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Abstract

Background: Approximately 80% of those infected with COVID-19 are immune. They are asymptomatic unknown carriers
who can still infect those with whom they come into contact. Understanding what makes them immune could inform public health
policies as to who needs to be protected and why, and possibly lead to a novel treatment for those who cannot, or will not, be
vaccinated once a vaccine is available.

Objective: The primary objectives of this study were to learn if machine learning could identify patterns in the pathogen-host
immune relationship that differentiate or predict COVID-19 symptom immunity and, if so, which ones and at what levels. The
secondary objective was to learn if machine learning could take such differentiators to build a model that could predict COVID-19
immunity with clinical accuracy. The tertiary purpose was to learn about the relevance of other immune factors.

Methods: This was a comparative effectiveness research study on 53 common immunological factors using machine learning
on clinical data from 74 similarly grouped Chinese COVID-19–positive patients, 37 of whom were symptomatic and 37
asymptomatic. The setting was a single-center primary care hospital in the Wanzhou District of China. Immunological factors
were measured in patients who were diagnosed as SARS-CoV-2 positive by reverse transcriptase-polymerase chain reaction
(RT-PCR) in the 14 days before observations were recorded. The median age of the 37 asymptomatic patients was 41 years (range
8-75 years); 22 were female, 15 were male. For comparison, 37 RT-PCR test–positive patients were selected and matched to the
asymptomatic group by age, comorbidities, and sex. Machine learning models were trained and compared to understand the
pathogen-immune relationship and predict who was immune to COVID-19 and why, using the statistical programming language
R.

Results: When stem cell growth factor-beta (SCGF-β) was included in the machine learning analysis, a decision tree and extreme
gradient boosting algorithms classified and predicted COVID-19 symptom immunity with 100% accuracy. When SCGF-β was
excluded, a random-forest algorithm classified and predicted asymptomatic and symptomatic cases of COVID-19 with 94.8%
AUROC (area under the receiver operating characteristic) curve accuracy (95% CI 90.17%-100%). In total, 34 common immune
factors have statistically significant associations with COVID-19 symptoms (all c<.05), and 19 immune factors appear to have
no statistically significant association.

Conclusions: The primary outcome was that asymptomatic patients with COVID-19 could be identified by three distinct
immunological factors and levels: SCGF-β (>127,637), interleukin-16 (IL-16) (>45), and macrophage colony-stimulating factor
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(M-CSF) (>57). The secondary study outcome was the suggestion that stem-cell therapy with SCGF-β may be a novel treatment
for COVID-19. Individuals with an SCGF-β level >127,637, or an IL-16 level >45 and an M-CSF level >57, appear to be
predictively immune to COVID-19 100% and 94.8% (AUROC) of the time, respectively. Testing levels of these three immunological
factors may be a valuable tool at the point of care for managing and preventing outbreaks. Further, stem-cell therapy via SCGF-β
and M-CSF appear to be promising novel therapeutics for patients with COVID-19.

(JMIRx Med 2020;1(1):e23582) doi: 10.2196/23582
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Introduction

Asymptomatic patients who are infected with SARS-CoV-2
have neither clinical symptoms nor abnormal chest imaging.
However, these patients have the same infectivity as infected
patients with symptoms [1]. Moreover, adult asymptomatic
patients have been found to have the same viral loads as
symptomatic patients [2]. Studies have shown that age appears
to influence whether an infected person is susceptible to illness.
Those under the age of 20 years have approximately half the
morbidity probability as those over the age of 20 [3]. This
improbability of becoming ill from SARS-CoV-2 infection is
especially interesting because young children have been found
to have 10 to 100 times the viral load as older children and
adults, and disproportionately remain asymptomatic [4].

Stem cell growth factor-beta (SCGF-β) has been associated
with H7N9 (Asian lineage avian influenza A subtype) and
disassociated with H5N1 (a highly pathogenic avian influenza)
[5,6]. Elevated SCGF-β has also been associated with specific
disease states of hepatocellular cancer, Chagas disease,
cardiomyopathy, inflammation and insulin resistance, and
unstable carotid plaques [7-10]. Interleukin-16 (IL-16), the
second most important variable in predicting SARS-CoV-2
immunity or resistance, has been strongly associated with asthma
[11].

Prior studies on the biomarkers associated with SARS-CoV-2
immune response and morbidity include interferon-gamma
(IFN-γ), interferon-beta (IFN-β), and interleukin-8 (IL-8) [12].
Other previous research on immune parameters associated with
SARS-CoV-2 severity and prognosis have involved interleukin-1
beta (IL-1β) and interleukin-6 (IL-6). However, others found
reduced immunoglobin G levels in asymptomatic patients
[13,14]. The general finding in prior research regarding the
pathogen-immune relationship with SARS-CoV-2 is that
symptomatic patients have considerably more inflammation
and cytokine storm activity than asymptomatic patients [14].

What has been unknown for SARS-CoV-2 are three questions
to which the answers are suggested in this study. First, which
immunological variables are statistically significant, and how
important is each in predicting asymptomatic status? Second,
which of those variables, if any, have a strong negative
correlation, or relationship, with disease severity (ie,
asymptomatic patients’ levels are significantly higher than
symptomatic patients)? And third, is there an algorithmic or
formulaic model of prognostic biomarkers that can accurately

predict morbidity—who will be asymptomatic if infected, and
who is at risk of more severe symptoms and disease
progression—and why?

Methods

This study was based on secondary data published as a
supplement in Nature Medicine in June 2020 [14]. Therein,
immunological factors were measured in 74 patients in the
Wanzhou District of China. They were diagnosed as
SARS-CoV-2 positive by reverse transcriptase-polymerase
chain reaction (RT-PCR) in the 14 days before observations
were recorded. The median age of the 37 asymptomatic patients
was 41 years (range 8-75 years); 22 were female and 15 were
male. For comparison, 37 RT-PCR test–positive patients were
selected and matched to the asymptomatic group by age,
comorbidities, and sex [14].

In this study, five algorithms, or types, of machine learning—a
kind of artificial intelligence employing robust brute-force
statistical calculations—were applied to a data set of 74
observations of 34 immunological factors in order to attempt
three things: (1) to develop a model to accurately predict which
patients will be asymptomatic or symptomatic if infected with
SARS-CoV-2; (2) to determine the relative importance of each
immunological factor; and (3) to determine if there is any level
of a subset of immunological factors that can accurately predict
which patients are likely to be immune or resistant to
SARS-CoV-2.

Minitab 19, version 19.2020.1 (Minitab LLC), was used to
calculate means, 95% CIs, P values, and two-sample t tests of
statistical significance. Correlation coefficients were also
computed using Minitab via Spearman rho since the data were
distributed nonparametrically. A second classification and
regression tree (CART) algorithm was also applied in Minitab
to cross-validate decision tree results from R in Rattle. Minitab’s
CART methodology was initially described by Stanford
University and University of California Berkeley researchers
in 1984 [15].

The Rattle library, version 5.3.0 (Togaware), in the statistical
programming language R, version 3.6.3 (CRAN), was used to
apply five machine learning algorithms—a decision tree,
extreme gradient boosting (XGBoost), linear logistic model
(LLM), random forest, and support vector machine (SVM)—to
learn which model, if any, could predict asymptomatic status
and how accurately. Rattle randomly partitioned the data to
select and train on 80% (n=59), validate on 10% (n=7), and test
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on 10% (n=7) of observations. Two evaluation methods were
used: (1) plots of linear fits of the predicted versus observed

categorization; and (2) a pseudo-R2 measure calculated as the
square root of the correlation between the predicted and

observed values. Pseudo-R2 measure results were evaluated
twice, each using for evaluation data that were held back by
being randomly selected during partitioning and averaging the
two accuracy findings for the final results.

Rattle’s rpart decision tree was also used to identify if any levels
of one or more immunological factors could accurately diagnose
someone as asymptomatic (ie, via rules). The decision tree
results reported here used 20 and 12 as the minimum number
of observations necessary in nodes before the split (ie, minimum
split). The trees used 7 and 4 as the minimum number of
observations in a leaf node (ie, minimum bucket).

The random forest analysis in Rattle began by running a series
of differently sized random forest algorithms, ranging from 50
to 500 decision trees, to learn the optimum number of trees to
minimize error. Each random forest consisted of a minimum of
six variables, which was closest to the square root of the number
of statistically significant variables (ie, 34). The lowest error
rate was approximately 200 decision trees.

The five machine learning models and CART classification
trees were run, including and excluding SCGF-β to identify if
there were alternative prognostic biomarkers and levels in the
immune profile that could accurately classify and predict
SARS-CoV-2 immunity.

Results

In total, 34 of the 53 immunological factors (64.2%) were
indicated as statistically significant by P values <.05 from a
Spearman rho correlation. Of those 34 factors, 31 were
statistically significant with P values <.01. Conversely, 35.9%
of the 53 immune factors had no statistically significant
association with whether a patient was asymptomatic or
symptomatic to SARS-CoV-2.

The 22 factors positively correlated with being symptomatic
ranged from a minimum coefficient of 0.205 (monocyte
chemotactic protein-3 [MCP-3]) to a maximum of 0.781 (tumor
necrosis factor–related apoptosis-inducing ligand [TRAIL]).
The 11 factors negatively associated with being symptomatic
ranged from a minimum of –.866 (SCGF-β) to a maximum of
–0.276 (interferon alpha-2 [IFNα2]) (see Table 1).
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Table 1. Immunological factors associated with SARS-CoV-2 morbidity ranked by Spearman correlation coefficients with 95% CIs and P values.

P value
(<.05 target)

95% CIPairwise Spearman correla-
tion to asymptomatic (0)
or symptomatic (1) status

AbbreviationImmunological factor

<.0010.654 to 0.8650.781TRAILTNFa-related apoptosis-inducing ligand

<.0010.611 to 0.8450.750GRO-αGrowth-related oncogene alpha

<.0010.608 to 0.8430.748M-CSFMacrophage-colony stimulating factor

<.0010.549 to 0.8130.705IL-6Interleukin-6

<.0010.539 to 0.8080.697G-CSFGranulocyte-colony-stimulating factor

<.0010.499 to 0.7870.667IL-2Interleukin-2

<.0010.479 to 0.7750.651NGF-βNerve growth factor beta

<.0010.431 to 0.7480.614IL-10Interleukin-10

<.0010.407 to 0.7330.594MCP-1Monocyte chemoattractant protein-1

<.0010.397 to 0.7280.586SCFStem-cell factor

<.0010.325 to 0.6830.527IL-15Interleukin-15

<.0010.311 to 0.6730.514IL-8Interleukin-8

<.0010.252 to 0.6330.464IFN-γInterferon-gamma

<.0010.240 to 0.6250.454IL-7Interleukin-7

<.0010.237 to 0.6230.451INF-γ-IP-10Interferon gamma inducible protein-10

<.0010.223 to 0.6130.438IL-18Interleukin-18

<.0010.220 to 0.6110.436PDGF-BBPlatelet-derived growth factor BB

.0010.166 to 0.5720.388IL-2RαInterleukin-2 receptor alpha

.0010.143 to 0.5440.366IgG ConvImmunoglobin G (convalescing)

.0010.140 to 0.5520.364MIGMonokine-induced by gamma

.0040.103 to 0.5240.330IgG AcuteImmunoglobulin G (acute)

.040.006 to 0.4440.237MIFMacrophage migration inhibitory factor

.08b–0.270 to 0.4160.205MCP-3Monocyte chemotactic protein-3

.12b–0.048 to 0.3970.184VEGFVascular endothelial growth factor

.13b–0.053 to 0.3940.180NN gene

.17b–0.070 to 0.3790.163IL-3Interleukin-3

.20b–0.082 to 0.3680.151IL-12(p40)Interleukin-12-p40

.21b–0.084 to 0.3660.149IL-9Interleukin-9

.29b–0.107 to 0.3450.125IL-1βInterleukin-1 beta

.30b–0.110 to 0.3420.122Days shedDays shed virions

.41b–0.124 to 0.3200.098SDF-1αStromal cell-derived factor-1 alpha

.48b–0.149 to 0.3060.083IL-12(p70)Interleukin-12-p70

.57b–0.164 to 0.2910.067IL-17Interleukin-17

.87b–0.210 to 0.2470.020IL-4Interleukin-4

.86b–0.249 to 0.208–0.022IL-13Interleukin-13

.51b–0.302 to 0.153–0.078FGFFibroblast growth factor

.47b–0.308 to 0.146–0.085RANTESRegulated upon activation, normal T-cell expressed and
secreted
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P value
(<.05 target)

95% CIPairwise Spearman correla-
tion to asymptomatic (0)
or symptomatic (1) status

AbbreviationImmunological factor

.35b–0.330 to 0.123–0.109MIP-1βMacrophage inflammatory protein-1 beta

.34b–0.334 to 0.119–0.113ORF1abORF1ab gene

.24b–0.356 to 0.095–0.138MIP-1αMacrophage inflammatory protein-1 alpha

.15b–0.383 to 0.065–0.168TNF-αTumor necrosis factor-alpha

.09b–0.409 to 0.035–0.197TNF-βTumor necrosis factor-beta

.02c–0.478 to –0.046–0.276IFNα2Interferon alpha-2

.007c–0.509 to –0.840–0.312LIFLeukemia inhibitory factor

.006c–0.512 to –0.089–0.316IL-5Interleukin-5

.004c–0.526 to –0.106–0.332IL-1αInterleukin-1 alpha

.002c–0.548 to –0.134–0.359GM-CSFGranulocyte-macrophage colony-stimulating factor

.002c–0.548 to –0.135–0.359IL-1RαInterleukin-1 receptor alpha

.001c–0.576 to –0.169–0.390EotaxinEotaxin

<.001c–0.627 to –0.243–0.456CTACKCutaneous T-cell–attracting chemokine

<.001c–0.733 to –0.407–0.594HGFHepatocyte growth factor

<.001c–0.895 to –0.721–0.827IL-16Interleukin-16

<.001c–0.920 to –0.780–0.866SCGF-βStem-cell growth factor-beta

aTNF: tumor necrosis factor.
bStatistically insignificant.
cStatistically significant negative correlations.

When SCGF-β was included in the machine learning analysis,
two algorithms predicted and classified SARS-CoV-2 immunity
or resistance by being asymptomatic with 100% accuracy: a
decision tree and XGBoost. When SCGF-β was excluded, a
random-forest algorithm predicted and classified SARS-CoV-2
asymptomatic and symptomatic cases with 94.8% AUROC
(area under the receiver operating characteristic) curve accuracy
(95% CI 90.17%-100%) (see Table 2).

Notably, both the rpart decision trees and CART classification
trees independently identified three prognostic biomarkers at

specific levels that could classify asymptomatic and
symptomatic cases with 95%-100% accuracy. When SCGF- β
was included, all asymptomatic cases had levels >127,656.8,
while all symptomatic cases had levels <127,656.8 (Figure 1).
When SCGF-β was excluded, as a type of contingency analysis
to understand prognostic biomarker levels in other factors better,
IL-16 accurately classified asymptomatic cases >44.59 and
symptomatic cases <44.59 in 90.4% of the cases. In the
remaining 9.6% of cases where IL-16 >44.59, all had
macrophage colony-stimulating factor (M-CSF) >57.13 (Figure
2).
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Table 2. Comparative accuracy of six machine learning algorithms in predicting SARS-CoV-2 asymptomatic status from immunological factors.

Average Pseudo-R2 (%)Pseudo-R2 (10% evaluation holdback sample
2) (%)

Pseudo-R2 (10% evaluation holdback sample
1) (%)

Machine learning model

With SCGF-β a

100.00100.00100.00Decision tree

100.00100.00100.00XGBoostb

99.4598.89100.00GLMc (logistic)

97.1594.8399.46Random forest

87.9096.9978.81SVMd

Without SCGF-β

94.8091.9197.68Random forest

92.9885.96100.00GLM (logistic)

83.7389.6977.76SVM

76.8554.2799.42XGBoost

51.112.22100.00Decision tree

aSCGF-β: stem cell growth factor-beta.
bXGBoost: extreme gradient boosting.
cGLM: generalized linear model.
dSVM: support vector machine.

Figure 1. Classification and regression tree (CART) of the role of stem cell growth factor-beta (SCGF-β) in predicting SARS-CoV-2 morbidity.
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Figure 2. Classification and regression tree (CART) of the role of interleukin-16 (IL-16) and macrophage colony-stimulating factor (M-CSF) in
predicting SARS-CoV-2 morbidity in the absence of stem cell growth factor-beta (SCGF-β).

Two-sample t tests for the four factors with the highest positive
and negative correlation coefficients, interquartile ranges,
outliers, and levels between asymptomatic and symptomatic
patients that were statistically significant were computed to
ordinally rank factors by their correlation coefficients (Figure
3).

A random forest analysis of the most important variables to
accurately classify and predict SARS-CoV-2 patients by binary
morbidity ordinally ranked the 34 statistically significant factors.
Unsurprisingly, SCGF-β, and IL-16, followed by growth-related
oncogene alpha (GRO-α) and TRAIL, respectively, were the
most critical factors in predicting morbidity (Figure 4).
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Figure 3. Two-sample t tests of statistical significance of the difference in means of four leading prognostic biomarkers for asymptomatic or symptomatic
SARS-CoV-2. SCGF-β: stem cell growth factor-beta; IL-16: interleukin-16; GRO-α: growth-related oncogene alpha; TRAIL: tumor necrosis factor–related
apoptosis-inducing ligand.
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Figure 4. Relative importance of immunological variables from random forest analysis in predicting SARS-CoV-2 morbidity.

Finally, the results suggest that IL-1β, 3, 4, 9, 12, 13, 17, and
RANTES (regulated upon activation, normal T-cell expressed
and secreted) are of low importance, or comparative irrelevance,
in the pathogen-immune relationship and, that SCGF-β, IL-16,
HGF, INFNα2, LIF, CTACK, IL-1α, Eotaxin, GM-CSF,
IL-1Rα, and IL-5 are valuable in models to predict and classify
asymptomatic or symptomatic SARS-CoV-2 cases accurately.

Discussion

Principal Findings
While it has been speculated that stem cells may play a role in
SARS-CoV-2 and other zoonoses’ resistance, prior research
has focused on different stem cell involvement than SCGF-β
[16-18]. Previous research has also established that stem cells
can inhibit viral growth by expressing IFN-γ–stimulated genes
and have been particularly effective against influenza A H5N1
virus and resulting lung injuries [19,20]. Stem cell therapy has
been hypothesized as a treatment for SARS-CoV-2; however,
there is no record in the literature specific as to which factors
may influence SARS-CoV-2 infections, favorably or
unfavorably, or to what degree until now [21].

Researchers have recently found that symptomatic patients
generally have a more robust immune response to SARS-CoV-2
infection, culminating in cytokine storms in the worst cases.
Conversely, asymptomatic patients have been found to have a
weaker immune response [14]. Because infections are causal
to immune response, of particular interest in this study were the
most impactful immune-related variables that negatively
correlated with asymptomatic status (ie, variables that were

greater for asymptomatic patients than symptomatic patients)
(marked with a superscripted “c” in Table 1). 

This paper’s overarching importance is the identification of
immunological factors for diagnoses, treatments, and preclinical
prophylactic immune-based approaches to SARS-CoV-2 in the
first 7 months of a pandemic that experts now opine will last
decades [22]. Immunostimulant approaches are especially
valuable because, unlike antivirals and vaccines, they may be
given later in the course of the disease to optimize outcomes
[21].

The primary importance of this work is machine learning
algorithmic models that can predict with high accuracy whether
someone, once infected, will be asymptomatic or symptomatic
from SARS-CoV-2. This knowledge gives clinicians new tools
to identify populations in advance who appear to be at higher
risk of danger from the virus. Such devices, especially once
reproduced in a more extensive study, may also inform policy
decisions as to who needs to shelter in place. Finally, because
of the scale of this pandemic and practical constraints as to how
many vaccination doses can be manufactured and how quickly
this can be done, such tools may become valuable in prioritizing
vaccine administration to those in greatest need because they
have a higher biological and immunological risk.

This work’s secondary importance is a description of the
cytokine and chemokine profile that is associated with
asymptomatic or symptomatic SARS-CoV-2 infections. It
enables a better understanding of the pathogen-immune
relationship. These profiles provide insights into the biological
pathways critical for SARS-CoV-2 progression.
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As one example, stem cell factors secrete multiple factors that
regulate immune cells and modulate them to restore tissue
homeostasis. These results suggest that higher levels of SCF-β
(stem-cell factor-beta) may better control immune responses to
prevent the more robust reactions universally associated so far
with highly symptomatic patients and, further, prevent high
morbidity and mortality cytokine storms. A better understanding
of the pathogen-immune relationship may enable researchers
to prevent and treat patients with SARS-CoV-2 infection more
effectively with therapeutics currently untested and unused.
This knowledge may also extend to similar zoonotic
coronaviruses in the future.

The tertiary importance of this work is identifying three immune
factors and precise levels that appear to be prognostic
biomarkers as to whether someone, once infected with
SARS-CoV-2, will be immune or resistant, as demonstrated by
being asymptomatic or not. These insights also suggest new
candidates for therapeutic research focused on the relatively
newly identified and ill-understood SCGF-β and its role in the
immunological process.

The quaternary importance of this work is further proof that
machine learning methods can accurately and quickly identify
critical elements of disease dynamics that accelerate
understanding and improve outcomes during pandemics.
Moreover, it is an example of how a “dry” data science
laboratory can link to clinical or “wet” laboratory science for
real-world applications.

Limitations
This study has several limitations. First, it is unknown from the
data set how many days passed between exposure to the virus
and immunological testing, or whether it was universally the
same number of days. Second, because immune profiles are
temporally sensitive, ideally, several tests would have been
taken over several days, which did not occur (R Jankord, PhD,
July 22, 2020). Third, immunological signaling and processing

are multifactorial and complex. Therefore, it is unclear why
SCGF-β levels are categorically high in asymptomatic patients
and low in symptomatic patients, or whether they are causal to
SARS-CoV-2 response. Fourth, combinatorial and sequential
analysis of these immunological elements may be an important
future research area to optimize therapeutic research outcomes.
Fifth, at least one study in a leading journal, The Lancet, found
that Chinese SARS-CoV-2 case data may have been misreported
by as much as 400% [23]. That study, and much higher case
and fatality numbers in over 200 countries, have created distrust
and skepticism of SARS-CoV-2–related data originating from
China.

Future research could ameliorate these limitations and focus on
a more extensive study group to attempt to reproduce the results.
Moreover, a prospective case-control study of patients with
decreased SCGF-β levels and supplementation that was
protective against SARS-CoV-2 severity and symptoms would
be invaluable validation.

Conclusion
One implication of these findings is that if we can predict the
80% of society who may be immune or resistant to
SARS-CoV-2, or asymptomatic, it may profoundly impact
public health intervention decisions as to who needs to be
protected and by how much. If, for example, 80% of the
shelter-in-place orders and the resultant dramatic reduction in
economic and social activity could have been prevented by
accurately predicting who is at low risk of infection, the
economic benefits alone may have been valued in US$ trillions.
The second implication of these findings is evidence that
elevated levels of SCGF-β, IL-16, and M-CSF may have a causal
relationship with SARS-CoV-2 immunity or resistance, and
may have utility as diagnostic determinants to (1) inform public
health policy decisions to prioritize and reduce shelter-in-place
orders to minimize economic and social impacts; (2) advance
therapeutic research; and (3) prioritize vaccine distribution to
benefit those with the greatest need and risks first.
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IL-1β: interleukin-1 beta
IL-6: interleukin-6
IL-8: interleukin-8
IL-16: interleukin-16
LLM: linear logistic model
M-CSF: macrophage colony-stimulating factor
MCP-3: monocyte chemotactic protein-3
RANTES: regulated upon activation, normal T-cell expressed and secreted
RT-PCR: reverse transcriptase-polymerase chain reaction
SCF-β: stem-cell factor-beta
SCGF-β: stem cell growth factor-beta
SVM: support vector machine
TRAIL: tumor necrosis factor–related apoptosis-inducing ligand
XGBoost: extreme gradient boosting
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