000 deaths. Although the
outbreak appears to have abated in China, the virus and its
impact are still spreading globally, and the case numbers are
increasing. This is leading to concerns about variations in the
affected cases and the mortality rate of the pandemic.
Furthermore, there is much concern about the global economic
impact of the crisis. It is now understood that the devastating
influence of the virus on the economy and world health is
without precedent [7].

In addition, several urgent queries related to transmission
dynamics, mitigation, and control measures of COVID-19 have
been raised, and researchers are attempting to use mathematical
modeling to answer these important questions [8]. For example,
the containment of transmission, plans such as quarantine, social
distancing, and contact tracing of infected or suspected carriers,
and lockdowns in regions or countries to address the disease
have been included in the results of model predictions [9,10].

There are several standard epidemiological models for modelling
epidemics, such as the susceptible, infectious, recovered (SIR)
model [11-13]. Many studies have been conducted to model the
pandemic using various methods, such as deep learning-based
models [14], a simple iteration method [15], generalized additive
models [16], which were used to estimate the three parameters
of time-dependent transmission, time-dependent recovery, and
time-dependent death rates from the outbreak; also, a hybrid
model including 2D curvelet transformation, the chaotic salp
swarm algorithm, and a deep learning technique was used to
identify people infected with SARS-CoV-2 from x-ray images
[17].

The primary objective of this study is the construction of a
reliable, robust, and interpretable model for describing,
decomposing, and forecasting the number of confirmed
COVID-19 cases and predicting the peak of the pandemic in

Saudi Arabia. The rate of mortality in Saudi Arabia is low, less
than 1% at the time of writing this paper (May 12, 2020).
Therefore, we were only interested in new daily cases of people
affected by SARS-CoV-2 in an attempt to detect its peak. The
number of cumulative cases was more than 40,000 as of May
12, 2020.

Because our aim was to analyze the daily data series of
COVID-19, we sought to use a promising, reliable, and capable
method for analyzing time series. A number of methods can be
used to perform such an analysis; however, several of these
methods are parametric and thus have requirements such as
linearity or nonlinearity of a particular form.

An alternative method is to use nonparametric approaches that
are neutral with respect to problematic areas of specification,
such as linearity, stationarity, and normality [18]. These
approaches can represent a reliable and superior means of
decomposing time series data. Singular spectrum analysis (SSA)
is a relatively new nonparametric technique that has been proved
to be effective in several time series applications in different
disciplines, such as genetics and biology [19,20], medicine
[21,22], engineering [23,24], and economics and finance [25,26].
For the history of SSA, see [27,28], and for more details on the
theory of SSA and its applications, refer to [29,30]. A
comprehensive review of the SSA method and descriptions of
its extensions and modifications can be found in [31].

The SSA technique is considered to be a useful tool that can be
applied to solve many problems, such as smoothing; finding
trends in different resolutions; simultaneous extraction of cycles
with small and large periods; extraction of seasonality
components; extraction of periodicities with varying amplitudes;
and simultaneous extraction of complex trends and periodicities
[30]. It should be noted that SSA is not linked with generalized
autoregressive conditional heteroskedasticity, advanced
autoregressive integrated moving average, wavelets, or other
methods of this type. However, it has close links with certain
methods of multivariate statistics and with signal methods such
as projection pursuit and principal component analysis
[30,32,33].

Although signals can be affected by internal or external noise,
which often has unknown characteristics, they can be identified
if the signal and noise subspaces are accurately separated. It is
known that removing noise from any signal is necessary for
analyzing any time series and is helpful in properly decomposing
signals [34].
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The main idea of SSA is to analyze the main series into different
components, then reconstruct the noise-free series for further
analysis. This process depends upon two main choices: the
window length L and the number of required eigenvalues,
denoted by r, for reconstruction. Therefore, appropriate selection
of L and r leads to perfect analysis and separability between the
time series components. It was discussed in [35] that for a series
of length N, selecting L=N/4 is common practice. It should also
be mentioned that L needs to be sufficiently large but no larger
than half of the series [29]. In [36], it was shown that for a series
of length N and the optimal selection of the number of
eigenvalues r for reconstructing the signal, the appropriate value
of the window length is median{1, …, N}. Although various
attempts have been made, no universal rule has been established
for obtaining optimal selections of L and r.

We proposed an approach in [37-39] for the selection of the
value of r for noise reduction, filtering, and signal extraction in
SSA. This approach has also been applied to the distinction of
noise from chaos in time series analysis [40] and for the
correction of noise in gene expression data [41]. In [39], we
developed the approach and introduced new criteria to the
discrimination between epileptic seizure and normal
electroencephalogram (EEG) signals, the filtering of the EEG
signal segments, and elimination of the noise included in the
signal. The approach is mainly used to identify the required
number of eigenvalues or singular values corresponding to the
signal component, which depends on the distribution of the
eigenvalues of a scaled Hankel matrix. The correlation between
eigenvalues, the coefficients of skewness, the kurtosis, and the
variation of the distribution of the eigenvalues were proposed
and proved to be new criteria for the separability between the
signal and noise components, as they can split the eigenvalues
into two groups [38]. Different simulated and real signals were
used to consider different signal-to-noise (SNR) ratios in [38,39]
and were evaluated to show the ability of the approach in the
selection of r.

The remainder of this paper is structured as follows. The
Methods section gives a short description of the modified SSA
approach and its algorithm. In the Results section, we show that
this approach can be used to decompose synthetic data into two
main distinct subspaces, and we then discuss the implementation
of the approach in decomposing and reconstructing series of
COVID-19 daily cases. This section also presents the forecasting
of the COVID-19 pandemic in Saudi Arabia using vector
singular spectrum analysis (VSSA) of the signal extracted by
modified SSA. The Discussion section draws the conclusion of
the paper and suggests ideas for future work.

Methods

The Modified SSA Method: Review
This section presents a short description of the modified SSA
used in this manuscript (for more details, refer to [38]). A time
series was decomposed by the technique into a sum of
components, allowing for identification of each as either a main
or noise component. The goal was to consider the signal as a
whole so that we could identify the appropriate value of r related
to the whole signal component. In other words, we were not

interested in each signal component; thus, the selection of L
rational to the periodicity of the signal components was less
important [30]. Therefore, the modified SSA method focused
on the selection of r to identify the signal subspace.

Consider a one-dimensional series YN = (y1, …, yN) of length
N. Transferring this series into a multidimensional series X1,

…, XK , where Xi = (y1, …, yi+L–1)
T ∈ RL provides , where L

is an integer (2 ≤ L ≤ N/2) and K = N – L + 1.

A matrix X is a Hankel matrix, in which all the elements along

the diagonal I + j = const are equal. Set B = XXT, denote by λi

(i = 1, …, L) the eigenvalues of B taken in decreasing order of
magnitude (λ1 ≥   λL ≥ 0), and denote by U1, …, UL the
orthonormal system of the eigenvectors of matrix B
corresponding to these eigenvalues. The singular value
decomposition (SVD) of matrix X can be written as follows:

X = X1 + ⋅⋅⋅ + XL              (1)

where . The elementary matrices Xi having rank 1, Ui, and
Vi are the left and right eigenvectors of matrix X. Note that the

collection is called the ith eigentriple of the SVD. Note also

that and , where ║ ║F denotes the Frobenius norm.

Fundamental to the question of eigenvalue behavior, λi, is that
if the series size increases, there is a corresponding increase in
the eigenvalues. This problem can be overcome if B is divided
by its trace, A = B/tr(B), which provides several important
properties [37]. Let ζ1, …, ζL denote the matrix B eigenvalues
in decreasing order of magnitude (1 ≥ ζ1 ≥ ⋅⋅⋅ ζL ≥ 0). The
simulation is performed to obtain the distribution of ζ1 and to
understand the behavior of each eigenvalue. This helps identify
the value of r. Here, the goal was to establish the distribution
and related forms of ζ1 that would be used to select the
appropriate value of r for removing noise from the COVID-19
series.

It was proved in our previous work [38] that the largest
eigenvalue has a positive skewed distribution for a white noise
process. Therefore, if skew(ζc) (c ∈ {1, …, L})is the maximum,
and the pattern for skew(ζc) to skew(ζL) has the same pattern,
the same as that which emerged for the white noise, then the
first r = c 1 eigenvalues correspond to the signal and the
remaining eigenvalues correspond to the noise. A similar
procedure can be performed using the coefficients of kurtosis
and the variation of ζi. Furthermore, if ρS(ζc–1, ζc) is the

minimum, and the pattern for the set is similar to what was
observed for the white noise, then we select the first r
eigenvalues for the signal and the remainder for the noise
component (for more information, see [38]).

In this research, we used the third and fourth central measure
moments of the distribution, which are the skewness (skew) and
kurtosis (kurt). Skewness is a measure of asymmetry of the data
distribution, while kurtosis describes the distribution of observed
data in terms of shape or peak. We used these measures as
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criteria for choosing the value of r, which can be calculated for
a simulation m as follows:

Moreover, the coefficient of variation (CV), which is defined

as the ratio of the standard deviation σ(ζi) and , can be
calculated mathematically from the following formula:

In addition, the Spearman correlation ρS between the eigenvalues
ζi and ζj (i, j = 1, …, L) was calculated to enhance the results
obtained by those measures:

where dn = xn – yn (n = 1, …, m) is the difference between xn

and yn, which are the ranks of ζi and ζj, respectively, and ζi,n is

the n-th observation for the i-th eigenvalue (ζj), .

These measures of difference between the eigenvalues related
to the signal and noise components can specify the cutoff point
of separability, namely, the number of leading SVD components
that are separated from the residual. Therefore, the final cutoff
point of separability between the signal and noise components
obtained by the suggested measures corresponds to the rank
estimation.

The eigenvalues can be split into two groups by using the above
criteria; the first group corresponds to the signal, and the second
corresponds to the noise component. Furthermore, the Spearman
correlation ρS between ζi and ζj was calculated to support the
outcomes obtained by those measures. The absolute value of
the correlation coefficient was considered; 1 shows that ζi and
ζj have a perfect positive correlation, while 0 indicates there is
no correlation between them. The matrix of the absolute values
of the Spearman correlation gives a full analysis of the trajectory
matrix, and in this analysis, each eigenvalue corresponds to an
elementary matrix of the SVD. Note that if the absolute value
of ρS is close to 0, the corresponding components are almost
orthogonal; however, if it is close to 1, the two components are
far from being orthogonal, and thus it is difficult to separate
them. Therefore, if ρS=0 between two reconstructed components,
these two reconstructed series are separable. The results of ρS

between the eigenvalues for the white noise are quite large (see
[38]), which aids the discrimination of the noise part.

Once r is identified, the matrices Xi can be split into two groups.
Therefore, Equation 1 can be written as

X = S + E              (6)

where is the signal matrix and is the noise matrix. We
then use diagonal averaging to transform matrix S into a new
series of size N (see [29]).

The Algorithm
The algorithm consisted of two main stages. The steps in the
first stage used the coefficients of skewness, kurtosis, variation,
and correlation to help obtain the optimal value of r for the
separability between signal and noise, as these coefficients split
the eigenvalues into two groups. The steps in the second stage
were used to reconstruct the free noise series.

The steps in Stage 1 are outlined below:

1. Map a one-dimensional time series YN = y1, …, yN into s
multidimensional series X1, …, XK with vectors Xi = (yi, …,

yi+L–1) ∈ RL, where the window length L is an integer; 2 ≤
L ≤ N/2, and K = N – L + 1. This step gives us the Hankel

matrix .
2. Compute the matrix A = XXT/tr(XXT).
3. Decompose matrix A as A = PΓPT, where Γ = diag(ζi, …,

ζL) is the diagonal matrix of the eigenvalues of A that has
the order (1 ≥ ζi, …, ζL ≥ 0) and P = P1, …, PL is an
orthogonal matrix whose columns are the corresponding
eigenvectors.

4. Simulate the original series m times and calculate the
eigenvalues for each series. We simulate yi from a uniform
distribution with boundaries yi – a and yi – b, where a =
|yi–1 – yi| and b = |yi – yi+1|.

5. Compute the skewness coefficient for each eigenvalue,
skew(ζi). If skew(ζc) is the maximum, and the pattern for
skew(ζc) to skew(ζL) has a similar pattern to that of the
white noise, select r = c – 1.

6. Compute the coefficient of kurtosis for each eigenvalue,
kurt(ζi). If skew(ζc) is the maximum, select r = c – 1.

7. Compute the coefficient of variation, CV=ζi. The result of
the CV splits the eigenvalues into two groups; the
eigenvalues from ζi to ζc–1 correspond to the signal, and
the remaining eigenvalues, which have an almost U shape,
correspond to the noise.

8. Compute the absolute values of the correlation matrix
between the eigenvalues and represent them in a 20-grade
grey scale from white to black corresponding to the values
of the correlations from 0 to 1. This matrix also splits the
eigenvalues into two groups; the eigenvalues from ζi to ζr

correspond to the signal, and the remaining eigenvalues
correspond to the noise.

The steps in Stage 2 are outlined below:

1.
Calculate the approximated signal matrix , that is, ,

where r is obtained from the first stage, and , where Ui

and Vi represent the left and right eigenvectors of the
trajectory matrix, respectively.

2.
Averaging over the diagonals of the matrix gives a
one-dimensional series, which is the approximate signal

.

The capabilities of modified SSA using different types of
synthetic data, including series generated from chaotic map
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systems with different SNR ratios, are presented in [38]. This
study confirms that the approach works promisingly for any
series that is mixed with a low or high noise level.

Each eigenvalue or singular value contributes to the trajectory
matrix decomposition. We can consider the ratio to be the

characteristic of matrix Hi to Equation 1. Therefore, is
considered to be characteristic of the optimal approximation of
H by matrices of rank r.

Results

Separability in Synthetic Data
It should be noted that using the standard criteria in basic SSA,
the weighted correlation (w-correlation) for separability and
grouping (for more information, see [29]), does not always
provide good separability and correct selection of r, especially
for real data.

It was shown in [38] that the results based on skew, kurt, CV,
and ρS are more accurate than those obtained by the

w-correlations for small window lengths, particularly for data
in which a linear trend is included in the series.

We therefore used modified SSA—in particular, some of the
proven criteria on the distribution of ζi, as given in the previous
sections—to identify r. The results were plausible and reliable.

Below, we provide a synthetic example to show the capability
of the approach before applying it to the COVID-19 data; for
more examples considering different types of series and
evaluations with different criteria, refer to [38].

In the following example, a white noise process was added
to an exponential trend series:

Yt = α1 + α2 exp(α2t) +               (7)

where t=(1, …, N), N=42, α1=10, α2=0.09, and is a Gaussian
white noise process with variance 1 (see Figure 1). It is obvious
that the number of eigenvalues required to reconstruct the signal
for this series is 2, as we have added a constant to the
exponential curve, which corresponds to the rank estimation
(see [29]).

Figure 1. Realization of the simulated exponential trend series.

Based on observations of the w-correlations and the logarithm
of the eigenvalues, one may use only the first component to
extract the signal (see Figure 2). However, using the suggested
measures and criteria gives the correct value of r. Figure 3 shows
the kurtosis coefficient of ζi (i=1, …, L). The maximum value
of the kurtosis coefficient is considered as one of the rules and

indicators used for the start of the noise. It is clear that the
maximum kurtosis coefficient of ζi is obtained for ζc=3.
Therefore, the number of eigenvalues required to extract the
signal is r = c – 1 = 2. Similar results were obtained using the
values of skew and CV (see Figure 4).
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Figure 2. Left: w-correlation matrix for the seven reconstructed components of the simulated series. Right: logarithms of the seven eigenvalues of the
simulated series. w-correlation: weighted correlation.

Figure 3. Kurt of ζi for the simulated series. Kurt: kurtosis.

Figure 4. Left: skew of ζi for the simulated series. Right: CVs of ζi for the simulated series. CV: coefficient of variation; skew: skewness.

In addition, the Spearman correlation coefficient between ζi

and ζi+1 was calculated; Figure 5 (left) shows the correlation
between ζi and ζi+1. For the correlation coefficient, the minimum
value of ρS between ζi and ζi+1 was used as another indicator
for the cutoff point. The results were similar to those that

emerged using other criteria and confirmed that the approach
works properly. Different criteria, such as root mean square
error and mean absolute error, were used in [38] to evaluate the
approach, and the results confirmed that the modified approach
is a promising one.
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Figure 5. Left: Spearman correlation of (ζi,ζ(i+1). Right: matrix of Spearman correlation between (ζi,ζj).

The correlation matrix also enables us to distinguish and separate
the different components from each other. Therefore, the
correlation matrix of ζi identifies the separability between the
components. If the absolute value of the correlation coefficient
between ζi and ζj is small, then the corresponding components
are almost orthogonal; however, if the value is large, then the
corresponding series are far from being orthogonal, and thus
they are not neatly separable. It is clear that the signal can be
separated from the noise, as the top right-hand pattern from the
correlation matrix is related to the white noise process (see
Figure 5, right).

COVID-19 Data Analysis
The daily numbers of confirmed cases of COVID-19 in Saudi
Arabia [42] were used in this research. First, we used data from
the first 42 days, from March 2 to April 12, 2020. The aim was
to analyze the data, make predictions from April 13, 2020, and
detect the peak. The number of daily cases series is shown in
Figure 6. Second, we updated our data on May 20, 2020, to
include values from April 13 to May 12, 2020; thus, the total
became 81 values. This did not affect the required number of
eigenvalues for the reconstruction stage, as will be discussed
in the following section.

Figure 6. Time series of daily confirmed COVID-19 cases in Saudi Arabia (March 2 to April 12, 2020).

Separability and Selection of the Components
Starting with the first set of COVID-19 data, as mentioned
earlier, because our aim was to extract the signal as a whole,
we could choose any value for L, with the goal to find the best
choice of r. Furthermore, in our previous research [38], we
showed that it is possible to use a small window length when
analyzing exponential series, like the series of COVID-19 cases.
The selection of L=7 provided the best and most reasonable
results with the required r that would be obtained by the
proposed approach.

The results based on these measures in extracting the signal for
forecasting gave a curve with a likely peak. However, the
predictions using various other choices for L and r did not

indicate any end or peak for the pandemic and in fact showed
exponential increases; such increases are impossible, as the
pandemic will not continue forever. This finding also supports
the obtained results. Therefore, the next important task was the
selection of the number of eigenvalues r required for the
reconstruction and building of the model for forecasting.

Figure 7 illustrates the coefficients of skewness and kurtosis
for each eigenvalue and the results of the matrix correlations
and the correlations between ζi and ζi+1 for L=7. As shown by
the results, for the COVID-19 daily series, the maximum values
of skew and kurt are observed for ζc=3, and the minimum value
of ρS is obtained between ζc–1=3 and ζc=3. In addition, the matrix
of the Spearman correlation for ζi and ζj splits the eigenvalues
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or the components into two groups, which indicates that the value of r is 2.

Figure 7. Coefficients of skewness (top left) and kurtosis (top right) for each eigenvalue and the correlations between ζi and ζi+1 (bottom left) and

the results of the matrix correlations (bottom right) for L=7.

Figure 8 shows the results of the reconstructed series obtained
by using L=7 and eigentriples r=2. The red and black lines
correspond to the reconstructed series and the original series,
respectively. It appears that the reconstructed series that was

obtained is good. However, it will be shown later that the
reconstructed series using the whole data set is better than this
fitted series.

Figure 8. Plot of the first time series of daily COVID-19 cases in Saudi Arabia and the fitted curve.

Prediction of Daily Cases of COVID-19 Using VSSA
After obtaining the reconstructed series, the next aim was to
predict the data for daily new cases from April 13 to August
2020. There are two main forecasting methods in SSA: VSSA
(VSSA) and recurrent singular spectrum analysis (RSSA). The
VSSA forecasting algorithm is the most widely used in SSA
[29]. Generally, this method is more robust than RSSA,
especially when a series contains outliers or when facing large
shocks in the series [43]. Therefore, we focused on the use of

the VSSA algorithm for forecasting in this research, as
recommended in [18].

Vector Forecasting Algorithm
To perform SSA forecasting, the basic requirement is that the
series satisfies a linear recurrent formula (LRF). The series YN

= [y1, …, yN] satisfies an LRF of order L 1 if

Yt = a1yt-1 + a2y2 + ⋅⋅⋅ + aL–1yt–L+1, t = L + 1, …, N (8)

The coefficient vector A = a1, …, aL–1 is defined as follows:
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where , is the vector of the first L – 1 components of the
eigenvector Uj, and πj is the last component of Uj (j = 1, …, r).

Consider the following matrix:

Π = U∇U∇T + (1 – v2)AAT              (10)

Let us now define the linear operator:

where = span{U1, …, Ur} and

where Y∆ is the vector of the last L – 1elements of YN. The vector
Zj is defined as follows:

where are the reconstructed columns of the trajectory matrix
of the i-th series after grouping and leaving out noise
components. Now, by constructing matrix Z = [Z1, …, ZK+h+L–1]

and performing diagonal averaging, a new series is obtained,

where from the h terms of the VSSA forecast.

As discussed above, the best values for reconstruction were L=7
and r=2. The values of L=6 and r=3 were the second-best
choices based on the criteria presented earlier. For forecasting,
the results of these two choices were compared by using the
complement statistical test introduced in [44], which is proposed
for distinguishing between the predictive accuracy of two sets
of forecasts. It is a nonparametric test founded upon the
principles of the Kolmogorov-Smirnov test and known as the

KS predictive accuracy (KSPA) test. The test is useful for
serving two different purposes. First, 2-sided KSPA is used to
determine if there is a statistically significant difference between
the distribution of forecast errors. Second, the 1-sided KSPA
test exploits the principles of stochastic dominance to determine
whether the forecasts with lower error also produce a
stochastically smaller error than forecasts from a competing
model, and it then allows for differentiation between the
predictive accuracy of the forecasts [45].

The 2-sided KSPA test indicated that there was no statistically
significant difference between the distribution of forecast errors
at a 95% confidence level (P=.56). Moreover, there was
insufficient evidence based on the one-sided KSPA test at the
5% significance level to conclude that the stochastic errors are
different (P=.76). Therefore, the results confirm that there is no
statistically significant difference between the two forecasts.

Consequently, we also concentrated only on the best values
obtained, L=7 and r=2, for forecasting. Similar procedures were
followed for the new data updated on May 20, 2020. The same
values of L and r were used to analyze the new data and also
for predicting confirmed cases 3 months ahead. Figure 9 shows
the updated data and the reconstructed series by the first two
eigentriples. It is obvious that the reconstructed series was
obtained precisely. Figure 10 shows the two curve predictions
and the overall actual data; the red curve is the prediction using
the first set of data, and the blue curve is the prediction using
the updated data set. It is clear that there is no great difference
between the two curves, as the peak appears around the end of
May in the red curve and toward the end of June in the blue
curve, which was obtained using the updated data. In addition,
the end of the pandemic is predicted to occur between July and
the middle of August, with the total number of infected people
at approximately 330,000.

Figure 9. Plot of the entire time series of daily COVID-19 cases in Saudi Arabia and the fitted curve.
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Figure 10. Comparison of the two forecasting scenarios with actual observations. Pred: predicted.

Discussion

A modified SSA approach was used in this research for the
decomposition and forecasting of COVID-19 data in Saudi
Arabia. The approach was examined in our previous research
and was applied here to the analysis of COVID-19 data.

In the first stage, the first 42 values of confirmed daily cases
(March 2 to April 12, 2020) were used and analyzed to identify
the value of r for separability between the noise and signal.
After obtaining the value of r, which was 2, and extracting the
signals, VSSA was used for the prediction and determination
of the pandemic peak. In the second stage, we updated the data
and included 81 daily values. We used the same window length
and number of eigenvalues for the reconstruction and forecasting
of the points 90 days ahead. The results of both forecasting

scenarios indicated that the peak would occur around the end
of May or June and the crisis would end between the end of
June and the middle of August 2020, with a total number of
infected people of approximately 330,000.

All our results confirm the impressive performance of modified
SSA in analyzing the COVID-19 data and selecting the value
of r for identifying the signal subspace from a noisy time series,
then making an accurate prediction using the VSSA method.
Note that we did not examine all possible window length values
in this research, and for forecasting, we only used basic VSSA.

In future research, we will include more data and consider
different window lengths L, which may provide better
forecasting. In addition, chaotic behavior in the COVID-19 data
will be examined, as some of our results show strange patterns,
as can be found in chaotic systems.
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kurt: kurtosis
RSSA: recurrent singular spectrum analysis
SIR: susceptible, infectious, recovered
skew: skewness
SNR: signal-to-noise ratio
SSA: singular spectrum analysis
SVD: singular value decomposition
VSSA: vector singular spectrum analysis
w-correlation: weighted correlation
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